1
|
Piceatannol reduces resistance to statins in hypercholesterolemia by reducing PCSK9 expression through p300 acetyltransferase inhibition. Pharmacol Res 2020; 161:105205. [DOI: 10.1016/j.phrs.2020.105205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 01/06/2023]
|
2
|
Martins VF, Begur M, Lakkaraju S, Svensson K, Park J, Hetrick B, McCurdy CE, Schenk S. Acute inhibition of protein deacetylases does not impact skeletal muscle insulin action. Am J Physiol Cell Physiol 2019; 317:C964-C968. [PMID: 31461343 DOI: 10.1152/ajpcell.00159.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Whether the histone deacetylase (HDAC) and sirtuin families of protein deacetylases regulate insulin-stimulated glucose uptake, independent of their transcriptional effects, has not been studied. Our objective was to determine the nontranscriptional role of HDACs and sirtuins in regulation of skeletal muscle insulin action. Basal and insulin-stimulated glucose uptake and signaling and acetylation were assessed in L6 myotubes and skeletal muscle from C57BL/6J mice that were treated acutely (1 h) with HDAC (trichostatin A, panobinostat, TMP195) and sirtuin inhibitors (nicotinamide). Treatment of L6 myotubes with HDAC inhibitors or skeletal muscle with a combination of HDAC and sirtuin inhibitors increased tubulin and pan-protein acetylation, demonstrating effective impairment of HDAC and sirtuin deacetylase activities. Despite this, neither basal nor insulin-stimulated glucose uptake or insulin signaling was impacted. Acute reduction of the deacetylase activity of HDACs and/or sirtuins does not impact insulin action in skeletal muscle.
Collapse
Affiliation(s)
- Vitor F Martins
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California.,Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California
| | - Maedha Begur
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California
| | - Shivani Lakkaraju
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California
| | - Kristoffer Svensson
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California
| | - Ji Park
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California
| | - Byron Hetrick
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California.,Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California
| |
Collapse
|
3
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
4
|
Moutinho M, Nunes MJ, Rodrigues E. Cholesterol 24-hydroxylase: Brain cholesterol metabolism and beyond. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1911-1920. [PMID: 27663182 DOI: 10.1016/j.bbalip.2016.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/05/2016] [Accepted: 09/16/2016] [Indexed: 01/19/2023]
Abstract
Dysfunctions in brain cholesterol homeostasis have been extensively related to brain disorders. The major elimination pathway of brain cholesterol is its hydroxylation into 24 (S)-hydroxycholesterol by the cholesterol 24-hydroxylase (CYP46A1). Interestingly, there seems to be an association between CYP46A1 and high-order brain functions, in a sense that increased expression of this hydroxylase improves cognition, while a reduction leads to a poor cognitive performance. Moreover, increasing amount of epidemiological, biochemical and molecular evidence, suggests that CYP46A1 has a role in the pathogenesis or progression of neurodegenerative disorders, in which up-regulation of this enzyme is clearly beneficial. However, the mechanisms underlying these effects are poorly understood, which highlights the importance of studies that further explore the role of CYP46A1 in the central nervous system. In this review we summarize the major findings regarding CYP46A1, and highlight the several recently described pathways modulated by this enzyme from a physiological and pathological perspective, which might account for novel therapeutic strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Miguel Moutinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria João Nunes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Elsa Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
5
|
Choquet H, Trapani E, Goitre L, Trabalzini L, Akers A, Fontanella M, Hart BL, Morrison LA, Pawlikowska L, Kim H, Retta SF. Cytochrome P450 and matrix metalloproteinase genetic modifiers of disease severity in Cerebral Cavernous Malformation type 1. Free Radic Biol Med 2016; 92:100-109. [PMID: 26795600 PMCID: PMC4774945 DOI: 10.1016/j.freeradbiomed.2016.01.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Familial Cerebral Cavernous Malformation type 1 (CCM1) is an autosomal dominant disease caused by mutations in the Krev Interaction Trapped 1 (KRIT1/CCM1) gene, and characterized by multiple brain lesions. CCM lesions manifest across a range of different phenotypes, including wide differences in lesion number, size and susceptibility to intracerebral hemorrhage (ICH). Oxidative stress plays an important role in cerebrovascular disease pathogenesis, raising the possibility that inter-individual variability in genes related to oxidative stress may contribute to the phenotypic differences observed in CCM1 disease. Here, we investigated whether candidate oxidative stress-related cytochrome P450 (CYP) and matrix metalloproteinase (MMP) genetic markers grouped by superfamilies, families or genes, or analyzed individually influence the severity of CCM1 disease. METHODS Clinical assessment and cerebral susceptibility-weighted magnetic resonance imaging (SWI) were performed to determine total and large (≥5mm in diameter) lesion counts as well as ICH in 188 Hispanic CCM1 patients harboring the founder KRIT1/CCM1 'common Hispanic mutation' (CCM1-CHM). Samples were genotyped on the Affymetrix Axiom Genome-Wide LAT1 Human Array. We analyzed 1,122 genetic markers (both single nucleotide polymorphisms (SNPs) and insertion/deletions) grouped by CYP and MMP superfamily, family or gene for association with total or large lesion count and ICH adjusted for age at enrollment and gender. Genetic markers bearing the associations were then analyzed individually. RESULTS The CYP superfamily showed a trend toward association with total lesion count (P=0.057) and large lesion count (P=0.088) in contrast to the MMP superfamily. The CYP4 and CYP8 families were associated with either large lesion count or total lesion count (P=0.014), and two other families (CYP46 and the MMP Stromelysins) were associated with ICH (P=0.011 and 0.007, respectively). CYP4F12 rs11085971, CYP8A1 rs5628, CYP46A1 rs10151332, and MMP3 rs117153070 single SNPs, mainly bearing the above-mentioned associations, were also individually associated with CCM1 disease severity. CONCLUSIONS Overall, our candidate oxidative stress-related genetic markers set approach outlined CYP and MMP families and identified suggestive SNPs that may impact the severity of CCM1 disease, including the development of numerous and large CCM lesions and ICH. These novel genetic risk factors of prognostic value could serve as early objective predictors of disease outcome and might ultimately provide better options for disease prevention and treatment.
Collapse
Affiliation(s)
- Hélène Choquet
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Eliana Trapani
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, TO, Italy; CCM Italia Research Network (www.ccmitalia.unito.it)
| | - Luca Goitre
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, TO, Italy; CCM Italia Research Network (www.ccmitalia.unito.it)
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy; CCM Italia Research Network (www.ccmitalia.unito.it)
| | | | - Marco Fontanella
- Department of Neurosurgery, Spedali Civili and University of Brescia, Brescia, Italy; CCM Italia Research Network (www.ccmitalia.unito.it)
| | - Blaine L Hart
- Department of Radiology, University of New Mexico, Albuquerque, NM, USA
| | - Leslie A Morrison
- Department of Neurology University of New Mexico, Albuquerque, NM, USA; Department of Pediatrics, University of New Mexico, Albuquerque, NM, USA
| | - Ludmila Pawlikowska
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Helen Kim
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, TO, Italy; CCM Italia Research Network (www.ccmitalia.unito.it).
| |
Collapse
|
6
|
Zelko IN, Folz RJ. Regulation of Oxidative Stress in Pulmonary Artery Endothelium. Modulation of Extracellular Superoxide Dismutase and NOX4 Expression Using Histone Deacetylase Class I Inhibitors. Am J Respir Cell Mol Biol 2015; 53:513-24. [PMID: 25749103 DOI: 10.1165/rcmb.2014-0260oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An imbalance between oxidants and antioxidants is considered a major factor in the development of pulmonary vascular diseases. Oxidative stress seen in pulmonary vascular cells is regulated by increased expression of prooxidant enzymes (e.g., nicotinamide adenine dinucleotide phosphate reduced oxidases) and/or decreased production of antioxidants and antioxidant enzymes (e.g., superoxide dismutases). We and others have shown that expression of antioxidant genes in pulmonary artery cells is regulated by epigenetic mechanisms. In this study, we investigate the regulation of oxidative stress in pulmonary artery cells using inhibitors of histone deacetylases (HDACs). Human pulmonary artery endothelial cells (HPAECs) and human pulmonary artery smooth muscle cells were exposed to an array of HDAC inhibitors followed by analysis of anti- and prooxidant gene expression using quantitative RT-PCR and quantitative RT-PCR array. We found that exposure of HPAECs to scriptaid, N-[4-[(hydroxyamino)carbonyl]phenyl]-α-(1-methylethyl)-benzeneacetamide, and trichostatin A for 24 hours induced expression of extracellular superoxide dismutase (EC-SOD) up to 10-fold, whereas expression of the prooxidant gene NADPH oxidase 4 was decreased by more than 95%. We also found that this differential regulation of anti- and prooxidant gene expression resulted in significant attenuation in the cellular levels of reactive oxygen species. Induction of EC-SOD expression was attenuated by the Janus kinase 2 protein kinase inhibitor AG490 and by silencing Janus kinase 2 expression. Augmentation of EC-SOD expression using scriptaid was associated with increased histone H3 (Lys27) acetylation and H3 (Lys4) trimethylation at the gene promoter. We have determined that oxidative stress in pulmonary endothelial cells is regulated by epigenetic mechanisms and can be modulated using HDAC inhibitors.
Collapse
Affiliation(s)
- Igor N Zelko
- Departments of Medicine and Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky
| | - Rodney J Folz
- Departments of Medicine and Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
7
|
Jang B, Shin JA, Kim YS, Kim JY, Yi HK, Park IS, Cho NP, Cho SD. Growth-suppressive effect of suberoylanilide hydroxamic acid (SAHA) on human oral cancer cells. Cell Oncol (Dordr) 2015; 39:79-87. [PMID: 26582320 DOI: 10.1007/s13402-015-0255-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2015] [Indexed: 01/16/2023] Open
Abstract
PURPOSE The histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) has been reported to exhibit anticancer activities in various cancer cell types, but as yet there are few reports on the anticancer effects of SAHA in oral squamous cell carcinoma (OSCC)-derived cells and xenograft models. METHODS The anti-proliferative and apoptotic activities of SAHA were assessed in human HSC-3 and HSC-4 (OSCC)-derived cell lines and JB6 normal mouse skin-derived epidermal cells using histone acetylation, soft agar colony formation, trypan blue exclusion, 4'-6-diamidino-2-phenylindole (DAPI) staining, Live/Dead viability/cytotoxicity and Western blot analyses. RESULTS We found that SAHA treatment resulted in hyperacetylation of histones H2A and H3 and a concomitant decrease in the viability of HSC-3 and HSC-4 cells. SAHA also significantly inhibited the neoplastic transformation of JB6 cells treated with TPA, whereas the viability of these cells was not affected by this treatment. Additionally, we found that SAHA suppressed the anchorage-independent growth (colony forming capacity in soft agar) of HSC-3 and HSC-4 cells. DAPI staining, Live/Dead and Western blot analyses revealed that SAHA can induce caspase-dependent apoptosis in HSC-3 and HSC-4 cells. We also found that SAHA treatment led to inhibition of ERK phosphorylation, and that two MEK inhibitors potentiated SAHA-mediated apoptosis. Okadaic acid treatment inhibited SAHA-mediated apoptosis in both the HSC-3 and HSC-4 cell lines, wheras SAHA induced a profound in vivo inhibition of tumor growth in HSC-3 xenografts. CONCLUSIONS Our results indicate that the ERK signaling pathway may constitute a critical denominator of SAHA-induced apoptosis in OSCC-derived cells and that SAHA may have therapeutic potential for OSCC.
Collapse
Affiliation(s)
- Boonsil Jang
- Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience and Biodegradable Material, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience and Biodegradable Material, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | - Yong-Soo Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | - Ji-Young Kim
- Center of Animal Care and Use, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea
| | - Ho-Keun Yi
- Department of Oral Biochemistry, School of Dentistry, Institute of Oral Bioscience, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | - Il-Song Park
- Division of Advanced Materials Engineering, Research Center for Advanced Materials Development and Institute of Biodegradable Materials, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | - Nam-Pyo Cho
- Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience and Biodegradable Material, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience and Biodegradable Material, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| |
Collapse
|
8
|
Meaney S. Epigenetic regulation of cholesterol homeostasis. Front Genet 2014; 5:311. [PMID: 25309573 PMCID: PMC4174035 DOI: 10.3389/fgene.2014.00311] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/20/2014] [Indexed: 01/15/2023] Open
Abstract
Although best known as a risk factor for cardiovascular disease, cholesterol is a vital component of all mammalian cells. In addition to key structural roles, cholesterol is a vital biochemical precursor for numerous biologically important compounds including oxysterols and bile acids, as well as acting as an activator of critical morphogenic systems (e.g., the Hedgehog system). A variety of sophisticated regulatory mechanisms interact to coordinate the overall level of cholesterol in cells, tissues and the entire organism. Accumulating evidence indicates that in additional to the more “traditional” regulatory schemes, cholesterol homeostasis is also under the control of epigenetic mechanisms such as histone acetylation and DNA methylation. The available evidence supporting a role for these mechanisms in the control of cholesterol synthesis, elimination, transport and storage are the focus of this review.
Collapse
Affiliation(s)
- Steve Meaney
- School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology Dublin, Ireland ; Environmental Sustainability and Health Institute, Dublin Institute of Technology Dublin, Ireland
| |
Collapse
|
9
|
Meaney S. Epigenetic regulation of oxysterol formation. Biochimie 2012; 95:531-7. [PMID: 22986023 DOI: 10.1016/j.biochi.2012.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/31/2012] [Indexed: 11/26/2022]
Abstract
Oxysterols are oxygenated derivatives of cholesterol that may be formed by either enzymatic or non-enzymatic mechanisms. Expression of the genes responsible for oxysterol synthesis (GROS) is known to be restricted across different tissues and cell types. Regulation of the transcription of GROS and the activity of their enzyme transcripts has been the subject of intense activity for many years. Recent studies have sought to decipher the mechanism(s) that underpin the restricted expression of the GROS. Available data indicates that epigenetic mechanisms have an important role to play in the control of the expression of GROS. In the current review we summarize the available evidence for the epigenetic regulation of these genes.
Collapse
Affiliation(s)
- Steve Meaney
- School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.
| |
Collapse
|