1
|
Xie S, Zou W, Liu S, Yang Q, Hu T, Zhu WP, Tang H, Wang C. Site 1 protease aggravates acute kidney injury by promoting tubular epithelial cell ferroptosis through SIRT3-SOD2-mtROS signaling. FEBS J 2024; 291:1575-1592. [PMID: 38243371 DOI: 10.1111/febs.17057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/21/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Ischemia/reperfusion (I/R)-induced acute kidney injury (AKI) is a common clinical syndrome with high morbidity and mortality. Ferroptosis, a newly discovered form of oxidative cell death, is involved in the pathogenesis of renal I/R injury; however, the underlying mechanism remains to be explored. Here, we reported that site 1 protease (S1P) promotes ischemic kidney injury by regulating ferroptotic cell death of tubular epithelial cells. S1P abundance was measured in hypoxia/reoxygenation (H/R)-treated Boston University mouse proximal tubular (BUMPT) cells and I/R-induced murine kidney tissue. S1P expression in BUMPT cells and kidneys was initially activated by hypoxic stimulation, accompanied by the ferroptotic response. Blocking S1P blunted H/R-induced ferroptotic cell death, which also restored sirtuin 3 (SIRT3) expression and superoxide dismutase 2 (SOD2) activity in BUMPT cells. Next, inhibition of S1P expression restored I/R-suppressed SIRT3 abundance, SOD2 activity and reduced the elevated level of mitochondria reactive oxygen species (mtROS), which attenuated tubular cell ferroptosis and renal I/R injury. In conclusion, S1P promoted renal tubular epithelial cell ferroptosis under I/R status by activating SIRT3-SOD2-mtROS signaling, thereby accelerating kidney injury. Thus, targeting S1P signaling may serve as a promising strategy for I/R kidney injury.
Collapse
Affiliation(s)
- Shiying Xie
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
| | - Wei Zou
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
| | - Sirui Liu
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
| | - Qinglan Yang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
| | - Tiantian Hu
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
| | - Wei-Ping Zhu
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
| | - Hua Tang
- Division of Nephrology, Department of Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
| |
Collapse
|
2
|
Danyukova T, Schöneck K, Pohl S. Site-1 and site-2 proteases: A team of two in regulated proteolysis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119138. [PMID: 34619164 DOI: 10.1016/j.bbamcr.2021.119138] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/12/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022]
Abstract
The site-1 and site-2 proteases (S1P and S2P) were identified over 20 years ago, and the functions of both have been addressed in numerous studies ever since. Whereas S1P processes a set of substrates independently of S2P, the latter acts in concert with S1P in a mechanism, called regulated intramembrane proteolysis, that controls lipid metabolism and response to unfolded proteins. This review summarizes the molecular roles that S1P and S2P jointly play in these processes. As S1P and S2P deficiencies mainly affect connective tissues, yet with varying phenotypes, we discuss the segregated functions of S1P and S2P in terms of cell homeostasis and maintenance of the connective tissues. In addition, we provide experimental data that point at S2P, but not S1P, as a critical regulator of cell adaptation to proteotoxicity or lipid imbalance. Therefore, we hypothesize that S2P can also function independently of S1P activity.
Collapse
Affiliation(s)
- Tatyana Danyukova
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Kenneth Schöneck
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Sandra Pohl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
3
|
Enzymatic sources and physio-pathological functions of soluble (pro)renin receptor. Curr Opin Nephrol Hypertens 2018; 27:77-82. [PMID: 29346132 DOI: 10.1097/mnh.0000000000000396] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW (Pro)renin receptor (PRR) belongs to type I transmembrane receptor family and binds both prorenin and renin, representing a potential regulator of the activity of the renin-angiotensin system. Soluble form of PRR (sPRR) is generated by intracellular protease-mediated cleavage of full-length PRR. The purpose of this review is to highlight recent advances in understanding the mechanisms of action and production of sPRR. RECENT FINDINGS It has recently been demonstrated that site-1-protease (S1P) plays a dominant role in the generation of sPRR. New evidence is also emerging to support a biological function of sPRR in the physiological regulation of fluid homeostasis as well as pathogenesis of chronic kidney disease. SUMMARY sPRR is a 28 kDa product of PRR cleavage via S1P-mediated protease activity. Not only does sPRR regulate renal tubular water transport, but it also mediates pathogenic responses to renal cellular injury. sPRR is likely involved in a wide range of physio-pathological processes.
Collapse
|
4
|
Site-1 protease and lysosomal homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2162-2168. [PMID: 28693924 DOI: 10.1016/j.bbamcr.2017.06.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 11/22/2022]
Abstract
The Golgi-resident site-1 protease (S1P) is a key regulator of cholesterol homeostasis and ER stress responses by converting latent transcription factors sterol regulatory element binding proteins (SREPBs) and activating transcription factor 6 (ATF6), as well as viral glycoproteins to their active forms. S1P is also essential for lysosome biogenesis via proteolytic activation of the hexameric GlcNAc-1-phosphotransferase complex required for modification of newly synthesized lysosomal enzymes with the lysosomal targeting signal, mannose 6-phosphate. In the absence of S1P, the catalytically inactive α/β-subunit precursor of GlcNAc-1-phosphotransferase fails to be activated and results in missorting of newly synthesized lysosomal enzymes, and lysosomal accumulation of non-degraded material, which are biochemical features of defective GlcNAc-1-phosphotransferase subunits and the associated pediatric lysosomal diseases mucolipidosis type II and III. The early embryonic death of S1P-deficient mice and the importance of various S1P-regulated biological processes, including lysosomal homeostasis, cautioned for clinical inhibition of S1P. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
|
5
|
Seidah NG. The PCSK9 revolution and the potential of PCSK9-based therapies to reduce LDL-cholesterol. Glob Cardiol Sci Pract 2017; 2017:e201702. [PMID: 28971102 PMCID: PMC5621713 DOI: 10.21542/gcsp.2017.2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, IRCM; Affiliated to the University of Montreal, 110 Pine Avenue West, Montreal, QC, H2W 1R7Canada
| |
Collapse
|
6
|
Human Subtilisin Kexin Isozyme-1 (SKI-1)/Site-1 Protease (S1P) regulates cytoplasmic lipid droplet abundance: A potential target for indirect-acting anti-dengue virus agents. PLoS One 2017; 12:e0174483. [PMID: 28339489 PMCID: PMC5365115 DOI: 10.1371/journal.pone.0174483] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 03/09/2017] [Indexed: 01/12/2023] Open
Abstract
Viral hijacking and manipulation of host-cell biosynthetic pathways by human enveloped viruses are shared molecular events essential for the viral lifecycle. For Flaviviridae members such as hepatitis C virus and dengue virus (DENV), one of the key subsets of cellular pathways that undergo manipulation is the lipid metabolic pathways, underlining the importance of cellular lipids and, in particular, lipid droplets (LDs) in viral infection. Here, we hypothesize that targeting cellular enzymes that act as key regulators of lipid homeostasis and LD formation could represent a powerful approach to developing a novel class of broad-spectrum antivirals against infection associated with all DENV serotypes (1–4) circulating around the world. Using PF-429242, an active-site-directed inhibitor of SKI-1/S1P, we demonstrate that inhibition of SKI-1/S1P enzymatic activity in human hepatoma Huh-7.5.1 cells results in a robust reduction of the LD numbers and LD-positive areas and provides a means of effectively inhibiting infection by DENV (1–4). Pre-treatment of Huh-7.5.1 cells with PF-429242 results in a dose-dependent inhibition of DENV infection [median inhibitory dose (EC50) = 1.2 microM; median cytotoxic dose (CC50) = 81 microM; selectivity index (SI) = 68)] and a ~3-log decrease in DENV-2 titer with 20 microM of PF-429242. Post-treatment of DENV-2 infected Huh-7.5.1 cells with PF-429242 does not affect viral RNA abundance, but it does compromise the assembly and/or release of infectious virus particles. PF-429242 antiviral activity is reversed by exogenous oleic acid, which acts as an inducer of LD formation in PF-429242-treated and non-treated control cells. Collectively, our results demonstrate that human SKI-1/S1P is a potential target for indirect-acting pan-serotypic anti-DENV agents and reveal new therapeutic opportunities associated with the use of lipid-modulating drugs for controlling DENV infection.
Collapse
|