1
|
Fowler JWM, Boutagy NE, Zhang R, Horikami D, Whalen MB, Romanoski CE, Sessa WC. SREBP2 regulates the endothelial response to cytokines via direct transcriptional activation of KLF6. J Lipid Res 2023; 64:100411. [PMID: 37437844 PMCID: PMC10407908 DOI: 10.1016/j.jlr.2023.100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
The transcription factor SREBP2 is the main regulator of cholesterol homeostasis and is central to the mechanism of action of lipid-lowering drugs, such as statins, which are responsible for the largest overall reduction in cardiovascular risk and mortality in humans with atherosclerotic disease. Recently, SREBP2 has been implicated in leukocyte innate and adaptive immune responses by upregulation of cholesterol flux or direct transcriptional activation of pro-inflammatory genes. Here, we investigate the role of SREBP2 in endothelial cells (ECs), since ECs are at the interface of circulating lipids with tissues and crucial to the pathogenesis of cardiovascular disease. Loss of SREBF2 inhibits the production of pro-inflammatory chemokines but amplifies type I interferon response genes in response to inflammatory stimulus. Furthermore, SREBP2 regulates chemokine expression not through enhancement of endogenous cholesterol synthesis or lipoprotein uptake but partially through direct transcriptional activation. Chromatin immunoprecipitation sequencing of endogenous SREBP2 reveals that SREBP2 bound to the promoter regions of two nonclassical sterol responsive genes involved in immune modulation, BHLHE40 and KLF6. SREBP2 upregulation of KLF6 was responsible for the downstream amplification of chemokine expression, highlighting a novel relationship between cholesterol homeostasis and inflammatory phenotypes in ECs.
Collapse
Affiliation(s)
- Joseph Wayne M Fowler
- Department of Pharmacology, Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Nabil E Boutagy
- Department of Pharmacology, Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Rong Zhang
- Department of Pharmacology, Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Daiki Horikami
- Department of Pharmacology, Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Michael B Whalen
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA
| | - Casey E Romanoski
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA
| | - William C Sessa
- Department of Pharmacology, Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Aweya JJ, Zheng X, Zheng Z, Wang W, Fan J, Yao D, Li S, Zhang Y. The sterol regulatory element binding protein homolog of Penaeus vannamei modulates fatty acid metabolism and immune response. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158757. [PMID: 32544537 DOI: 10.1016/j.bbalip.2020.158757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 01/28/2023]
Abstract
The sterol regulatory element binding proteins (SREBPs) transcription factors family, which regulate the expression of genes involved in cellular lipid metabolism and homeostasis, have recently been implicated in various physiological and pathophysiological processes such as immune regulation and inflammation in vertebrates. Consistent with other invertebrates, we identified a single SREBP ortholog in Penaeus vannamei (designated PvSREBP) with transcripts ubiquitously expressed in tissues and induced by lipopolysaccharide (LPS), Vibrio parahaemolyticus and Streptococcus iniae. In vivo RNA interference (RNAi) of PvSREBP attenuated the expression of several fatty acid metabolism-related genes (i.e., cyclooxygenase (PvCOX), lipoxygenase (PvLOX), fatty acid binding protein (PvFABP) and fatty acid synthase (PvFASN)), which consequently decreased the levels of total polyunsaturated fatty acids (ΣPUFAs). In addition, PvSREBP silencing decreased transcript levels of several immune-related genes such as hemocyanin (PvHMC) and trypsin (PvTrypsin), as well as genes encoding for heat-shock proteins (i.e., PvHSP60, PvHSP70 and PvHSP90). Moreover, in silico analysis revealed the presence of SREBP binding motifs on the promoters of most of the dysregulated genes, while shrimp depleted of PvSREBP were more susceptible to V. parahaemolyticus infection. Collectively, we demonstrated the involvement of shrimp SREBP in fatty acids metabolism and immune response, and propose that PvSREBP and PvHMC modulate each other through a feedback mechanism to establish homeostasis. The current study is the first to show the dual role of SREBP in fatty acid metabolism and immune response in invertebrates and crustaceans.
Collapse
Affiliation(s)
- Jude Juventus Aweya
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Xiaoyu Zheng
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Zhihong Zheng
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Wei Wang
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Jiaohong Fan
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Defu Yao
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Yueling Zhang
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China.
| |
Collapse
|
3
|
Statin as a novel pharmacotherapy of pulmonary alveolar proteinosis. Nat Commun 2018; 9:3127. [PMID: 30087322 PMCID: PMC6081448 DOI: 10.1038/s41467-018-05491-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a syndrome of reduced GM-CSF-dependent, macrophage-mediated surfactant clearance, dysfunctional foamy alveolar macrophages, alveolar surfactant accumulation, and hypoxemic respiratory failure for which the pathogenetic mechanism is unknown. Here, we examine the lipids accumulating in alveolar macrophages and surfactant to define the pathogenesis of PAP and evaluate a novel pharmacotherapeutic approach. In PAP patients, alveolar macrophages have a marked increase in cholesterol but only a minor increase in phospholipids, and pulmonary surfactant has an increase in the ratio of cholesterol to phospholipids. Oral statin therapy is associated with clinical, physiological, and radiological improvement in autoimmune PAP patients, and ex vivo statin treatment reduces cholesterol levels in explanted alveolar macrophages. In Csf2rb−/− mice, statin therapy reduces cholesterol accumulation in alveolar macrophages and ameliorates PAP, and ex vivo statin treatment increases cholesterol efflux from macrophages. These results support the feasibility of statin as a novel pathogenesis-based pharmacotherapy of PAP. Pulmonary alveolar proteinosis (PAP) is associated with defective macrophage clearance of surfactant. Here, the authors show that patients with PAP have altered cholesterol-to-phospholipid ratio in their surfactant, and that more importantly, statin therapy and reduction of cholesterol accumulation in macrophages can ameliorate PAP in both humans and mice.
Collapse
|
4
|
Howard JT, Ashwell MS, Baynes RE, Brooks JD, Yeatts JL, Maltecca C. Gene co-expression network analysis identifies porcine genes associated with variation in metabolizing fenbendazole and flunixin meglumine in the liver. Sci Rep 2017; 7:1357. [PMID: 28465592 PMCID: PMC5430975 DOI: 10.1038/s41598-017-01526-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/29/2017] [Indexed: 12/31/2022] Open
Abstract
Identifying individual genetic variation in drug metabolism pathways is of importance not only in livestock, but also in humans in order to provide the ultimate goal of giving the right drug at the right dose at the right time. Our objective was to identify individual genes and gene networks involved in metabolizing fenbendazole (FBZ) and flunixin meglumine (FLU) in swine liver. The population consisted of female and castrated male pigs that were sired by boars represented by 4 breeds. Progeny were randomly placed into groups: no drug (UNT), FLU or FBZ administered. Liver transcriptome profiles from 60 animals with extreme (i.e. fast or slow drug metabolism) pharmacokinetic (PK) profiles were generated from RNA sequencing. Multiple cytochrome P450 (CYP1A1, CYP2A19 and CYP2C36) genes displayed different transcript levels across treated versus UNT. Weighted gene co-expression network analysis identified 5 and 3 modules of genes correlated with PK parameters and a portion of these were enriched for biological processes relevant to drug metabolism for FBZ and FLU, respectively. Genes within identified modules were shown to have a higher transcript level relationship (i.e. connectivity) in treated versus UNT animals. Investigation into the identified genes would allow for greater insight into FBZ and FLU metabolism.
Collapse
Affiliation(s)
- Jeremy T Howard
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621, USA
| | - Melissa S Ashwell
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621, USA
| | - Ronald E Baynes
- Department of Population Health and Pathobiology, Center for Chemical Toxicology and Research Pharmacokinetics, North Carolina State University, College of Veterinary Medicine, 4700 Hillsborough Road, Raleigh, North Carolina, 27606, USA
| | - James D Brooks
- Department of Population Health and Pathobiology, Center for Chemical Toxicology and Research Pharmacokinetics, North Carolina State University, College of Veterinary Medicine, 4700 Hillsborough Road, Raleigh, North Carolina, 27606, USA
| | - James L Yeatts
- Department of Population Health and Pathobiology, Center for Chemical Toxicology and Research Pharmacokinetics, North Carolina State University, College of Veterinary Medicine, 4700 Hillsborough Road, Raleigh, North Carolina, 27606, USA
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621, USA.
| |
Collapse
|
5
|
Prostacyclin receptors: Transcriptional regulation and novel signalling mechanisms. Prostaglandins Other Lipid Mediat 2015; 121:70-82. [DOI: 10.1016/j.prostaglandins.2015.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/25/2015] [Accepted: 04/18/2015] [Indexed: 12/24/2022]
|
6
|
Kwong W, Liuni A, Zhou K, Parker JD. Cyclooxygenase inhibition and rosuvastatin-induced vascular protection in the setting of ischemia-reperfusion: A human in vivo study. Vascul Pharmacol 2015; 71:159-65. [PMID: 25869511 DOI: 10.1016/j.vph.2015.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/06/2015] [Accepted: 03/19/2015] [Indexed: 11/29/2022]
Abstract
The 3-hydroxy-3-methylglutaryl coenzyme A (HMG Co-A) reductase inhibitors have preconditioning effects involving up-regulation of cyclooxygenase (COX)-2. We investigated the effect of selective and non-selective COX inhibition on rosuvastatin-mediated protection against ischemia-reperfusion (IR)-induced endothelial dysfunction in the human forearm. Healthy volunteers (n=66) were allocated to placebo, acetylsalicylic acid (ASA) 81mg daily, ASA 325mg daily, celecoxib 200mg twice daily or 400mg ibuprofen four times daily, each administered for 5 to 7days. On the last day of study drug therapy, subjects received a single dose of 40mg rosuvastatin. Twenty-four hours later flow-mediated dilation (FMD) of the radial artery was evaluated before and after IR. In the placebo group, FMD was similar before and after IR (8.1±1.0 vs 7.2±0.8%; P=NS) indicating a significant protective effect of rosuvastatin. There was also no effect of IR on FMD in the ASA 81mg group (6.7±0.6 vs 6.1±0.7%; P=NS). In contrast, following IR there was a significant decrease in FMD in the ASA 325mg group (7.2±0.8 vs 3.3±0.7%, P<0.001), the celecoxib group (7.3±1.5 vs 2.6±1.5%, P<0.01) as well as the ibuprofen group (6.8±0.7 vs 2.6±0.8%; P<0.01). Therefore, nonselective COX inhibition with ASA 325mg and ibuprofen completely inhibit the protective effects of rosuvastatin in the setting of IR injury, as does therapy with the specific COX-2 antagonist celecoxib. In contrast, therapy with low dose ASA (81mg daily) does not have such inhibitory effects.
Collapse
Affiliation(s)
- Wilson Kwong
- Department of Pharmacology and Toxicology, University of Toronto, Ontario, Canada; Department of Medicine, Division of Cardiology, University of Toronto, Ontario, Canada
| | - Andrew Liuni
- Department of Pharmacology and Toxicology, University of Toronto, Ontario, Canada; Department of Medicine, Division of Cardiology, University of Toronto, Ontario, Canada
| | - Kangbin Zhou
- Department of Pharmacology and Toxicology, University of Toronto, Ontario, Canada; Department of Medicine, Division of Cardiology, University of Toronto, Ontario, Canada
| | - John D Parker
- Department of Pharmacology and Toxicology, University of Toronto, Ontario, Canada; Department of Medicine, Division of Cardiology, University of Toronto, Ontario, Canada
| |
Collapse
|
7
|
Song NY, Na HK, Baek JH, Surh YJ. Docosahexaenoic acid inhibits insulin-induced activation of sterol regulatory-element binding protein 1 and cyclooxygenase-2 expression through upregulation of SIRT1 in human colon epithelial cells. Biochem Pharmacol 2014; 92:142-8. [DOI: 10.1016/j.bcp.2014.08.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/23/2014] [Accepted: 08/25/2014] [Indexed: 01/08/2023]
|
8
|
Paintlia AS, Paintlia MK, Singh AK, Singh I. Modulation of Rho-Rock signaling pathway protects oligodendrocytes against cytokine toxicity via PPAR-α-dependent mechanism. Glia 2013; 61:1500-1517. [PMID: 23839981 DOI: 10.1002/glia.22537] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/13/2022]
Abstract
We earlier documented that lovastatin (LOV)-mediated inhibition of small Rho GTPases activity protects vulnerable oligodendrocytes (OLs) in mixed glial cell cultures stimulated with Th1 cytokines and in a murine model of multiple sclerosis (MS). However, the precise mechanism of OL protection remains unclear. We here employed genetic and biochemical approaches to elucidate the underlying mechanism that protects LOV treated OLs from Th1 (tumor necrosis factor-α) and Th17 (interleukin-17) cytokines toxicity in in vitro. Cytokines enhanced the reactive oxygen species (ROS) generation and mitochondrial membrane depolarization with corresponding lowering of glutathione (reduced) level in OLs and that were reverted by LOV. In addition, the expression of ROS detoxifying enzymes (catalase and superoxide-dismutase 2) and the transactivation of peroxisome proliferators-activated receptor (PPAR)-α/-β/-γ including PPAR-γ coactivator-1α were enhanced by LOV in similarly treated OLs. Interestingly, LOV-mediated inhibition of small Rho GTPases, i.e., RhoA and cdc42, and Rho-associated kinase (ROCK) activity enhanced the levels of PPAR ligands in OLs via extracellular signal regulated kinase (1/2)/p38 mitogen-activated protein kinase/cytoplasmic phospholipase 2/cyclooxygenase-2 signaling cascade activation. Small hairpin RNA transfection-based studies established that LOV mainly enhances PPAR-α and less so of PPAR-β and PPAR-γ transactivation that enhances ROS detoxifying defense in OLs. In support of this, the observed LOV-mediated protection was lacking in PPAR-α-deficient OLs exposed to cytokines. Collectively, these data provide unprecedented evidence that LOV-mediated inhibition of the Rho-ROCK signaling pathway boosts ROS detoxifying defense in OLs via PPAR-α-dependent mechanism that has implication in neurodegenerative disorders including MS.
Collapse
Affiliation(s)
- Ajaib S Paintlia
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, South Carolina
| | - Manjeet K Paintlia
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, South Carolina
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Ralph H. Johnson VA Medical Center, Charleston, South Carolina
| | - Inderjit Singh
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, South Carolina
| |
Collapse
|
9
|
Turner EC, Kinsella BT. Regulation of the human prostacyclin receptor gene by the cholesterol-responsive SREBP1. J Lipid Res 2012; 53:2390-404. [PMID: 22969152 DOI: 10.1194/jlr.m029314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prostacyclin and its prostacyclin receptor, the I Prostanoid (IP), play essential roles in regulating hemostasis and vascular tone and have been implicated in a range cardio-protective effects but through largely unknown mechanisms. In this study, the influence of cholesterol on human IP [(h)IP] gene expression was investigated in cultured vascular endothelial and platelet-progenitor megakaryocytic cells. Cholesterol depletion increased human prostacyclin receptor (hIP) mRNA, hIP promoter-directed reporter gene expression, and hIP-induced cAMP generation in all cell types. Furthermore, the constitutively active sterol-response element binding protein (SREBP)1a, but not SREBP2, increased hIP mRNA and promoter-directed gene expression, and deletional and mutational analysis uncovered an evolutionary conserved sterol-response element (SRE), adjacent to a known functional Sp1 element, within the core hIP promoter. Moreover, chromatin immunoprecipitation assays confirmed direct cholesterol-regulated binding of SREBP1a to this hIP promoter region in vivo, and immunofluorescence microscopy corroborated that cholesterol depletion significantly increases hIP expression levels. In conclusion, the hIP gene is directly regulated by cholesterol depletion, which occurs through binding of SREBP1a to a functional SRE within its core promoter. Mechanistically, these data establish that cholesterol can regulate hIP expression, which may, at least in part, account for the combined cardio-protective actions of low serum cholesterol through its regulation of IP expression within the human vasculature.
Collapse
Affiliation(s)
- Elizebeth C Turner
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
10
|
Sterols regulate 3β-hydroxysterol Δ24-reductase (DHCR24) via dual sterol regulatory elements: cooperative induction of key enzymes in lipid synthesis by Sterol Regulatory Element Binding Proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1350-60. [PMID: 22809995 DOI: 10.1016/j.bbalip.2012.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/25/2012] [Accepted: 07/09/2012] [Indexed: 01/28/2023]
Abstract
3β-Hydroxysterol Δ24-reductase (DHCR24) catalyzes a final step in cholesterol synthesis, and has been ascribed diverse functions, such as being anti-apoptotic and anti-inflammatory. How this enzyme is regulated transcriptionally by sterols is currently unclear. Some studies have suggested that its expression is regulated by Sterol Regulatory Element Binding Proteins (SREBPs) while another suggests it is through the Liver X Receptor (LXR). However, these transcription factors have opposing effects on cellular sterol levels, so it is likely that one predominates. Here we establish that sterol regulation of DHCR24 occurs predominantly through SREBP-2, and identify the particular region of the DHCR24 promoter to which SREBP-2 binds. We demonstrate that sterol regulation is mediated by two sterol regulatory elements (SREs) in the promoter of the gene, assisted by two nearby NF-Y binding sites. Moreover, we present evidence that the dual SREs work cooperatively to regulate DHCR24 expression by comparison to two known SREBP target genes, the LDL receptor with one SRE, and farnesyl-diphosphate farnesyltransferase 1, with two SREs.
Collapse
|
11
|
Paintlia AS, Paintlia MK, Singh AK, Orak JK, Singh I. Activation of PPAR-γ and PTEN cascade participates in lovastatin-mediated accelerated differentiation of oligodendrocyte progenitor cells. Glia 2011; 58:1669-85. [PMID: 20578043 DOI: 10.1002/glia.21039] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previously, we and others documented that statins including-lovastatin (LOV) promote the differentiation of oligodendrocyte progenitor cells (OPCs) and remyelination in experimental autoimmune encephalomyelitis (EAE), an multiple sclerosis (MS) model. Conversely, some recent studies demonstrated that statins negatively influence oligodendrocyte (OL) differentiation in vitro and remyelination in a cuprizone-CNS demyelinating model. Therefore, herein, we first investigated the cause of impaired differentiation of OLs by statins in vitro settings. Our observations indicated that the depletion of cholesterol was detrimental to LOV treated OPCs under cholesterol/serum-deprived culture conditions similar to that were used in conflicting studies. However, the depletion of geranylgeranyl-pp under normal cholesterol homeostasis conditions enhanced the phenotypic commitment and differentiation of LOV-treated OPCs ascribed to inhibition of RhoA-Rho kinase. Interestingly, this effect of LOV was associated with increased activation and expression of both PPAR-γ and PTEN in OPCs as confirmed by various pharmacological and molecular based approaches. Furthermore, PTEN was involved in an inhibition of OPCs proliferation via PI3K-Akt inhibition and induction of cell cycle arrest at G1 phase, but without affecting their cell survival. These effects of LOV on OPCs in vitro were absent in the CNS of normal rats chronically treated with LOV concentrations used in EAE indicating that PPAR-γ induction in normal brain may be tightly regulated-providing evidences that statins are therapeutically safe for humans. Collectively, these data provide initial evidence that statin-mediated activation of the PPAR-γ-PTEN cascade participates in OL differentiation, thus suggesting new therapeutic-interventions for MS or related CNS-demyelinating diseases.
Collapse
Affiliation(s)
- Ajaib S Paintlia
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, South Carolina, USA
| | | | | | | | | |
Collapse
|
12
|
Edmonds JW, Prasain JK, Dorand D, Yang Y, Hoang HD, Vibbert J, Kubagawa HM, Miller MA. Insulin/FOXO signaling regulates ovarian prostaglandins critical for reproduction. Dev Cell 2011; 19:858-71. [PMID: 21145501 DOI: 10.1016/j.devcel.2010.11.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/24/2010] [Accepted: 11/05/2010] [Indexed: 12/31/2022]
Abstract
Abnormalities in insulin/IGF-1 signaling are associated with infertility, but the molecular mechanisms are not well understood. Here we use liquid chromatography with electrospray ionization tandem mass spectrometry to show that the C. elegans insulin/FOXO pathway regulates the metabolism of locally acting lipid hormones called prostaglandins. C. elegans prostaglandins are synthesized without prostaglandin G/H synthase homologs, the targets of nonsteroidal anti-inflammatory drugs. Our results support the model that insulin signaling promotes the conversion of oocyte polyunsaturated fatty acids (PUFAs) into F-series prostaglandins that guide sperm to the fertilization site. Reduction in insulin signaling activates DAF-16/FOXO, which represses the transcription of germline and intestinal genes required to deliver PUFAs to oocytes in lipoprotein complexes. Nutritional and neuroendocrine cues target this mechanism to control prostaglandin metabolism and reproductive output. Prostaglandins may be conserved sperm guidance factors and widespread downstream effectors of insulin actions that influence both reproductive and nonreproductive processes.
Collapse
|
13
|
Lipid and Membrane Dynamics in Biological Tissues—Infrared Spectroscopic Studies. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2011. [DOI: 10.1016/b978-0-12-387721-5.00001-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Massaro M, Zampolli A, Scoditti E, Carluccio MA, Storelli C, Distante A, De Caterina R. Statins inhibit cyclooxygenase-2 and matrix metalloproteinase-9 in human endothelial cells: anti-angiogenic actions possibly contributing to plaque stability. Cardiovasc Res 2009; 86:311-20. [PMID: 19946014 DOI: 10.1093/cvr/cvp375] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Cyclooxygenase (COX)-2 expression is increased in inflammation and angiogenesis and also in atherosclerotic plaques, where it co-localizes with metalloproteinases (MMPs) involved in the fibrous cap weakening. Insight into the regulation of COX-2 and MMP-9 expression suggests the involvement of a Rho-dependent pathway. Because statins interfere with Rho activation, we investigated the statin effect on COX-2 and MMP expressions in the human endothelium. METHODS AND RESULTS Simvastatin and atorvastatin were incubated with endothelial cells for 12 h before stimulation with phorbol myristate acetate or tumour necrosis factor-alpha, for times suitable to assess the endothelial tube differentiation on Matrigel and COX-2 and MMPs activities, proteins, and mRNA expressions. At 0.1-10 micromol/L, both statins reduced COX-2 expression and activity, without affecting COX-1. The statin effect was reversed by mevalonate and geranylgeranyl-pyrophosphate and mimicked by the Rho inhibitor C3 transferase, indicating the involvement of Rho in the signal transduction pathway leading to COX-2 expression. In parallel, statins, as well as COX-2 inhibitors, reduced the MMP-9 stimulated release and the endothelial tubular differentiation. CONCLUSION In the human vascular endothelium, statins reduce COX-2 and MMP-9 expression and activity. Through this mechanism, statins exert an anti-angiogenic effect possibly contributing to the cholesterol-lowering-unrelated protective effects of statins against plaque inflammatory angiogenesis and rupture.
Collapse
Affiliation(s)
- Marika Massaro
- CNR Institute of Clinical Physiology, Pisa and Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Ishikawa TO, Jain NK, Taketo MM, Herschman HR. Imaging cyclooxygenase-2 (Cox-2) gene expression in living animals with a luciferase knock-in reporter gene. Mol Imaging Biol 2009; 8:171-87. [PMID: 16557423 DOI: 10.1007/s11307-006-0034-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The cyclooxygenase-2 (Cox-2) gene plays a role in a variety of normal and pathophysiological conditions. Expression of the Cox-2 gene is induced in a broad range of cells, in response to many distinct stimuli. The ability to monitor and quantify Cox-2 expression noninvasively in vivo may facilitate a better understanding of the role of Cox-2, both in normal physiology and in different diseases. We generated a "knock-in" mouse in which the firefly luciferase reporter enzyme is expressed at the start site of translation of the endogenous Cox-2 gene. Correlation of luciferase and Cox-2 expression was confirmed in heterozygous Cox-2luc/+ mouse embryonic fibroblasts isolated from the knock-in mouse. In an acute sepsis model, following injection of interferon gamma and endotoxin, ex vivo imaging and Western blotting demonstrated coordinate Cox-2 and luciferase induction in multiple organs. Using both paw and air pouch inflammation models, we can monitor repeatedly localized luciferase expression in the same living mouse. Cox-2luc/+ knock-in mice should provide a valuable tool to analyze Cox-2 expression in many disease models.
Collapse
Affiliation(s)
- Tomo-O Ishikawa
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, 341 Boyer Hall, 611 Charles E. Young Drive East, UCLA, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
16
|
Heo JC, Lee DY, Son MS, Yun CY, Hwang JS, Kang SW, Kim TH, Lee SH. Effects of Mole Crickets (Gryllotalpa orientalis) Extracts on Anti-oxidant and Anti-inflammatory Activities. ACTA ACUST UNITED AC 2008. [DOI: 10.5352/jls.2008.18.4.509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Regulation of cyclooxygenase-2 expression by cyclic AMP. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1605-18. [PMID: 17945363 DOI: 10.1016/j.bbamcr.2007.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Revised: 09/04/2007] [Accepted: 09/05/2007] [Indexed: 12/22/2022]
Abstract
Prostaglandins (PG) regulate many biological processes, among others inflammatory reactions. Cyclooxygenases-1 and -2 (COX-1 and COX-2) catalyse PG synthesis. Since this step is rate limiting, the regulation of COX expression is of critical importance to PG biology. Contrary to COX-1, which is constitutively expressed, COX-2 expression is subject to regulation. For example, COX-2 levels are increased in inflammatory reactions. Many signalling pathways can regulate COX-2 expression, not least those involving receptors for COX products themselves. Analysis of the intracellular signal transducers involved reveals a crucial role for cAMP, albeit as a modulator rather than direct inducer. Indeed, the influence of cAMP on COX-2 expression is complex and dependent on the cell type and cellular environment. This review aims to summarise various topics related to cAMP-dependent COX-2 expression. Firstly, the main aspects of COX-2 regulation are briefly considered. Secondly, the molecular basis for COX-2 gene (post)-transcriptional regulation is reviewed. Lastly, a detailed overview of the effects of cAMP-dependent signalling on COX-2 mRNA and protein expression in various human and rodent cells is provided. There is a large number of marketed, clinical and preclinical concepts promoting the elevation of intracellular cAMP levels for therapeutic purposes (e.g., beta(2)-agonists, PG receptor agonists, phosphodiesterase inhibitors). In this respect, the role of cAMP in the regulation of COX-2 expression, especially the human enzyme, is of significant clinical importance.
Collapse
|
18
|
Kang YJ, Mbonye UR, DeLong CJ, Wada M, Smith WL. Regulation of intracellular cyclooxygenase levels by gene transcription and protein degradation. Prog Lipid Res 2007; 46:108-25. [PMID: 17316818 PMCID: PMC3253738 DOI: 10.1016/j.plipres.2007.01.001] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclooxygenases-1 and -2 (COX-1 and -2) catalyze the committed step in prostaglandin formation. Each isozyme subserves different biological functions. This is, at least in part, a consequence of differences in patterns of COX-1 and COX-2 expression. COX-1 is induced during development, and COX-1 mRNA and COX-1 protein are very stable. These latter properties can explain why COX-1 protein levels usually remain constant in those cells that express this isozyme. COX-2 is usually expressed inducibly in association with cell replication or differentiation. Both COX-2 mRNA and COX-2 protein have short half-lives relative to those of COX-1. Therefore, COX-2 protein is typically present for only a few hours after its synthesis. Here we review and develop the concepts that (a) COX-2 gene transcription can involve at least six different cis-acting promoter elements interacting with trans-acting factors generated by multiple, different signaling pathways, (b) the relative contribution of each cis-acting COX-2 promoter element depends on the cell type, the stimulus and the time following the stimulus and (c) a unique 27 amino acid instability element located just upstream of the C-terminus of COX-2 targets this isoform to the ER-associated degradation system and proteolysis by the cytosolic 26S proteasome.
Collapse
Affiliation(s)
- Yeon-Joo Kang
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Uri R. Mbonye
- Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824
| | - Cynthia J. DeLong
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Masayuki Wada
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - William L. Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
- To whom correspondence should be addressed: William L. Smith, 1150 W. Medical Center Drive, 5301 Medical Science Research Building III, Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109; Tel: 734-647-6180; Fax:734-764-3509;
| |
Collapse
|