1
|
Zhong R, Chernick D, Hottman D, Tan Y, Kim M, Narayanan M, Li L. The HDL-Mimetic Peptide 4F Mitigates Vascular and Cortical Amyloid Pathology and Associated Neuroinflammation in a Transgenic Mouse Model of Cerebral Amyloid Angiopathy and Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04859-9. [PMID: 40120042 DOI: 10.1007/s12035-025-04859-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. Despite recent advances, more effective and safer treatment options for AD are needed. Cerebral amyloid angiopathy (CAA) is one of the key pathological hallmarks of AD characterized by amyloid-β (Aβ) deposition in the cerebral vasculature and is associated with intracerebral hemorrhage, cerebrovascular dysfunction, and cognitive impairment. CAA is also considered to underlie the main adverse effect of recently FDA-approved anti-Aβ immunotherapies, namely the amyloid-related imaging abnormalities (ARIA). Substantial evidence has shown that elevated levels of high-density lipoprotein (HDL) and its main protein component, APOA-I, are associated with reduced CAA and superior cognitive function. 4F is an APOA-I/HDL-mimetic peptide and its clinical safety and activity have been demonstrated in human trials for cardiovascular diseases. The present study investigates whether treatment with 4F modulates CAA and associated cognitive deficits and neuropathologies in the well-established Tg-SwDI mouse model of CAA/AD. Age/sex-matched Tg-SwDI mice received daily treatments of 4F or vehicle (PBS), respectively, by intraperitoneal injections for 12 weeks. The results showed that 4F treatment reduced overall Aβ plaque deposition and CAA, and attenuated CAA-associated microgliosis, without significantly affecting total levels of Aβ, astrocytosis, and behavioral function. Unbiased transcriptomic analysis revealed a heightened inflammatory state in the brain of SwDI mice and that 4F treatment reversed the overactivation of vascular cells, in particular vascular smooth muscle cells, relieving cerebrovascular inflammation in CAA/AD mice. Our study provides experimental evidence for the therapeutic potential of 4F to mitigate CAA and associated pathologies in AD.
Collapse
Affiliation(s)
- Rui Zhong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Dustin Chernick
- Graduate Program in Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - David Hottman
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yejun Tan
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Minwoo Kim
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Manojkumar Narayanan
- Graduate Program in Comparative and Molecular Biosciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Graduate Program in Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
2
|
Abudukeremu A, Huang C, Li H, Sun R, Liu X, Wu X, Xie X, Huang J, Zhang J, Bao J, Zhang Y. Efficacy and Safety of High-Density Lipoprotein/Apolipoprotein A1 Replacement Therapy in Humans and Mice With Atherosclerosis: A Systematic Review and Meta-Analysis. Front Cardiovasc Med 2021; 8:700233. [PMID: 34422927 PMCID: PMC8377725 DOI: 10.3389/fcvm.2021.700233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/28/2021] [Indexed: 02/02/2023] Open
Abstract
Background: Although elevation of HDL-C levels by pharmaceutical drugs have no benefit of cardiovascular endpoint, the effect of high-density lipoprotein/apolipoprotein A1 (HDL/apoA-1) replacement therapy on atherosclerosis is controversial. The current meta-analysis analyzed the effects of HDL/apoA-1 replacement therapies on atherosclerotic lesions both in humans and mice. Methods: The PubMed, Cochrane Library, Web of Science, and EMBASE databases were searched through June 6, 2020. The methodological quality of the human studies was assessed using Review Manager (RevMan, version 5.3.). The methodological quality of the mouse studies was assessed using a stair list. STATA (version 14.0) was used to perform all statistical analyses. Results: Fifteen randomized controlled human trials and 17 animal studies were included. The pooled results showed that HDL/apoA-1 replacement therapy use did not significantly decrease the percent atheroma volume (p = 0.766) or total atheroma volume (p = 0.510) in acute coronary syndrome (ACS) patients (N = 754). However, HDL/apoA-1 replacement therapies were significantly associated with the final percent lesion area, final lesion area, and changes in lesion area (SMD, −1.75; 95% CI: −2.21~-1.29, p = 0.000; SMD, −0.78; 95% CI: −1.18~-0.38, p = 0.000; SMD: −2.06; 95% CI, −3.92~-0.2, p = 0.03, respectively) in mice. Conclusions: HDL/apoA-1 replacement therapies are safe but do not significantly improve arterial atheroma volume in humans. The results in animals suggest that HDL/apoA-1 replacement therapies decrease the lesion area. Additional studies are needed to investigate and explain the differences in HDL/apoA-1 replacement therapy efficacies between humans and animals. Trial registration number: Human pooled analysis: PROSPERO, CRD42020210772. prospectively registered.
Collapse
Affiliation(s)
- Ayiguli Abudukeremu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Canxia Huang
- Critical Care Medicine Department, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongwei Li
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Runlu Sun
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoying Wu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangkun Xie
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingjing Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinlan Bao
- Comprehensive Department, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuling Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Mishra VK, Anantharamaiah GM. High-Resolution Structural Studies Elucidate Antiatherogenic and Anti-Inflammatory Properties of Peptides Designed to Mimic Amphipathic α-Helical Domains of Apolipoprotein A-I. Nat Prod Commun 2019; 14. [PMID: 32864035 PMCID: PMC7451220 DOI: 10.1177/1934578x19849131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Peptides designed to mimic the antiatherogenic and anti-inflammatory properties of apolipoprotein A-I show that although lipid association is required, not all lipid-associating peptides exhibit these properties. Our studies of a series of peptides showed that peptides with aromatic residues at the center of the nonpolar face were able to interact with inflammatory lipids and inhibited inflammation, which resulted in the amelioration of several lipid-mediated disorders such as lesion development, tumor formation, and Alzheimer's plaque formation. The pK a values determined using 13C nuclear magnetic resonance (NMR) spectroscopy of K residues located at the polar-nonpolar interface provided the first clue to the relative orientations of the peptide helices with respect to each other and around the edge of the lipid discoidal complexes. High-resolution 1H-NMR studies of peptide-lipid discoidal complex confirmed the amphipathic α-helical structure of the peptide, location of aromatic residues of the peptide closer to the polar-nonpolar interface, and head-to-tail arrangement of the peptide helices around the edge of the disc. Amphipathic α-helical structure and the location of aromatic residues (F, W, Y) closer to the polar-nonpolar interface in a lipid environment allow the peptide to strongly bind oxidized lipids resulting in its anti-inflammatory properties.
Collapse
Affiliation(s)
- Vinod K Mishra
- Natural Science Division, Snead State Community College, Boaz, AL, USA
| | | |
Collapse
|
4
|
Sharifov OF, Xu X, Gaggar A, Tabengwa EM, White CR, Palgunachari MN, Anantharamaiah GM, Gupta H. L-4F inhibits lipopolysaccharide-mediated activation of primary human neutrophils. Inflammation 2015; 37:1401-12. [PMID: 24647607 DOI: 10.1007/s10753-014-9864-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human apolipoprotein A-I (apoA-I) mimetic L-4F inhibits acute inflammation in endotoxemic animals. Since neutrophils play a crucial role in septic inflammation, we examined the effects of L-4F, compared to apoA-I, on lipopolysaccharide (LPS)-mediated activation of human neutrophils. We performed bioassays in human blood, isolated human neutrophils (incubated in 50 % donor plasma), and isolated human leukocytes (incubated in 5 and 50 % plasma) in vitro. In whole blood, both L-4F and apoA-I inhibited LPS-mediated elevation of TNF-α and IL-6. In LPS-stimulated neutrophils, L-4F and apoA-I (40 μg/ml) also decreased myeloperoxidase and TNF-α levels; however, L-4F tended to be superior in inhibiting LPS-mediated increase in IL-6 levels, membrane lipid rafts abundance and CD11b expression. In parallel experiments, when TNF-α and IL-8, instead of LPS, was used for cell stimulation, L-4F and/or apoA-I revealed only limited efficacy. In LPS-stimulated leukocytes, L-4F was as effective as apoA-I in reducing superoxide formation in 50 % donor plasma, and more effective in 5 % donor plasma (P<0.05). Limulus ambocyte lysate (LAL) and surface plasmon resonance assays showed that L-4F neutralizes LAL endotoxin activity more effectively than apoA-I (P<0.05) likely due to avid binding to LPS. We conclude that (1) direct binding/neutralization of LPS is a major mechanism of L-4F in vitro; (2) while L-4F has similar efficacy to apoA-I in anti-endotoxin effects in whole blood, it demonstrates superior efficacy to apoA-I in aqueous solutions and fluids with limited plasma components. This study rationalizes the utility of L-4F in the treatment of inflammation that is mediated by endotoxin-activated neutrophils.
Collapse
Affiliation(s)
- Oleg F Sharifov
- Department of Medicine, University of Alabama at Birmingham, BDB-101, 1808 7th Avenue South, Birmingham, AL, 35294-0012, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Yao S, Tian H, Miao C, Zhang DW, Zhao L, Li Y, Yang N, Jiao P, Sang H, Guo S, Wang Y, Qin S. D4F alleviates macrophage-derived foam cell apoptosis by inhibiting CD36 expression and ER stress-CHOP pathway. J Lipid Res 2015; 56:836-47. [PMID: 25635126 DOI: 10.1194/jlr.m055400] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
This study was designed to explore the protective effect of D4F, an apoA-I mimetic peptide, on oxidized LDL (ox-LDL)-induced endoplasmic reticulum (ER) stress-CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) pathway-mediated apoptosis in macrophages. Our results showed that treating apoE knockout mice with D4F decreased the serum ox-LDL level and apoptosis in atherosclerotic lesions with concomitant downregulation of cluster of differentiation 36 (CD36) and inhibition of ER stress. In vitro, D4F inhibited macrophage-derived foam cell formation. Furthermore, like ER stress inhibitor 4-phenylbutyric acid (PBA), D4F inhibited ox-LDL- or tunicamycin (TM, an ER stress inducer)-induced reduction in cell viability and increase in lactate dehydrogenase leakage, caspase-3 activation, and apoptosis. Additionally, like PBA, D4F inhibited ox-LDL- or TM-induced activation of ER stress response as assessed by the reduced nuclear translocation of activating transcription factor 6 and the decreased phosphorylation of protein kinase-like ER kinase and eukaryotic translation initiation factor 2α, as well as the downregulation of glucose-regulated protein 78 and CHOP. Moreover, D4F mitigated ox-LDL uptake by macrophages and CD36 upregulation induced by ox-LDL or TM. These data indicate that D4F can alleviate the formation and apoptosis of macrophage-derived foam cells by suppressing CD36-mediated ox-LDL uptake and subsequent activation of the ER stress-CHOP pathway.
Collapse
Affiliation(s)
- Shutong Yao
- Institute of Atherosclerosis, Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Taian 271000, China College of Basic Medical Sciences, Taishan Medical University, Taian 271000, China
| | - Hua Tian
- Institute of Atherosclerosis, Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Taian 271000, China
| | - Cheng Miao
- Institute of Atherosclerosis, Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Taian 271000, China
| | - Da-Wei Zhang
- Departments of Pediatrics and Biochemistry, Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Li Zhao
- Institute of Atherosclerosis, Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Taian 271000, China Affiliated Hospital of Chengde Medical University, Chengde Medical University, Chengde 067000, China
| | - Yanyan Li
- Institute of Atherosclerosis, Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Taian 271000, China
| | - Nana Yang
- Institute of Atherosclerosis, Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Taian 271000, China
| | - Peng Jiao
- Institute of Atherosclerosis, Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Taian 271000, China
| | - Hui Sang
- Institute of Atherosclerosis, Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Taian 271000, China College of Basic Medical Sciences, Taishan Medical University, Taian 271000, China
| | - Shoudong Guo
- Institute of Atherosclerosis, Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Taian 271000, China
| | - Yiwei Wang
- Affiliated Hospital of Chengde Medical University, Chengde Medical University, Chengde 067000, China
| | - Shucun Qin
- Institute of Atherosclerosis, Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Taian 271000, China
| |
Collapse
|
6
|
Leman LJ, Maryanoff BE, Ghadiri MR. Molecules that mimic apolipoprotein A-I: potential agents for treating atherosclerosis. J Med Chem 2013; 57:2169-96. [PMID: 24168751 DOI: 10.1021/jm4005847] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Certain amphipathic α-helical peptides can functionally mimic many of the properties of full-length apolipoproteins, thereby offering an approach to modulate high-density lipoprotein (HDL) for combating atherosclerosis. In this Perspective, we summarize the key findings and advances over the past 25 years in the development of peptides that mimic apolipoproteins, especially apolipoprotein A-I (apoA-I). This assemblage of information provides a reasonably clear picture of the state of the art in the apolipoprotein mimetic field, an appreciation of the potential for such agents in pharmacotherapy, and a sense of the opportunities for optimizing the functional properties of HDL.
Collapse
Affiliation(s)
- Luke J Leman
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | |
Collapse
|
7
|
Ditiatkovski M, D’Souza W, Kesani R, Chin-Dusting J, de Haan JB, Remaley A, Sviridov D. An apolipoprotein A-I mimetic peptide designed with a reductionist approach stimulates reverse cholesterol transport and reduces atherosclerosis in mice. PLoS One 2013; 8:e68802. [PMID: 23874769 PMCID: PMC3706315 DOI: 10.1371/journal.pone.0068802] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/01/2013] [Indexed: 01/19/2023] Open
Abstract
Apolipoprotein A-I (apoA-I) mimetic peptides are considered a promising novel therapeutic approach to prevent and/or treat atherosclerosis. An apoA-I mimetic peptide ELK-2A2K2E was designed with a reductionist approach and has shown exceptional activity in supporting cholesterol efflux but modest anti-inflammatory and anti-oxidant properties in vitro. In this study we compared these in vitro properties with the capacity of this peptide to modify rates of reverse cholesterol transport and development of atherosclerosis in mouse models. The peptide enhanced the rate of reverse cholesterol transport in C57BL/6 mice and reduced atherosclerosis in Apoe(-/-) mice receiving a high fat diet. The peptide modestly reduced the size of the plaques in aortic arch, but was highly active in reducing vascular inflammation and oxidation. Administration of the peptide to Apoe(-/-) mice on a high fat diet reduced the levels of total, high density lipoprotein and non-high density lipoprotein cholesterol and triglycerides. It increased the proportion of smaller HDL particles in plasma at the expense of larger HDL particles, and increased the capacity of the plasma to support cholesterol efflux. Thus, ELK-2A2K2E peptide reduced atherosclerosis in Apoe(-/-) mice, however, the functional activity profile after chronic in vivo administration was different from that found in acute in vitro studies.
Collapse
Affiliation(s)
| | - Wilissa D’Souza
- Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
| | - Rajitha Kesani
- Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
| | | | - Judy B. de Haan
- Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
| | - Alan Remaley
- Lipoprotein Section, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
- * E-mail:
| |
Collapse
|
8
|
Lipid complex of apolipoprotein A-I mimetic peptide 4F is a novel platform for paraoxonase-1 binding and enhancing its activity and stability. Biochem Biophys Res Commun 2012; 430:975-80. [PMID: 23261466 DOI: 10.1016/j.bbrc.2012.11.128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 11/28/2012] [Indexed: 11/20/2022]
Abstract
High density lipoprotein (HDL) associated paraoxonase-1 (PON1) is crucial for the anti-oxidant, anti-inflammatory, and anti-atherogenic properties of HDL. Discoidal apolipoprotein (apo)A-I:1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) complex has been shown to be the most effective in binding PON1, stabilizing it, and enhancing its lactonase and inhibitory activity of low density lipoprotein oxidation. Based on our earlier study demonstrating that apoA-I mimetic peptide 4F forms discoidal complex with 1,2-dimyristoyl-sn-glycero-3-phosphocholine, we hypothesized that lipid complexes of 4F would be able to bind PON1 and enhance its activity and stability. To test our hypothesis, we have expressed and purified a recombinant PON1 (rPON1) and studied its interaction with 4F:POPC complex. Our studies show significant increase, compared to the control, in the paraoxonase activity and stability of rPON1 in the presence of 4F:POPC complex. We propose that 4F:POPC complex is a novel platform for PON1 binding, increasing its stability, and enhancing its enzyme activity. We propose a structural model for the 4F:POPC:PON1 ternary complex that is consistent with our results and published observations.
Collapse
|
9
|
Handattu SP, Nayyar G, Garber DW, Palgunachari MN, Monroe CE, Keenum TD, Mishra VK, Datta G, Anantharamaiah GM. Two apolipoprotein E mimetic peptides with similar cholesterol reducing properties exhibit differential atheroprotective effects in LDL-R null mice. Atherosclerosis 2012; 227:58-64. [PMID: 23159231 DOI: 10.1016/j.atherosclerosis.2012.10.064] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/23/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE We investigated two apoE mimetic peptides with similar long-term plasma cholesterol reducing abilities for their effects on atherosclerotic lesions in Western diet-fed female LDL-receptor (LDL-R) null mice. METHODS AND RESULTS Single doses of peptides Ac-hE18A-NH(2) and mR18L were administered retro-orbitally to LDL-R null mice on Western diet and plasma cholesterol was measured at 10 min, 4 h, and 24 h post administration. Peptide mR18L and not Ac-hE18A-NH(2) reduced plasma cholesterol levels significantly at 4 h post administration. However, multiple administrations (100 μg/mouse twice weekly for 8 weeks) resulted in a similar reduction in plasma cholesterol. Only the plasma from the Ac-hE18A-NH(2) group had significantly reduced reactive oxygen species levels at the end of the treatment protocol. Both mR18L and Ac-hE18A-NH(2) showed reduced atherosclerotic lesion areas. However, peptide Ac-hE18A-NH(2) was significantly more effective in inhibiting atherosclerosis. Both peptides reduced total plaque macrophage load compared to the saline treated animals, with peptide Ac-hE18A-NH(2) having a greater reduction. Incubation of HepG2 cells and THP-1 monocyte-derived macrophages with both peptides in the presence of oxidized phospholipid showed that Ac-hE18A-NH(2) promotes the secretion of apoE from the cells whereas mR18L does not. CONCLUSIONS Despite similar reductions in plasma cholesterol levels, Ac-hE18A-NH(2) was more effective in inhibiting lesions than mR18L, possibly due to its ability to promote the secretion of apoE from hepatocytes and macrophages.
Collapse
Affiliation(s)
- Shaila P Handattu
- Department of Medicine and Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Apolipoprotein E mimetic is more effective than apolipoprotein A-I mimetic in reducing lesion formation in older female apo E null mice. Atherosclerosis 2012; 224:326-31. [PMID: 22771190 DOI: 10.1016/j.atherosclerosis.2012.05.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/01/2012] [Accepted: 05/30/2012] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The apolipoprotein E mimetic peptide Ac-hE18A-NH(2), capable of reducing plasma cholesterol and possessing anti-inflammatory properties, was compared with the well-studied anti-atherogenic apoA-I mimetic peptide 4F for reducing lesion formation in female apoE null mice with already existing lesions. METHODS AND RESULTS In initial experiments, Ac-hE18A-NH(2) was administered retro-orbitally two or three times weekly for 6-8 weeks, while peptide 4F was administered intraperitoneally every day for the same period. Age matched controls were injected with saline every day. At the end of the treatment period, plasma cholesterol levels of Ac-hE18A-NH(2) administered mice were significantly lower than in 4F and control mice. However, both 4F and Ac-hE18A-NH(2) showed reduced lesion areas in en face lesion analysis to a similar extent compared to the control group, while paraoxonase-1 (PON-1) activity was increased only in the Ac-hE18A-NH(2) group. In the third experiment, both peptides were administered at the same dose, frequency, and route of administration. The reduction in en face lesions with Ac-hE18A-NH(2) was significantly greater than the 4F and control groups, although lesions in 4F-treated mice were also significantly reduced compared with controls. Both peptide groups had significantly reduced plasma lipid hydroperoxides, but only the Ac-hE18A-NH(2) group had significantly reduced serum amyloid A levels. HDL and plasma inflammatory indices were significantly reduced in both peptide groups compared with controls. CONCLUSIONS Although both peptides had similar anti-inflammatory properties, Ac-hE18A-NH(2) was more effective in inhibiting lesions than 4F at the same dose, frequency, and route of administration, perhaps due to its cholesterol reducing properties.
Collapse
|