2
|
Brian Hwang B, Alves J, Lazar D, Nath N, Engel L, O'Brien M, Hsiao K, Kupcho K, Godat B, Flemming R, Goueli S, Zegzouti H. Lumit: A Homogeneous Bioluminescent Immunoassay for Detecting Diverse Analytes and Intracellular Protein Targets. Methods Mol Biol 2023; 2612:195-224. [PMID: 36795369 DOI: 10.1007/978-1-0716-2903-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Traditional immunoassays to detect secreted or intracellular proteins can be tedious, require multiple washing steps, and are not easily adaptable to a high-throughput screening (HTS) format. To overcome these limitations, we developed Lumit, a novel immunoassay approach that combines bioluminescent enzyme subunit complementation technology and immunodetection. This bioluminescent immunoassay does not require washes or liquid transfers and takes less than 2 h to complete in a homogeneous "Add and Read" format. In this chapter, we describe step-by-step protocols to create Lumit immunoassays for the detection of (1) secreted cytokines from cells, (2) phosphorylation levels of a specific signaling pathway node protein, and (3) a biochemical protein-protein interaction between a viral surface protein and its human receptor.
Collapse
Affiliation(s)
| | - Juliano Alves
- R&D Department, Promega Corporation, Madison, WI, USA
| | - Dan Lazar
- R&D Department, Promega Corporation, Madison, WI, USA
| | - Nidhi Nath
- R&D Department, Promega Corporation, Madison, WI, USA
- Bio-Techne, Minneapolis, MN, USA
| | - Laurie Engel
- R&D Department, Promega Corporation, Madison, WI, USA
| | | | - Kevin Hsiao
- R&D Department, Promega Corporation, Madison, WI, USA
| | - Kevin Kupcho
- R&D Department, Promega Corporation, Madison, WI, USA
| | - Becky Godat
- R&D Department, Promega Corporation, Madison, WI, USA
| | - Rod Flemming
- R&D Department, Promega Corporation, Madison, WI, USA
| | - Said Goueli
- R&D Department, Promega Corporation, Madison, WI, USA
| | | |
Collapse
|
5
|
Hwang BB, Engel L, Goueli SA, Zegzouti H. A homogeneous bioluminescent immunoassay to probe cellular signaling pathway regulation. Commun Biol 2020; 3:8. [PMID: 31909200 PMCID: PMC6941952 DOI: 10.1038/s42003-019-0723-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
Monitoring cellular signaling events can help better understand cell behavior in health and disease. Traditional immunoassays to study proteins involved in signaling can be tedious, require multiple steps, and are not easily adaptable to high throughput screening (HTS). Here, we describe a new immunoassay approach based on bioluminescent enzyme complementation. This immunoassay takes less than two hours to complete in a homogeneous "Add and Read" format and was successfully used to monitor multiple signaling pathways' activation through specific nodes of phosphorylation (e.g pIκBα, pAKT, and pSTAT3). We also tested deactivation of these pathways with small and large molecule inhibitors and obtained the expected pharmacology. This approach does not require cell engineering. Therefore, the phosphorylation of an endogenous substrate is detected in any cell type. Our results demonstrate that this technology can be broadly adapted to streamline the analysis of signaling pathways of interest or the identification of pathway specific inhibitors.
Collapse
Affiliation(s)
| | - Laurie Engel
- 1R&D Department, Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711 USA
| | - Said A Goueli
- 1R&D Department, Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711 USA.,2Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI USA
| | - Hicham Zegzouti
- 1R&D Department, Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711 USA
| |
Collapse
|
6
|
Fumagalli A, Zarca A, Neves M, Caspar B, Hill SJ, Mayor F, Smit MJ, Marin P. CXCR4/ACKR3 Phosphorylation and Recruitment of Interacting Proteins: Key Mechanisms Regulating Their Functional Status. Mol Pharmacol 2019; 96:794-808. [PMID: 30837297 DOI: 10.1124/mol.118.115360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/21/2019] [Indexed: 01/14/2023] Open
Abstract
The C-X-C motif chemokine receptor type 4 (CXCR4) and the atypical chemokine receptor 3 (ACKR3/CXCR7) are class A G protein-coupled receptors (GPCRs). Accumulating evidence indicates that GPCR subcellular localization, trafficking, transduction properties, and ultimately their pathophysiological functions are regulated by both interacting proteins and post-translational modifications. This has encouraged the development of novel techniques to characterize the GPCR interactome and to identify residues subjected to post-translational modifications, with a special focus on phosphorylation. This review first describes state-of-the-art methods for the identification of GPCR-interacting proteins and GPCR phosphorylated sites. In addition, we provide an overview of the current knowledge of CXCR4 and ACKR3 post-translational modifications and an exhaustive list of previously identified CXCR4- or ACKR3-interacting proteins. We then describe studies highlighting the importance of the reciprocal influence of CXCR4/ACKR3 interactomes and phosphorylation states. We also discuss their impact on the functional status of each receptor. These studies suggest that deeper knowledge of the CXCR4/ACKR3 interactomes along with their phosphorylation and ubiquitination status would shed new light on their regulation and pathophysiological functions.
Collapse
Affiliation(s)
- Amos Fumagalli
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Aurélien Zarca
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Maria Neves
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Birgit Caspar
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Stephen J Hill
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Federico Mayor
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Martine J Smit
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| | - Philippe Marin
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France (A.F., P.M.); Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (A.Z., M.J.S.); Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain (M.N., F.M.); CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (M.N., F.M.); and Division of Physiology, Pharmacology and Neuroscience, Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (B.C., S.J.H.)
| |
Collapse
|