1
|
Kelpsch DJ, Zhang L, Thierer JH, Koren K, Kumar U, Lin Y, Hensley MR, Sohn M, Liu JO, Lectka T, Mumm JS, Farber SA. A whole-animal phenotypic drug screen identifies suppressors of atherogenic lipoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.14.623618. [PMID: 39605440 PMCID: PMC11601432 DOI: 10.1101/2024.11.14.623618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Lipoproteins are essential for lipid transport in all bilaterians. A single Apolipoprotein B (ApoB) molecule is the inseparable structural scaffold of each ApoB-containing lipoprotein (B-lps), which are responsible for transporting lipids to peripheral tissues. The cellular mechanisms that regulate ApoB and B-lp production, secretion, transport, and degradation remain to be fully defined. In humans, elevated levels of vascular B-lps play a causative role in cardiovascular disease. Previously, we have detailed that human B-lp biology is remarkably conserved in the zebrafish using an in vivo chemiluminescent reporter of ApoB (LipoGlo) that does not disrupt ApoB function. Thus, the LipoGlo model is an ideal system for identifying novel mechanisms of ApoB modulation and, due to the ability of zebrafish to generate many progeny, is particularly amenable to large-scale phenotypic drug screening. Here, we report a screen of roughly 3000 compounds that identified 49 unique ApoB-lowering hits. Nineteen hits passed orthogonal screening criteria. A licorice root component, enoxolone, significantly lowered B-lps only in animals that express a functional allele of the nuclear hormone receptor Hepatocyte Nuclear Factor 4α (HNF4α). Consistent with this result, inhibitors of HNF4α also reduce B-lp levels. These data demonstrate that mechanism(s) of action can be rapidly determined from a whole animal zebrafish phenotypic screen. Given the well documented role of HNF4α in human B-lp biology, these data validate the LipoGlo screening platform for identifying small molecule modulators of B-lps that play a critical role in a leading cause of worldwide mortality.
Collapse
Affiliation(s)
- Daniel J. Kelpsch
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Liyun Zhang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, United States
| | - James H. Thierer
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, United States
| | - Kobe Koren
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Urmi Kumar
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Yuki Lin
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Monica R. Hensley
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Mira Sohn
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Jun O. Liu
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, United States
| | - Thomas Lectka
- Department of Chemistry, Johns Hopkins University, Baltimore, United States
| | - Jeff S. Mumm
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, United States
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University, Baltimore, United States
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, United States
| | - Steven A. Farber
- Department of Biology, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
2
|
Wu YJ, Huang CH, Hsieh TJ, Tseng WL, Lu CY. Identification of significant protein markers by mass spectrometry after co-treatment of cells with different drugs: An in vitro survey platform. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 1:e8582. [PMID: 31498944 DOI: 10.1002/rcm.8582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Understanding drug-drug interactions and predicting the side effects induced by polypharmacy are difficult because there are few suitable platforms that can predict drug-drug interactions and possible side effects. Hence, developing a platform to identify significant protein markers of drug-drug interactions and their associated side effects is necessary to avoid adverse effects. METHODS Human liver cells were treated with ethosuximide in combination with cimetidine, ketotifen, metformin, metronidazole, or phenytoin. After sample preparation and extraction, mitochondrial proteins from liver cells were isolated and digested with trypsin. Then, peptide solutions were detected using a nano ultra-performance liquid chromatographic system combined with tandem mass spectrometry. The Ingenuity Pathway Analysis tool was used to simulate drug-drug interactions and identify protein markers associated with drug-induced adverse effects. RESULTS Several protein markers were identified by the proposed method after liver cells were co-treated with ethosuximide and other drugs. Several of these protein markers have previously been reported in the literature, indicating that the proposed platform is workable. CONCLUSIONS Using the proposed in vitro platform, significant protein markers of drug-drug interactions could be identified by mass spectrometry. This workflow can then help predict indicators of drug-drug interactions and associated adverse effects for increased safety in clinical prescriptions.
Collapse
Affiliation(s)
- Ying-Jung Wu
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Ching-Hui Huang
- Division of Cardiology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, 50006, Taiwan
| | - Tusty-Jiuan Hsieh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry, College of Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Chi-Yu Lu
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| |
Collapse
|
3
|
A single biochemical activity underlies the pleiotropy of the aging-related protein CLK-1. Sci Rep 2017; 7:859. [PMID: 28404998 PMCID: PMC5429816 DOI: 10.1038/s41598-017-00754-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/09/2017] [Indexed: 11/23/2022] Open
Abstract
The Caenorhabditis elegans clk-1 gene and the orthologous mouse gene Mclk1 encode a mitochondrial hydroxylase that is necessary for the biosynthesis of ubiquinone (UQ). Mutations in these genes produce broadly pleiotropic phenotypes in both species, including a lengthening of animal lifespan. A number of features of the C. elegans clk-1 mutants, including a maternal effect, particularly extensive pleiotropy, as well as unexplained differences between alleles have suggested that CLK-1/MCLK1 might have additional functions besides that in UQ biosynthesis. In addition, a recent study suggested that a cryptic nuclear localization signal could lead to nuclear localization in cultured mammalian cell lines. Here, by using immunohistochemical techniques in worms and purification techniques in mammalian cells, we failed to detect any nuclear enrichment of the MCLK1 or CLK-1 proteins and any biological activity of a C. elegans CLK-1 protein devoid of a mitochondrial localization sequence. In addition, and most importantly, by pharmacologically restoring UQ biosynthesis in clk-1 null mutants we show that loss of UQ biosynthesis is responsible for all phenotypes resulting from loss of CLK-1, including behavioral phenotypes, altered expression of mitochondrial quality control genes, and lifespan.
Collapse
|
4
|
Liu JL, Hekimi S. The impact of mitochondrial oxidative stress on bile acid-like molecules in C. elegans provides a new perspective on human metabolic diseases. WORM 2013; 2:e21457. [PMID: 24058856 PMCID: PMC3670457 DOI: 10.4161/worm.21457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 07/11/2012] [Indexed: 12/19/2022]
Abstract
C. elegans is a model used to study cholesterol metabolism and the functions of its metabolites. Several studies have reported that, in worms, cholesterol is not a structural component of the membrane as it is in vertebrates. However, as in other animals, it is used for the synthesis of steroid hormones that regulate physiological processes such as dauer formation, molting and defecation. After cholesterol is taken up by the gut, mechanisms of transport of cholesterol between tissues in C. elegans involve lipoproteins, as in mammals. A recent study shows that both cholesterol uptake and lipoprotein metabolism in C. elegans are regulated by molecules whose activities, biosynthesis, and secretion strongly resemble those of mammalian bile acids, which are metabolites of cholesterol that act on metabolism in a variety of ways. Importantly, it was found that oxidative stress upsets the regulation of the synthesis of these molecules. Given the known function of mammalian bile acids as metabolic regulators of lipid and glucose homeostasis, future investigations of the biology of C. elegans bile acid-like molecules could provide information on the etiology of human metabolic disorders that are characterized by elevated oxidative stress.
Collapse
Affiliation(s)
- Ju-Ling Liu
- Department of Biology; McGill University; Montreal, Québec, Canada
| | | |
Collapse
|
5
|
Liu JL, Desjardins D, Branicky R, Agellon LB, Hekimi S. Mitochondrial oxidative stress alters a pathway in Caenorhabditis elegans strongly resembling that of bile acid biosynthesis and secretion in vertebrates. PLoS Genet 2012; 8:e1002553. [PMID: 22438816 PMCID: PMC3305355 DOI: 10.1371/journal.pgen.1002553] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/09/2012] [Indexed: 11/22/2022] Open
Abstract
Mammalian bile acids (BAs) are oxidized metabolites of cholesterol whose amphiphilic properties serve in lipid and cholesterol uptake. BAs also act as hormone-like substances that regulate metabolism. The Caenorhabditis elegans clk-1 mutants sustain elevated mitochondrial oxidative stress and display a slow defecation phenotype that is sensitive to the level of dietary cholesterol. We found that: 1) The defecation phenotype of clk-1 mutants is suppressed by mutations in tat-2 identified in a previous unbiased screen for suppressors of clk-1. TAT-2 is homologous to ATP8B1, a flippase required for normal BA secretion in mammals. 2) The phenotype is suppressed by cholestyramine, a resin that binds BAs. 3) The phenotype is suppressed by the knock-down of C. elegans homologues of BA–biosynthetic enzymes. 4) The phenotype is enhanced by treatment with BAs. 5) Lipid extracts from C. elegans contain an activity that mimics the effect of BAs on clk-1, and the activity is more abundant in clk-1 extracts. 6) clk-1 and clk-1;tat-2 double mutants show altered cholesterol content. 7) The clk-1 phenotype is enhanced by high dietary cholesterol and this requires TAT-2. 8) Suppression of clk-1 by tat-2 is rescued by BAs, and this requires dietary cholesterol. 9) The clk-1 phenotype, including the level of activity in lipid extracts, is suppressed by antioxidants and enhanced by depletion of mitochondrial superoxide dismutases. These observations suggest that C. elegans synthesizes and secretes molecules with properties and functions resembling those of BAs. These molecules act in cholesterol uptake, and their level of synthesis is up-regulated by mitochondrial oxidative stress. Future investigations should reveal whether these molecules are in fact BAs, which would suggest the unexplored possibility that the elevated oxidative stress that characterizes the metabolic syndrome might participate in disease processes by affecting the regulation of metabolism by BAs. Cholesterol metabolism, in particular the transport of cholesterol in the blood by lipoproteins, is an important determinant of human cardiovascular health. Bile acids are breakdown products of cholesterol that have detergent properties and are secreted into the gut by the liver. Bile acids carry out three distinct roles in cholesterol metabolism: 1) Their synthesis from cholesterol participates in cholesterol elimination. 2) They act as detergents in the uptake of dietary cholesterol from the gut. 3) They regulate many aspects of metabolism, including cholesterol metabolism, by molecular mechanisms similar to that of steroid hormones. We have found that cholesterol uptake and lipoprotein metabolism in the nematode Caenorhabditis elegans are regulated by molecules whose activities, biosynthesis, and secretion strongly resemble that of bile acids and which might be bile acids. Most importantly we have found that oxidative stress upsets the regulation of the synthesis of these molecules. The metabolic syndrome is a set of cardiovascular risk factors that include obesity, high blood cholesterol, hypertension, and insulin resistance. Given the function of bile acids as metabolic regulators, our findings with C. elegans suggest the unexplored possibility that the elevated oxidative stress that characterizes the metabolic syndrome may participate in mammalian disease processes by affecting the regulation of bile acid synthesis.
Collapse
Affiliation(s)
- Ju-Ling Liu
- Department of Biology, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|
6
|
Branicky R, Desjardins D, Liu JL, Hekimi S. Lipid transport and signaling in Caenorhabditis elegans. Dev Dyn 2010; 239:1365-77. [PMID: 20151418 DOI: 10.1002/dvdy.22234] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The strengths of the Caenorhabditis elegans model have been recently applied to the study of the pathways of lipid storage, transport, and signaling. As the lipid storage field has recently been reviewed, in this minireview we (1) discuss some recent studies revealing important physiological roles for lipases in mobilizing lipid reserves, (2) describe various pathways of lipid transport, with a particular focus on the roles of lipoproteins, (3) debate the utility of using C. elegans as a model for human dyslipidemias that impinge on atherosclerosis, and (4) describe several systems where lipids affect signaling, highlighting the particular properties of lipids as information-carrying molecules. We conclude that the study of lipid biology in C. elegans exemplifies the advantages afforded by a whole-animal model system where interactions between tissues and organs, and functions such as nutrient absorption, distribution, and storage, as well as reproduction can all be studied simultaneously.
Collapse
Affiliation(s)
- Robyn Branicky
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
7
|
Hughes BG, Hekimi S. Mclk1+/- mice are not resistant to the development of atherosclerosis. Lipids Health Dis 2009; 8:16. [PMID: 19416523 PMCID: PMC2683836 DOI: 10.1186/1476-511x-8-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 05/05/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mice with a single copy of Mclk1 (a.k.a. Coq7), a gene that encodes a mitochondrial enzyme required for the biosynthesis of ubiquinone and other functions, live longer than wild-type mice. The prolonged survival implies a decreased mortality from age-dependent lethal pathologies. Atherosclerosis is one of the main age-dependent pathologies in humans and can be modeled in mice that lack Apolipoprotein E (ApoE-/-) or mice that lack the Low Density Lipoprotein Receptor (LDLr-/-) in addition to being fed an atherosclerosis-inducing diet. We sought to determine if Mclk1 heterozygosity protects against atherosclerosis and dyslipidemia in these models. RESULTS We found that Mclk1 heterozygosity did not protect against dyslipidemia, oxidative stress, or atherosclerosis in young (6 or 10 months) or older (18 months) mice. Furthermore, the absence of ApoE suppressed the lifespan-promoting effects of Mclk1 heterozygosity. CONCLUSION These findings indicate that although Mclk1 heterozygosity can extend lifespan of mice, it does not necessarily protect against atherosclerosis. Moreover, in the presence of hyperlipidemia and chronic inflammation, Mclk1 heterozygosity is incapable of extending lifespan.
Collapse
Affiliation(s)
- Bryan G Hughes
- Department of Biology, McGill University, Montreal H3A 1B1, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal H3A 1B1, Canada
| |
Collapse
|
8
|
Stilwell GE, Westlund B. Invertebrate and fungal model organisms: emerging platforms for drug discovery. Expert Opin Drug Discov 2008; 3:1383-95. [PMID: 23506104 DOI: 10.1517/17460440802528139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Early-stage translational research programs have increasingly exploited yeast, worms and flies to model human disease. These genetically tractable organisms represent flexible platforms for small molecule and drug target discovery. This review highlights recent examples of how model organisms are integrated into chemical genomic approaches to drug discovery with an emphasis on fungal yeast, nematode Caenorhabditis elegans and fruit fly Drosophila melanogaster. The roles of these organisms are expanding as novel models of human disease are developed and novel high-throughput screening technologies are created and adapted for drug discovery.
Collapse
Affiliation(s)
- Geoff E Stilwell
- Cambria Pharmaceuticals, 8A Henshaw St, MA 01801, Woburn, USA +1 781 938 1333 ; +1 781 938 9520 ;
| | | |
Collapse
|