1
|
Hegde M, Kumar A, Girisa S, Alqahtani MS, Abbas M, Goel A, Hui KM, Sethi G, Kunnumakkara AB. Exosomal noncoding RNA-mediated spatiotemporal regulation of lipid metabolism: Implications in immune evasion and chronic inflammation. Cytokine Growth Factor Rev 2023; 73:114-134. [PMID: 37419767 DOI: 10.1016/j.cytogfr.2023.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 07/09/2023]
Abstract
The hallmark of chronic inflammatory diseases is immune evasion. Successful immune evasion involves numerous mechanisms to suppress both adaptive and innate immune responses. Either direct contact between cells or paracrine signaling triggers these responses. Exosomes are critical drivers of these interactions and exhibit both immunogenic and immune evasion properties during the development and progression of various chronic inflammatory diseases. Exosomes carry diverse molecular cargo, including lipids, proteins, and RNAs that are crucial for immunomodulation. Moreover, recent studies have revealed that exosomes and their cargo-loaded molecules are extensively involved in lipid remodeling and metabolism during immune surveillance and disease. Many studies have also shown the involvement of lipids in controlling immune cell activities and their crucial upstream functions in regulating inflammasome activation, suggesting that any perturbation in lipid metabolism results in abnormal immune responses. Strikingly, the expanded immunometabolic reprogramming capacities of exosomes and their contents provided insights into the novel mechanisms behind the prophylaxis of inflammatory diseases. By summarizing the tremendous therapeutic potential of exosomes, this review emphasizes the role of exosome-derived noncoding RNAs in regulating immune responses through the modulation of lipid metabolism and their promising therapeutic applications.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; Computers and communications Department College of Engineering Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Akul Goel
- California Institute of Technology (CalTech), Pasadena, CA, USA
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore 169610, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
2
|
Deficiency of Adipose Triglyceride Lipase Induces Metabolic Syndrome and Cardiomyopathy in Zebrafish. Int J Mol Sci 2022; 24:ijms24010117. [PMID: 36613558 PMCID: PMC9820674 DOI: 10.3390/ijms24010117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Lipid metabolism dysfunction is related to clinical disorders including obesity, cancer, liver steatosis, and cardiomyopathy. Impaired lipolytic enzymes result in altered release of free fatty acids. The dramatic change in dyslipidemia is important in lipotoxic cardiomyopathy. Adipose triglyceride lipase (ATGL) catalyzes the lipolysis of triacylglycerol to reduce intramyocardial triglyceride levels in the heart and improve myocardial function. We examined the role of ATGL in metabolic cardiomyopathy by developing an Atgl knockout (ALKO) zebrafish model of metabolic cardiomyopathy disease by continuously expressing CRISPR/Cas9 protein and atgl gene guide RNAs (gRNAs). The expressed Cas9 protein bound to four gRNAs targeting the atgl gene locus, facilitating systemic gene KO. Ablation of Atgl interfered with lipid metabolism, which induced hyperlipidemia and hyperglycemia. ALKO adults and embryos displayed hypertrophic hearts. ALKO presented a typical dilated cardiomyopathy profile with a remarkable reduction in four sarcomere genes (myosin heavy chain 7-like, actin alpha cardiac muscle 1b, myosin binding protein C3, and troponin T type 2a) and two Ca2+ handling regulator genes (tropomyosin 4b and ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2b). Immune cell infiltration in cardiac tissue of ALKO provided direct evidence of advanced metabolic cardiomyopathy. The presently described model could become a powerful tool to clarify the underlying mechanism between metabolic disorders and cardiomyopathies.
Collapse
|
3
|
Schratter M, Lass A, Radner FPW. ABHD5-A Regulator of Lipid Metabolism Essential for Diverse Cellular Functions. Metabolites 2022; 12:1015. [PMID: 36355098 PMCID: PMC9694394 DOI: 10.3390/metabo12111015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/12/2023] Open
Abstract
The α/β-Hydrolase domain-containing protein 5 (ABHD5; also known as comparative gene identification-58, or CGI-58) is the causative gene of the Chanarin-Dorfman syndrome (CDS), a disorder mainly characterized by systemic triacylglycerol accumulation and a severe defect in skin barrier function. The clinical phenotype of CDS patients and the characterization of global and tissue-specific ABHD5-deficient mouse strains have demonstrated that ABHD5 is a crucial regulator of lipid and energy homeostasis in various tissues. Although ABHD5 lacks intrinsic hydrolase activity, it functions as a co-activating enzyme of the patatin-like phospholipase domain-containing (PNPLA) protein family that is involved in triacylglycerol and glycerophospholipid, as well as sphingolipid and retinyl ester metabolism. Moreover, ABHD5 interacts with perilipins (PLINs) and fatty acid-binding proteins (FABPs), which are important regulators of lipid homeostasis in adipose and non-adipose tissues. This review focuses on the multifaceted role of ABHD5 in modulating the function of key enzymes in lipid metabolism.
Collapse
Affiliation(s)
- Margarita Schratter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, 8010 Graz, Austria
| | - Franz P. W. Radner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| |
Collapse
|
4
|
Triglyceride breakdown from lipid droplets regulates the inflammatory response in macrophages. Proc Natl Acad Sci U S A 2022; 119:e2114739119. [PMID: 35302892 PMCID: PMC8944848 DOI: 10.1073/pnas.2114739119] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lipid droplets (LDs) are ubiquitous organelles that play important roles in cellular energy homeostasis, tightly regulating the accumulation and release of lipids. In macrophages, lipids accumulate in LDs during inflammation. However, it is unclear how inflammatory activation promotes the accumulation of lipids in LDs, and how the dynamic between lipid accumulation and breakdown could drive or inhibit inflammation. Elucidating the role of lipid accumulation during inflammation may provide important knowledge to influence inflammatory processes during health and disease. We identify the importance of the hypoxia-inducible lipid droplet–associated protein and the intracellular adipose triglyceride lipase in the regulation of lipid accumulation and breakdown in inflammatory macrophages. Furthermore, we determine the regulatory effect of lipid breakdown from LDs in supporting inflammation. In response to inflammatory activation by pathogens, macrophages accumulate triglycerides in intracellular lipid droplets. The mechanisms underlying triglyceride accumulation and its exact role in the inflammatory response of macrophages are not fully understood. Here, we aim to further elucidate the mechanism and function of triglyceride accumulation in the inflammatory response of activated macrophages. Lipopolysaccharide (LPS)-mediated activation markedly increased triglyceride accumulation in macrophages. This increase could be attributed to up-regulation of the hypoxia-inducible lipid droplet–associated (HILPDA) protein, which down-regulated adipose triglyceride lipase (ATGL) protein levels, in turn leading to decreased ATGL-mediated triglyceride hydrolysis. The reduction in ATGL-mediated lipolysis attenuated the inflammatory response in macrophages after ex vivo and in vitro activation, and was accompanied by decreased production of prostaglandin-E2 (PGE2) and interleukin-6 (IL-6). Overall, we provide evidence that LPS-mediated activation of macrophages suppresses lipolysis via induction of HILPDA, thereby reducing the availability of proinflammatory lipid precursors and suppressing the production of PGE2 and IL-6.
Collapse
|
5
|
Dong J, Wang M, Gao J, Liu J, Chen Y. Association between the levels of CGI-58 and lipoprotein lipase in the placenta of patients with preeclampsia. Exp Ther Med 2021; 22:1129. [PMID: 34466143 PMCID: PMC8383331 DOI: 10.3892/etm.2021.10563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 06/25/2021] [Indexed: 01/23/2023] Open
Abstract
Preeclampsia is an idiopathic disease of pregnancy, which seriously endangers the life of both the mother and the infant. The pathogenesis of preeclampsia has not been fully elucidated, although it is generally considered to be associated with abnormal lipid metabolism during pregnancy. Comparative gene identification-58 (CGI-58) and lipoprotein lipase (LPL) are involved in the first step of triglyceride hydrolysis and serve an important role in lipid transport in the placenta. The present study aimed therefore to investigate the association between CGI-58 and LPL in the placentas of patients with or without preeclampsia and to evaluate blood lipid levels. The patient cohort was divided into two groups, pregnant women with preeclampsia and normal pregnant women (control). According to biochemical analyses, reverse transcription-quantitative PCR, immunohistochemistry analysis and western blotting, the expression of CGI-58 and LPL in the placenta was detected, the blood lipid levels were evaluated and other clinical data were collected. Compared with the control group, triglycerides (TGs), low density lipoprotein-cholesterol (LDL-C), apolipoprotein B (ApoB) and atherosclerotic index (AI) were significantly higher in the preeclampsia group, whereas high density lipoprotein-cholesterol (HDL-C) and apolipoprotein A (ApoA) were significantly lower (P<0.05). Furthermore, the expression levels of CGI-58 and LPL in the placental tissue of the preeclampsia group was significantly lower than that of the control group (P<0.05). Linear correlation analysis demonstrated that there was a positive association between CGI-58 and LPL (r=0.602; P<0.05), that CGI-58 was positively associated with HDL-C (r=0.63; P<0.01) but negatively associated with TG and ApoB (r=0.840; P<0.01; and r=0.514; P<0.05, respectively), that LPL was positively associated with HDL-C (r=0.524; P<0.01) but negatively associated with TG and AI (r=0.659; P<0.01; and r=0.496; P<0.01, respectively). These results suggested that the expression of CGI-58 and LPL in the placenta was associated with the pathogenesis of preeclampsia and maternal lipids and the risk of preeclampsia was increased with decreasing expression levels of CGI-58 and LPL. Hence, CGI-58 and LPL may be used as important indicators for the diagnosis of preeclampsia and for the prevention of preeclampsia in pregnant women.
Collapse
Affiliation(s)
- Jianxin Dong
- Department of Obstetrics and Gynecology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Miao Wang
- Department of Obstetrics and Gynecology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Jie Gao
- Department of Obstetrics and Gynecology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Jie Liu
- Department of Obstetrics and Gynecology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Yan Chen
- Department of Obstetrics and Gynecology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
6
|
Arumugam MK, Chava S, Rasineni K, Paal MC, Donohue TM, Osna NA, Kharbanda KK. Elevated S-adenosylhomocysteine induces adipocyte dysfunction to promote alcohol-associated liver steatosis. Sci Rep 2021; 11:14693. [PMID: 34282217 PMCID: PMC8289835 DOI: 10.1038/s41598-021-94180-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
It has been previously shown that chronic ethanol administration-induced increase in adipose tissue lipolysis and reduction in the secretion of protective adipokines collectively contribute to alcohol-associated liver disease (ALD) pathogenesis. Further studies have revealed that increased adipose S-adenosylhomocysteine (SAH) levels generate methylation defects that promote lipolysis. Here, we hypothesized that increased intracellular SAH alone causes additional related pathological changes in adipose tissue as seen with alcohol administration. To test this, we used 3-deazaadenosine (DZA), which selectively elevates intracellular SAH levels by blocking its hydrolysis. Fully differentiated 3T3-L1 adipocytes were treated in vitro for 48 h with DZA and analysed for lipolysis, adipokine release and differentiation status. DZA treatment enhanced adipocyte lipolysis, as judged by lower levels of intracellular triglycerides, reduced lipid droplet sizes and higher levels of glycerol and free fatty acids released into the culture medium. These findings coincided with activation of both adipose triglyceride lipase and hormone sensitive lipase. DZA treatment also significantly reduced adipocyte differentiation factors, impaired adiponectin and leptin secretion but increased release of pro-inflammatory cytokines, IL-6, TNF and MCP-1. Together, our results demonstrate that elevation of intracellular SAH alone by DZA treatment of 3T3-L1 adipocytes induces lipolysis and dysregulates adipokine secretion. Selective elevation of intracellular SAH by DZA treatment mimics ethanol's effects and induces adipose dysfunction. We conclude that alcohol-induced elevations in adipose SAH levels contribute to the pathogenesis and progression of ALD.
Collapse
Affiliation(s)
- Madan Kumar Arumugam
- Research Service (151), Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Avenue, Omaha, NE, 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Srinivas Chava
- Research Service (151), Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Avenue, Omaha, NE, 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Karuna Rasineni
- Research Service (151), Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Avenue, Omaha, NE, 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Matthew C Paal
- Research Service (151), Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Avenue, Omaha, NE, 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Terrence M Donohue
- Research Service (151), Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Avenue, Omaha, NE, 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Natalia A Osna
- Research Service (151), Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Avenue, Omaha, NE, 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kusum K Kharbanda
- Research Service (151), Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Avenue, Omaha, NE, 68105, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
7
|
van Dierendonck XAMH, de la Rosa Rodriguez MA, Georgiadi A, Mattijssen F, Dijk W, van Weeghel M, Singh R, Borst JW, Stienstra R, Kersten S. HILPDA Uncouples Lipid Droplet Accumulation in Adipose Tissue Macrophages from Inflammation and Metabolic Dysregulation. Cell Rep 2021; 30:1811-1822.e6. [PMID: 32049012 DOI: 10.1016/j.celrep.2020.01.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/10/2019] [Accepted: 01/15/2020] [Indexed: 01/15/2023] Open
Abstract
Obesity leads to a state of chronic, low-grade inflammation that features the accumulation of lipid-laden macrophages in adipose tissue. Here, we determined the role of macrophage lipid-droplet accumulation in the development of obesity-induced adipose-tissue inflammation, using mice with myeloid-specific deficiency of the lipid-inducible HILPDA protein. HILPDA deficiency markedly reduced intracellular lipid levels and accumulation of fluorescently labeled fatty acids. Decreased lipid storage in HILPDA-deficient macrophages can be rescued by inhibition of adipose triglyceride lipase (ATGL) and is associated with increased oxidative metabolism. In diet-induced obese mice, HILPDA deficiency does not alter inflammatory and metabolic parameters, despite markedly reducing lipid accumulation in macrophages. Overall, we find that HILPDA is a lipid-inducible, physiological inhibitor of ATGL-mediated lipolysis in macrophages and uncouples lipid storage in adipose tissue macrophages from inflammation and metabolic dysregulation. Our data question the contribution of lipid droplet accumulation in adipose tissue macrophages in obesity-induced inflammation and metabolic dysregulation.
Collapse
Affiliation(s)
- Xanthe A M H van Dierendonck
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein 8, 6525 GA Nijmegen, the Netherlands
| | - Montserrat A de la Rosa Rodriguez
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Anastasia Georgiadi
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Frits Mattijssen
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Wieneke Dijk
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Rajat Singh
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 505D, Bronx, NY 10461, USA
| | - Jan Willem Borst
- Laboratory of Biochemistry, Microspectroscopy Research Facility, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Rinke Stienstra
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein 8, 6525 GA Nijmegen, the Netherlands.
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
8
|
Lipid Metabolism in Regulation of Macrophage Functions. Trends Cell Biol 2020; 30:979-989. [DOI: 10.1016/j.tcb.2020.09.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023]
|
9
|
Yu L, Li Y, Grisé A, Wang H. CGI-58: Versatile Regulator of Intracellular Lipid Droplet Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:197-222. [PMID: 32705602 PMCID: PMC8063591 DOI: 10.1007/978-981-15-6082-8_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Comparative gene identification-58 (CGI-58), also known as α/β-hydrolase domain-containing 5 (ABHD5), is a member of a large family of proteins containing an α/β-hydrolase-fold. CGI-58 is well-known as the co-activator of adipose triglyceride lipase (ATGL), which is a key enzyme initiating cytosolic lipid droplet lipolysis. Mutations in either the human CGI-58 or ATGL gene cause an autosomal recessive neutral lipid storage disease, characterized by the excessive accumulation of triglyceride (TAG)-rich lipid droplets in the cytoplasm of almost all cell types. CGI-58, however, has ATGL-independent functions. Distinct phenotypes associated with CGI-58 deficiency commonly include ichthyosis (scaly dry skin), nonalcoholic steatohepatitis, and hepatic fibrosis. Through regulated interactions with multiple protein families, CGI-58 controls many metabolic and signaling pathways, such as lipid and glucose metabolism, energy balance, insulin signaling, inflammatory responses, and thermogenesis. Recent studies have shown that CGI-58 regulates the pathogenesis of common metabolic diseases in a tissue-specific manner. Future studies are needed to molecularly define ATGL-independent functions of CGI-58, including the newly identified serine protease activity of CGI-58. Elucidation of these versatile functions of CGI-58 may uncover fundamental cellular processes governing lipid and energy homeostasis, which may help develop novel approaches that counter against obesity and its associated metabolic sequelae.
Collapse
Affiliation(s)
- Liqing Yu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Yi Li
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alison Grisé
- College of Computer, Math, and Natural Sciences, College of Behavioral and Social Sciences, University of Maryland, College Park, MD, USA
| | - Huan Wang
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Lou K, Huang P, Ma H, Wang X, Xu H, Wang W. Orlistat increases arsenite tolerance in THP-1 derived macrophages through the up-regulation of ABCA1. Drug Chem Toxicol 2019; 45:274-282. [PMID: 31665930 DOI: 10.1080/01480545.2019.1683571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Orlistat is an FDA-approved over-the-counter drug to treat obesity through the inhibition of lipase activity. Macrophages, which express high levels of lipoprotein lipase (LPL), are important phagocytes in the innate immune system. Our previous studies indicated that environmentally relevant concentrations of arsenite (As+3) could inhibit the major immune functions of macrophages. As the down-regulation of LPL is known to increase the expression of ABCA1, the cholesterol exporter demonstrated to be related to the resistance of arsenic toxicity. We examined if orlistat could reverse the inhibitive effects of As+3 on macrophage functions. The results showed that 50 μM orlistat reversed As+3-induced suppressions on phagocytosis, NO production and cytokine secretion in THP-1 derived macrophages. The expression of ABCA1 was significantly increased by orlistat in As+3 co-treated macrophages, which was associated with decreased intracellular As+3 levels. Collectively, these results indicated that orlistat could reverse the suppressive effects induced by As+3 in macrophages through the increased expression of ABCA1, which has the potential to be developed as a therapeutic agent for arsenic-induced immunosuppression.
Collapse
Affiliation(s)
- Kaiyan Lou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ping Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Huijuan Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaolei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Huan Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China.,Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
11
|
Hehlert P, Hofferek V, Heier C, Eichmann TO, Riedel D, Rosenberg J, Takaćs A, Nagy HM, Oberer M, Zimmermann R, Kühnlein RP. The α/β-hydrolase domain-containing 4- and 5-related phospholipase Pummelig controls energy storage in Drosophila. J Lipid Res 2019; 60:1365-1378. [PMID: 31164391 DOI: 10.1194/jlr.m092817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/03/2019] [Indexed: 01/05/2023] Open
Abstract
Triglycerides (TGs) are the main energy storage form that accommodates changing organismal energy demands. In Drosophila melanogaster, the TG lipase Brummer is centrally important for body fat mobilization. Its gene brummer (bmm) encodes the ortholog of mammalian adipose TG lipase, which becomes activated by α/β-hydrolase domain-containing 5 (ABHD5/CGI-58), one member of the paralogous gene pair, α/β-hydrolase domain-containing 4 (ABHD4) and ABHD5 In Drosophila, the pummelig (puml) gene encodes the single sequence-related protein to mammalian ABHD4/ABHD5 with unknown function. We generated puml deletion mutant flies, that were short-lived as a result of lipid metabolism changes, stored excess body fat at the expense of glycogen, and exhibited ectopic fat storage with altered TG FA profile in the fly kidneys, called Malpighian tubules. TG accumulation in puml mutants was not associated with increased food intake but with elevated lipogenesis; starvation-induced lipid mobilization remained functional. Despite its structural similarity to mammalian ABHD5, Puml did not stimulate TG lipase activity of Bmm in vitro. Rather, Puml acted as a phospholipase that localized on lipid droplets, mitochondria, and peroxisomes. Together, these results show that the ABHD4/5 family member Puml is a versatile phospholipase that regulates Drosophila body fat storage and energy metabolism.
Collapse
Affiliation(s)
- Philip Hehlert
- Research Group Molecular Physiology Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Vinzenz Hofferek
- Max-Planck-Institut für Molekulare Pflanzenphysiologie Potsdam, Germany
| | - Christoph Heier
- Institute of Molecular Biosciences University of Graz, Graz, Austria
| | - Thomas O Eichmann
- Institute of Molecular Biosciences University of Graz, Graz, Austria
| | - Dietmar Riedel
- Department of Structural Dynamics, Electron Microscopy, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Jonathan Rosenberg
- Research Group Molecular Physiology Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Anna Takaćs
- Research Group Molecular Physiology Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Harald M Nagy
- Institute of Molecular Biosciences University of Graz, Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences University of Graz, Graz, Austria.,BioTechMed-Graz Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences University of Graz, Graz, Austria.,BioTechMed-Graz Graz, Austria
| | - Ronald P Kühnlein
- Research Group Molecular Physiology Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany .,Institute of Molecular Biosciences University of Graz, Graz, Austria.,BioTechMed-Graz Graz, Austria
| |
Collapse
|
12
|
Huangfu N, Wang Y, Cheng J, Xu Z, Wang S. Metformin protects against oxidized low density lipoprotein-induced macrophage apoptosis and inhibits lipid uptake. Exp Ther Med 2018; 15:2485-2491. [PMID: 29456653 PMCID: PMC5795518 DOI: 10.3892/etm.2018.5704] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/28/2017] [Indexed: 12/31/2022] Open
Abstract
Oxidized low density lipoprotein (ox-LDL)-induced macrophage apoptosis contributes to the formation of atherosclerosis. Metformin, an antidiabetic drug, has been reported to attenuate lipid accumulation in macrophages. In this study, the effects of metformin on ox-LDL-induced macrophage apoptosis were investigated and the mechanisms involved in this process were examined. By performing flow cytometry analysis, it was demonstrated that metformin inhibited ox-LDL-induced macrophage apoptosis. Increased expression of endoplasmic reticulum (ER) stress marker proteins, including C/EBP-homologous protein, eukaryotic translation initiation factor 2A, and glucose-regulated protein 78 kDa, induced by ox-LDL was also reversed by metformin. Furthermore, ox-LDL-induced cytochrome c (cyto-c) release and mitochondrial membrane potential loss were inhibited by metformin. As lipid uptake in macrophages contributed to ER stress, cyto-c release and mitochondrial membrane potential loss, the mechanisms involved in metformin-inhibited macrophage lipid uptake were investigated. Expression of scavenger receptors, including scavenger receptor A, cluster of differentiation 36 and lectin-type oxidized LDL receptor 1 was examined in the presence or absence of metformin with ox-LDL treatment. Additionally, the upstream regulatory mechanism of scavenger receptors by metformin was also analyzed. In conclusion, metformin protects against ox-LDL-induced macrophage apoptosis and inhibits macrophage lipid uptake.
Collapse
Affiliation(s)
- Ning Huangfu
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Yong Wang
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Jingsong Cheng
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Zhenyu Xu
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Shenghuang Wang
- Department of Cardiology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
13
|
Rondini EA, Mladenovic-Lucas L, Roush WR, Halvorsen GT, Green AE, Granneman JG. Novel Pharmacological Probes Reveal ABHD5 as a Locus of Lipolysis Control in White and Brown Adipocytes. J Pharmacol Exp Ther 2017; 363:367-376. [PMID: 28928121 PMCID: PMC5698943 DOI: 10.1124/jpet.117.243253] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/09/2017] [Indexed: 12/30/2022] Open
Abstract
Current knowledge regarding acute regulation of adipocyte lipolysis is largely based on receptor-mediated activation or inhibition of pathways that influence intracellular levels of cAMP, thereby affecting protein kinase A (PKA) activity. We recently identified synthetic ligands of α-β-hydrolase domain containing 5 (ABHD5) that directly activate adipose triglyceride lipase (ATGL) by dissociating ABHD5 from its inhibitory regulator, perilipin-1 (PLIN1). In the current study, we used these novel ligands to determine the direct contribution of ABHD5 to various aspects of lipolysis control in white (3T3-L1) and brown adipocytes. ABHD5 ligands stimulated adipocyte lipolysis without affecting PKA-dependent phosphorylation on consensus sites of PLIN1 or hormone-sensitive lipase (HSL). Cotreatment of adipocytes with synthetic ABHD5 ligands did not alter the potency or maximal lipolysis efficacy of the β-adrenergic receptor (ADRB) agonist isoproterenol (ISO), indicating that both target a common pool of ABHD5. Reducing ADRB/PKA signaling with insulin or desensitizing ADRB suppressed lipolysis responses to a subsequent challenge with ISO, but not to ABHD5 ligands. Lastly, despite strong treatment differences in PKA-dependent phosphorylation of HSL, we found that ligand-mediated activation of ABHD5 led to complete triglyceride hydrolysis, which predominantly involved ATGL, but also HSL. These results indicate that the overall pattern of lipolysis controlled by ABHD5 ligands is similar to that of isoproterenol, and that ABHD5 plays a central role in the regulation of adipocyte lipolysis. As lipolysis is critical for adaptive thermogenesis and in catabolic tissue remodeling, ABHD5 ligands may provide a means of activating these processes under conditions where receptor signaling is compromised.
Collapse
Affiliation(s)
- Elizabeth A Rondini
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan (E.A.R., L.M.-L., J.G.G.); Department of Chemistry, Scripps Research Institute, Jupiter, Florida (W.R.R., G.T.H.); and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada (A.E.G.)
| | - Ljiljana Mladenovic-Lucas
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan (E.A.R., L.M.-L., J.G.G.); Department of Chemistry, Scripps Research Institute, Jupiter, Florida (W.R.R., G.T.H.); and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada (A.E.G.)
| | - William R Roush
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan (E.A.R., L.M.-L., J.G.G.); Department of Chemistry, Scripps Research Institute, Jupiter, Florida (W.R.R., G.T.H.); and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada (A.E.G.)
| | - Geoff T Halvorsen
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan (E.A.R., L.M.-L., J.G.G.); Department of Chemistry, Scripps Research Institute, Jupiter, Florida (W.R.R., G.T.H.); and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada (A.E.G.)
| | - Alex E Green
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan (E.A.R., L.M.-L., J.G.G.); Department of Chemistry, Scripps Research Institute, Jupiter, Florida (W.R.R., G.T.H.); and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada (A.E.G.)
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan (E.A.R., L.M.-L., J.G.G.); Department of Chemistry, Scripps Research Institute, Jupiter, Florida (W.R.R., G.T.H.); and Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada (A.E.G.)
| |
Collapse
|
14
|
Critical roles for α/β hydrolase domain 5 (ABHD5)/comparative gene identification-58 (CGI-58) at the lipid droplet interface and beyond. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1233-1241. [PMID: 28827091 DOI: 10.1016/j.bbalip.2017.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 01/04/2023]
Abstract
Mutations in the gene encoding comparative gene identification 58 (CGI-58), also known as α β hydrolase domain-containing 5 (ABHD5), cause neutral lipid storage disorder with ichthyosis (NLSDI). This inborn error in metabolism is characterized by ectopic accumulation of triacylglycerols (TAG) within cytoplasmic lipid droplets in multiple cell types. Studies over the past decade have clearly demonstrated that CGI-58 is a potent regulator of TAG hydrolysis in the disease-relevant cell types. However, despite the reproducible genetic link between CGI-58 mutations and TAG storage, the molecular mechanisms by which CGI-58 regulates TAG hydrolysis are still incompletely understood. It is clear that CGI-58 can regulate TAG hydrolysis by activating the major TAG hydrolase adipose triglyceride lipase (ATGL), yet CGI-58 can also regulate lipid metabolism via mechanisms that do not involve ATGL. This review highlights recent progress made in defining the physiologic and biochemical function of CGI-58, and its broader role in energy homeostasis. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
|
15
|
Namgaladze D, Brüne B. Macrophage fatty acid oxidation and its roles in macrophage polarization and fatty acid-induced inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1796-1807. [PMID: 27614008 DOI: 10.1016/j.bbalip.2016.09.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/26/2016] [Accepted: 09/02/2016] [Indexed: 12/14/2022]
Abstract
Recent research considerably changed our knowledge how cellular metabolism affects the immune system. We appreciate that metabolism not only provides energy to immune cells, but also actively influences diverse immune cell phenotypes. Fatty acid metabolism, particularly mitochondrial fatty acid oxidation (FAO) emerges as an important regulator of innate and adaptive immunity. Catabolism of fatty acids also modulates the progression of disease, such as the development of obesity-driven insulin resistance and type II diabetes. Here, we summarize (i) recent developments in research how FAO modulates inflammatory signatures in macrophages in response to saturated fatty acids, and (ii) the role of FAO in regulating anti-inflammatory macrophage polarization. In addition, we define the contribution of AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptors (PPARs), in controlling macrophage biology towards fatty acid metabolism and inflammation.
Collapse
Affiliation(s)
- Dmitry Namgaladze
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Bernhard Brüne
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
16
|
Lord CC, Ferguson D, Thomas G, Brown AL, Schugar RC, Burrows A, Gromovsky AD, Betters J, Neumann C, Sacks J, Marshall S, Watts R, Schweiger M, Lee RG, Crooke RM, Graham MJ, Lathia JD, Sakaguchi TF, Lehner R, Haemmerle G, Zechner R, Brown JM. Regulation of Hepatic Triacylglycerol Metabolism by CGI-58 Does Not Require ATGL Co-activation. Cell Rep 2016; 16:939-949. [PMID: 27396333 DOI: 10.1016/j.celrep.2016.06.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/20/2016] [Accepted: 06/10/2016] [Indexed: 01/23/2023] Open
Abstract
Adipose triglyceride lipase (ATGL) and comparative gene identification 58 (CGI-58) are critical regulators of triacylglycerol (TAG) turnover. CGI-58 is thought to regulate TAG mobilization by stimulating the enzymatic activity of ATGL. However, it is not known whether this coactivation function of CGI-58 occurs in vivo. Moreover, the phenotype of human CGI-58 mutations suggests ATGL-independent functions. Through direct comparison of mice with single or double deficiency of CGI-58 and ATGL, we show here that CGI-58 knockdown causes hepatic steatosis in both the presence and absence of ATGL. CGI-58 also regulates hepatic diacylglycerol (DAG) and inflammation in an ATGL-independent manner. Interestingly, ATGL deficiency, but not CGI-58 deficiency, results in suppression of the hepatic and adipose de novo lipogenic program. Collectively, these findings show that CGI-58 regulates hepatic neutral lipid storage and inflammation in the genetic absence of ATGL, demonstrating that mechanisms driving TAG lipolysis in hepatocytes differ significantly from those in adipocytes.
Collapse
Affiliation(s)
- Caleb C Lord
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA; Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9077, USA
| | - Daniel Ferguson
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA; Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Gwynneth Thomas
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA
| | - Amanda L Brown
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA; Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rebecca C Schugar
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amy Burrows
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anthony D Gromovsky
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jenna Betters
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA
| | - Chase Neumann
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jessica Sacks
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Stephanie Marshall
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1040, USA; Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Russell Watts
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Richard G Lee
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Rosanne M Crooke
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Mark J Graham
- Cardiovascular Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Takuya F Sakaguchi
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
17
|
Miao H, Ou J, Peng Y, Zhang X, Chen Y, Hao L, Xie G, Wang Z, Pang X, Ruan Z, Li J, Yu L, Xue B, Shi H, Shi C, Liang H. Macrophage ABHD5 promotes colorectal cancer growth by suppressing spermidine production by SRM. Nat Commun 2016; 7:11716. [PMID: 27189574 PMCID: PMC4873969 DOI: 10.1038/ncomms11716] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/22/2016] [Indexed: 12/26/2022] Open
Abstract
Metabolic reprogramming in stromal cells plays an essential role in regulating tumour growth. The metabolic activities of tumour-associated macrophages (TAMs) in colorectal cancer (CRC) are incompletely characterized. Here, we identify TAM-derived factors and their roles in the development of CRC. We demonstrate that ABHD5, a lipolytic co-activator, is ectopically expressed in CRC-associated macrophages. We demonstrate in vitro and in mouse models that macrophage ABHD5 potentiates growth of CRC cells. Mechanistically, ABHD5 suppresses spermidine synthase (SRM)-dependent spermidine production in macrophages by inhibiting the reactive oxygen species-dependent expression of C/EBPɛ, which activates transcription of the srm gene. Notably, macrophage-specific ABHD5 transgene-induced CRC growth in mice can be prevented by an additional SRM transgene in macrophages. Altogether, our results show that the lipolytic factor ABHD5 suppresses SRM-dependent spermidine production in TAMs and potentiates the growth of CRC. The ABHD5/SRM/spermidine axis in TAMs might represent a potential target for therapy. ABHD5 is a co-activator of lipolysis. Here the authors show that in tumour-associated macrophages ABHD5 inhibits ROS-dependent induction of C/EBPɛ, which transcriptionally activates spermidine synthase, and that blocking ABHD5 delays colorectal cancer growth in mice by inhibiting spermidine production.
Collapse
Affiliation(s)
- Hongming Miao
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Juanjuan Ou
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Yuan Peng
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Xuan Zhang
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Yujuan Chen
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Lijun Hao
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Ganfeng Xie
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Zhe Wang
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Xueli Pang
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Zhihua Ruan
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Liqing Yu
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Houjie Liang
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
18
|
Vujic N, Schlager S, Eichmann TO, Madreiter-Sokolowski CT, Goeritzer M, Rainer S, Schauer S, Rosenberger A, Woelfler A, Doddapattar P, Zimmermann R, Hoefler G, Lass A, Graier WF, Radovic B, Kratky D. Monoglyceride lipase deficiency modulates endocannabinoid signaling and improves plaque stability in ApoE-knockout mice. Atherosclerosis 2015; 244:9-21. [PMID: 26584135 PMCID: PMC4704137 DOI: 10.1016/j.atherosclerosis.2015.10.109] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/25/2022]
Abstract
Background and aims Monoglyceride lipase (MGL) catalyzes the final step of lipolysis by degrading monoglyceride (MG) to glycerol and fatty acid. MGL also hydrolyzes and thereby deactivates 2-arachidonoyl glycerol (2-AG), the most abundant endocannabinoid in the mammalian system. 2-AG acts as full agonist on cannabinoid receptor type 1 (CB1R) and CB2R, which are mainly expressed in brain and immune cells, respectively. Thus, we speculated that in the absence of MGL, increased 2-AG concentrations mediate CB2R signaling in immune cells to modulate inflammatory responses, thereby affecting the development of atherosclerosis. Methods and results We generated apolipoprotein E (ApoE)/MGL double-knockout (DKO) mice and challenged them with Western-type diet for 9 weeks. Despite systemically increased 2-AG concentrations in DKO mice, CB2R-mediated signaling remains fully functional, arguing against CB2R desensitization. We found increased plaque formation in both en face aortae (1.3-fold, p = 0.028) and aortic valve sections (1.5-fold, p = 0.0010) in DKO mice. Interestingly, DKO mice also presented reduced lipid (12%, p = 0.031) and macrophage content (18%, p = 0.061), elevated intraplaque smooth muscle staining (1.4-fold, p = 0.016) and thicker fibrous caps (1.8-fold, p = 0.0032), together with a higher ratio of collagen to necrotic core area (2.5-fold, p = 0.0003) and expanded collagen content (1.6-fold, p = 0.0007), which suggest formation of less vulnerable atherosclerotic plaques. Treatment with a CB2R inverse agonist prevents these effects in DKO mice, demonstrating that the observed plaque phenotype in DKO mice originates from CB2R activation. Conclusion Loss of MGL modulates endocannabinoid signaling in CB2R-expressing cells, which concomitantly affects the pathogenesis of atherosclerosis. We conclude that despite larger lesion size loss of MGL improves atherosclerotic plaque stability. Thus, pharmacological MGL inhibition may be a novel intervention to reduce plaque rupture.
Collapse
Affiliation(s)
- Nemanja Vujic
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Stefanie Schlager
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Madeleine Goeritzer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Silvia Rainer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Silvia Schauer
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Albert Woelfler
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Prakash Doddapattar
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Branislav Radovic
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.
| |
Collapse
|
19
|
Goeritzer M, Vujic N, Schlager S, Chandak PG, Korbelius M, Gottschalk B, Leopold C, Obrowsky S, Rainer S, Doddapattar P, Aflaki E, Wegscheider M, Sachdev V, Graier WF, Kolb D, Radovic B, Kratky D. Active autophagy but not lipophagy in macrophages with defective lipolysis. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1304-1316. [PMID: 26143381 PMCID: PMC4562370 DOI: 10.1016/j.bbalip.2015.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 05/29/2015] [Accepted: 06/20/2015] [Indexed: 11/30/2022]
Abstract
During autophagy, autophagosomes fuse with lysosomes to degrade damaged organelles and misfolded proteins. Breakdown products are released into the cytosol and contribute to energy and metabolic building block supply, especially during starvation. Lipophagy has been defined as the autophagy-mediated degradation of lipid droplets (LDs) by lysosomal acid lipase. Adipose triglyceride lipase (ATGL) is the major enzyme catalyzing the initial step of lipolysis by hydrolyzing triglycerides (TGs) in cytosolic LDs. Consequently, most organs and cells, including macrophages, lacking ATGL accumulate TGs, resulting in reduced intracellular free fatty acid concentrations. Macrophages deficient in hormone-sensitive lipase (H0) lack TG accumulation albeit reduced in vitro TG hydrolase activity. We hypothesized that autophagy is activated in lipase-deficient macrophages to counteract their energy deficit. We therefore generated mice lacking both ATGL and HSL (A0H0). Macrophages from A0H0 mice showed 73% reduced neutral TG hydrolase activity, resulting in TG-rich LD accumulation. Increased expression of cathepsin B, accumulation of LC3-II, reduced expression of p62 and increased DQ-BSA dequenching suggest intact autophagy and functional lysosomes in A0H0 macrophages. Markedly decreased acid TG hydrolase activity and lipid flux independent of bafilomycin A1 treatment, however, argue against effective lysosomal degradation of LDs in A0H0 macrophages. We conclude that autophagy of proteins and cell organelles but not of LDs is active as a compensatory mechanism to circumvent and balance the reduced availability of energy substrates in A0H0 macrophages.
Collapse
Affiliation(s)
- Madeleine Goeritzer
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Nemanja Vujic
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Stefanie Schlager
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Prakash G Chandak
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Melanie Korbelius
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Benjamin Gottschalk
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Christina Leopold
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Sascha Obrowsky
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Silvia Rainer
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Prakash Doddapattar
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Elma Aflaki
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Martin Wegscheider
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Vinay Sachdev
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Wolfgang F Graier
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Dagmar Kolb
- Center for Medical Research/Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Branislav Radovic
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| |
Collapse
|
20
|
Schlager S, Goeritzer M, Jandl K, Frei R, Vujic N, Kolb D, Strohmaier H, Dorow J, Eichmann TO, Rosenberger A, Wölfler A, Lass A, Kershaw EE, Ceglarek U, Dichlberger A, Heinemann A, Kratky D. Adipose triglyceride lipase acts on neutrophil lipid droplets to regulate substrate availability for lipid mediator synthesis. J Leukoc Biol 2015; 98:837-50. [PMID: 26109679 PMCID: PMC4594763 DOI: 10.1189/jlb.3a0515-206r] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/09/2015] [Indexed: 01/18/2023] Open
Abstract
Lipid mediator release depends on the hydrolysis of triglyceride-rich lipid droplets mediated by ATGL, a potent regulator of inflammatory diseases. In humans, mutations in ATGL lead to TG accumulation in LDs of most tissues and cells, including peripheral blood leukocytes. This pathologic condition is called Jordans’ anomaly, in which functional consequences have not been investigated. In the present study, we tested the hypothesis that ATGL plays a role in leukocyte LD metabolism and immune cell function. Similar to humans with loss-of-function mutations in ATGL, we found that global and myeloid-specific Atgl−/− mice exhibit Jordans’ anomaly with increased abundance of intracellular TG-rich LDs in neutrophil granulocytes. In a model of inflammatory peritonitis, lipid accumulation was also observed in monocytes and macrophages but not in eosinophils or lymphocytes. Neutrophils from Atgl−/− mice showed enhanced immune responses in vitro, which were more prominent in cells from global compared with myeloid-specific Atgl−/− mice. Mechanistically, ATGL−/− as well as pharmacological inhibition of ATGL led to an impaired release of lipid mediators from neutrophils. These findings demonstrate that the release of lipid mediators is dependent on the liberation of precursor molecules from the TG-rich pool of LDs by ATGL. Our data provide mechanistic insights into Jordans’ anomaly in neutrophils and suggest that ATGL is a potent regulator of immune cell function and inflammatory diseases.
Collapse
Affiliation(s)
- Stefanie Schlager
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Madeleine Goeritzer
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Katharina Jandl
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Robert Frei
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nemanja Vujic
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Dagmar Kolb
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Heimo Strohmaier
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juliane Dorow
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas O Eichmann
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Angelika Rosenberger
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Albert Wölfler
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Achim Lass
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Erin E Kershaw
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Uta Ceglarek
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Andrea Dichlberger
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Akos Heinemann
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Dagmar Kratky
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Hofer P, Boeszoermenyi A, Jaeger D, Feiler U, Arthanari H, Mayer N, Zehender F, Rechberger G, Oberer M, Zimmermann R, Lass A, Haemmerle G, Breinbauer R, Zechner R, Preiss-Landl K. Fatty Acid-binding Proteins Interact with Comparative Gene Identification-58 Linking Lipolysis with Lipid Ligand Shuttling. J Biol Chem 2015; 290:18438-53. [PMID: 25953897 PMCID: PMC4513104 DOI: 10.1074/jbc.m114.628958] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Indexed: 12/18/2022] Open
Abstract
The coordinated breakdown of intracellular triglyceride (TG) stores requires the exquisitely regulated interaction of lipolytic enzymes with regulatory, accessory, and scaffolding proteins. Together they form a dynamic multiprotein network designated as the “lipolysome.” Adipose triglyceride lipase (Atgl) catalyzes the initiating step of TG hydrolysis and requires comparative gene identification-58 (Cgi-58) as a potent activator of enzyme activity. Here, we identify adipocyte-type fatty acid-binding protein (A-Fabp) and other members of the fatty acid-binding protein (Fabp) family as interaction partners of Cgi-58. Co-immunoprecipitation, microscale thermophoresis, and solid phase assays proved direct protein/protein interaction between A-Fabp and Cgi-58. Using nuclear magnetic resonance titration experiments and site-directed mutagenesis, we located a potential contact region on A-Fabp. In functional terms, A-Fabp stimulates Atgl-catalyzed TG hydrolysis in a Cgi-58-dependent manner. Additionally, transcriptional transactivation assays with a luciferase reporter system revealed that Fabps enhance the ability of Atgl/Cgi-58-mediated lipolysis to induce the activity of peroxisome proliferator-activated receptors. Our studies identify Fabps as crucial structural and functional components of the lipolysome.
Collapse
Affiliation(s)
- Peter Hofer
- From the Institute of Molecular Biosciences, University of Graz, NAWI Graz, 8010 Graz, Austria
| | - Andras Boeszoermenyi
- From the Institute of Molecular Biosciences, University of Graz, NAWI Graz, 8010 Graz, Austria
| | - Doris Jaeger
- From the Institute of Molecular Biosciences, University of Graz, NAWI Graz, 8010 Graz, Austria
| | - Ursula Feiler
- From the Institute of Molecular Biosciences, University of Graz, NAWI Graz, 8010 Graz, Austria
| | - Haribabu Arthanari
- the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Nicole Mayer
- the Institute of Organic Chemistry, Graz University of Technology, 8010 Graz, Austria, and
| | | | - Gerald Rechberger
- From the Institute of Molecular Biosciences, University of Graz, NAWI Graz, 8010 Graz, Austria
| | - Monika Oberer
- From the Institute of Molecular Biosciences, University of Graz, NAWI Graz, 8010 Graz, Austria
| | - Robert Zimmermann
- From the Institute of Molecular Biosciences, University of Graz, NAWI Graz, 8010 Graz, Austria
| | - Achim Lass
- From the Institute of Molecular Biosciences, University of Graz, NAWI Graz, 8010 Graz, Austria
| | - Guenter Haemmerle
- From the Institute of Molecular Biosciences, University of Graz, NAWI Graz, 8010 Graz, Austria
| | - Rolf Breinbauer
- the Institute of Organic Chemistry, Graz University of Technology, 8010 Graz, Austria, and
| | - Rudolf Zechner
- From the Institute of Molecular Biosciences, University of Graz, NAWI Graz, 8010 Graz, Austria,
| | - Karina Preiss-Landl
- From the Institute of Molecular Biosciences, University of Graz, NAWI Graz, 8010 Graz, Austria,
| |
Collapse
|
22
|
Xie P, Kadegowda AKG, Ma Y, Guo F, Han X, Wang M, Groban L, Xue B, Shi H, Li H, Yu L. Muscle-specific deletion of comparative gene identification-58 (CGI-58) causes muscle steatosis but improves insulin sensitivity in male mice. Endocrinology 2015; 156:1648-58. [PMID: 25751639 PMCID: PMC4398773 DOI: 10.1210/en.2014-1892] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intramyocellular accumulation of lipids is often associated with insulin resistance. Deficiency of comparative gene identification-58 (CGI-58) causes cytosolic deposition of triglyceride (TG)-rich lipid droplets in most cell types, including muscle due to defective TG hydrolysis. It was unclear, however, whether CGI-58 deficiency-induced lipid accumulation in muscle influences insulin sensitivity. Here we show that muscle-specific CGI-58 knockout mice relative to their controls have increased glucose tolerance and insulin sensitivity on a Western-type high-fat diet, despite TG accumulation in both heart and oxidative skeletal muscle and cholesterol deposition in heart. Although the intracardiomyocellular lipid deposition results in cardiac ventricular fibrosis and systolic dysfunction, muscle-specific CGI-58 knockout mice show increased glucose uptake in heart and soleus muscle, improved insulin signaling in insulin-sensitive tissues, and reduced plasma concentrations of glucose, insulin, and cholesterol. Hepatic contents of TG and cholesterol are also decreased in these animals. Cardiac steatosis is attributable, at least in part, to decreases in cardiac TG hydrolase activity and peroxisome proliferator-activated receptor-α/peroxisome proliferator-activated receptor-γ coactivator-1-dependent mitochondrial fatty acid oxidation. In conclusion, muscle CGI-58 deficiency causes cardiac dysfunction and fat deposition in oxidative muscles but induces a series of favorable metabolic changes in mice fed a high-fat diet.
Collapse
Affiliation(s)
- Ping Xie
- Departments of Biochemistry (P.X., Y.M., F.G., L.Y.) and Anesthesiology (L.G.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; Department of Animal and Avian Sciences (A.K.G.G., Y.M., L.Y.), University of Maryland, College Park, Maryland 20742; Diabetes and Obesity Research Center (X.H., M.W.), Sanford-Burnham Medical Research Institute, Orlando, Florida 32827; Department of Biology (B.X., H.S.), Georgia State University, Atlanta, Georgia 30303; and The Key Laboratory of Remodeling-Related Cardiovascular Diseases (H.L.), Capital Medical University, Ministry of Education, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated the Capital Medical University, Beijing 100029, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Macrophage CGI-58 deficiency promotes IL-1β transcription by activating the SOCS3-FOXO1 pathway. Clin Sci (Lond) 2015; 128:493-506. [PMID: 25431838 DOI: 10.1042/cs20140414] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over-nutrition induces low-grade inflammation that dampens insulin sensitivity, but the underlying molecular mediators are not fully understood. Comparative gene identification-58 (CGI-58) is an intracellular lipolytic activator. In the present study, we show that in mouse visceral fat-derived macrophages or human peripheral blood monocytes, CGI-58 negatively and interleukin (IL)-1β positively correlate with obesity. Saturated non-esterified fatty acid (NEFA) suppresses CGI-58 expression in macrophages and this suppression activates FOXO1 (forkhead box-containing protein O subfamily-1) through inhibition of FOXO1 phosphorylation. Activated FOXO1 binds to an insulin-responsive element in IL-1β promoter region to potentiate IL-1β transcription. Gain- and loss-of-function studies demonstrate that NEFA-induced CGI-58 suppression activates FOXO1 to augment IL-1β transcription by dampening insulin signalling through induction of SOCS3 (suppressor of cytokine signalling 3) expression. CGI-58 deficiency-induced SOCS3 expression is NLRP3 (nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3) inflammasome-dependent. Our data thus identified a vicious cycle (IL-1β-SOCS3-FOXO1-IL-1β) that amplifies IL-1β secretion and is initiated by CGI-58 deficiency-induced activation of the NLRP3 inflammasome in macrophages. We further show that blocking this cycle with a FOXO1 inhibitor, an antioxidant that inhibits FOXO1 or IL-1 receptor antagonist alleviates chronic inflammation and insulin resistance in high-fat diet (HFD)-fed mice. Collectively, our data suggest that obesity-associated factors such as NEFA and lipopolysaccharide (LPS) probably adopt this vicious cycle to promote inflammation and insulin resistance.
Collapse
|