1
|
Nguyen M, Gautier T, Reocreux G, Pallot G, Maquart G, Bahr PA, Tavernier A, Grober J, Masson D, Bouhemad B, Guinot PG. Increased Phospholipid Transfer Protein Activity Is Associated With Markers of Enhanced Lipopolysaccharide Clearance in Human During Cardiopulmonary Bypass. Front Cardiovasc Med 2021; 8:756269. [PMID: 34712716 PMCID: PMC8545915 DOI: 10.3389/fcvm.2021.756269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/15/2021] [Indexed: 12/29/2022] Open
Abstract
Introduction: Lipopolysaccharide (LPS) is a component of gram-negative bacteria, known for its ability to trigger inflammation. The main pathway of LPS clearance is the reverse lipopolysaccharide transport (RLT), with phospholipid transfer protein (PLTP) and lipoproteins playing central roles in this process in experimental animal models. To date, the relevance of this pathway has never been studied in humans. Cardiac surgery with cardiopulmonary bypass is known to favor LPS digestive translocation. Our objective was to determine whether pre-operative PLTP activity and triglyceride or cholesterol-rich lipoprotein concentrations were associated to LPS concentrations in patients undergoing cardiac surgery with cardiopulmonary bypass. Methods: A post-hoc analysis was conducted on plasma samples obtained from patients recruited in a randomized controlled trial.Total cholesterol, high density lipoprotein cholesterol (HDLc), low density lipoprotein cholesterol (LDLc), triglyceride and PLTP activity were measured before surgery. LPS concentration was measured by mass spectrometry before surgery, at the end of cardiopulmonary bypass and 24 h after admission to the intensive care unit. Results: High PLTP activity was associated with lower LPS concentration but not with inflammation nor post-operative complications. HDLc, LDLc and total cholesterol were not associated with LPS concentration but were lower in patients developing post-operative adverse events. HDLc was negatively associated with inflammation biomarkers (CRP, PCT). Triglyceride concentrations were positively correlated with LPS concentration, PCT and were higher in patients with post-operative complications. Conclusion: Our study supports the role of PLTP in LPS elimination and the relevance of RLT in human. PLTP activity, and not cholesterol rich lipoproteins pool size seemed to be the limiting factor for RLT. PLTP activity was not directly related to post-operative inflammation and adverse events, suggesting that LPS clearance is not the main driver of inflammation in our patients. However, HDLc was associated with lower inflammation and was associated with favorable outcomes, suggesting that HDL beneficial anti-inflammatory effects could be, at least in part independent of LPS clearance.
Collapse
Affiliation(s)
- Maxime Nguyen
- Department of Anesthesiology and Intensive Care, Dijon University Hospital, Dijon, France.,University of Burgundy and Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Thomas Gautier
- University of Burgundy and Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Guillaume Reocreux
- Department of Anesthesiology and Intensive Care, Dijon University Hospital, Dijon, France
| | | | | | - Pierre-Alain Bahr
- Department of Anesthesiology and Intensive Care, Dijon University Hospital, Dijon, France.,INSERM, LNC UMR1231, Dijon, France
| | | | - Jacques Grober
- University of Burgundy and Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France.,AgroSup, LNC UMR1231, Dijon, France
| | - David Masson
- University of Burgundy and Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Belaid Bouhemad
- Department of Anesthesiology and Intensive Care, Dijon University Hospital, Dijon, France.,University of Burgundy and Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Pierre-Grégoire Guinot
- Department of Anesthesiology and Intensive Care, Dijon University Hospital, Dijon, France.,University of Burgundy and Franche-Comté, LNC UMR1231, Dijon, France.,INSERM, LNC UMR1231, Dijon, France.,FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| |
Collapse
|
2
|
Roedig H, Nastase MV, Wygrecka M, Schaefer L. Breaking down chronic inflammatory diseases: the role of biglycan in promoting a switch between inflammation and autophagy. FEBS J 2019; 286:2965-2979. [PMID: 30776184 DOI: 10.1111/febs.14791] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/31/2019] [Accepted: 02/15/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Heiko Roedig
- Pharmazentrum Frankfurt/ZAFES Institut für Allgemeine Pharmakologie und Toxikologie Klinikum der Goethe‐Universität Frankfurt am Main Germany
| | - Madalina Viviana Nastase
- Pharmazentrum Frankfurt/ZAFES Institut für Allgemeine Pharmakologie und Toxikologie Klinikum der Goethe‐Universität Frankfurt am Main Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry Faculty of Medicine Universities of Giessen and Marburg Lung Center Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES Institut für Allgemeine Pharmakologie und Toxikologie Klinikum der Goethe‐Universität Frankfurt am Main Germany
| |
Collapse
|
3
|
Wang Q, Su X, Jiang X, Dong X, Fan Y, Zhang J, Yu C, Gao W, Shi S, Jiang J, Jiang W, Wei T. iTRAQ technology-based identification of human peripheral serum proteins associated with depression. Neuroscience 2016; 330:291-325. [PMID: 27268281 DOI: 10.1016/j.neuroscience.2016.05.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 12/26/2022]
Abstract
Clinical depression is one of the most common and debilitating psychiatric disorders and contributes to increased risks of disability and suicide. Differentially expressed serum proteins may serve as biomarkers for diagnosing depression. In this study, samples from depressed patients are aggregated into a pool (22×100μL serum was used) and samples from healthy volunteers are aggregated into the other pool (20×100μL serum was used). Isobaric tag for relative and absolute quantitation (iTRAQ) technology and tandem mass spectrometry were employed to screen for differentially expressed serum protein in two separate pools. We identified 472 proteins in the serum samples, and 154 of these presented differences in abundance between the depression and control groups. Ingenuity pathway analysis (IPA) was employed to identify the highest scoring proteins in signaling pathway networks. Finally, four differentially expressed proteins were validated by enzyme-linked immuno sorbent assay (ELISA). Proteomic studies revealed that levels of c-reaction protein (CRP), inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), serum amyloid A1 (SAA1) and angiopoietin-like 3 (ANGPTL3) were substantially increased in depressed patients compared with the healthy control group. Therefore, these differentially expressed proteins may represent potential markers for the clinical diagnosis of depression.
Collapse
Affiliation(s)
- Q Wang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - X Su
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - X Jiang
- Department of Neurology, The Third People's Hospital of Daqing, Daqing, Heilongjiang 163000, PR China
| | - X Dong
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - Y Fan
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - J Zhang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - C Yu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - W Gao
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, PR China
| | - S Shi
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - J Jiang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - W Jiang
- Department of Neurology, The Third People's Hospital of Daqing, Daqing, Heilongjiang 163000, PR China
| | - T Wei
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China.
| |
Collapse
|
4
|
Klingenberg R, Gerdes N, Badeau RM, Gisterå A, Strodthoff D, Ketelhuth DFJ, Lundberg AM, Rudling M, Nilsson SK, Olivecrona G, Zoller S, Lohmann C, Lüscher TF, Jauhiainen M, Sparwasser T, Hansson GK. Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. J Clin Invest 2013; 123:1323-34. [PMID: 23426179 DOI: 10.1172/jci63891] [Citation(s) in RCA: 297] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/20/2012] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease promoted by hyperlipidemia. Several studies support FOXP3-positive regulatory T cells (Tregs) as inhibitors of atherosclerosis; however, the mechanism underlying this protection remains elusive. To define the role of FOXP3-expressing Tregs in atherosclerosis, we used the DEREG mouse, which expresses the diphtheria toxin (DT) receptor under control of the Treg-specific Foxp3 promoter, allowing for specific ablation of FOXP3+ Tregs. Lethally irradiated, atherosclerosis-prone, low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice received DEREG bone marrow and were injected with DT to eliminate FOXP3(+) Tregs. Depletion of Tregs caused a 2.1-fold increase in atherosclerosis without a concomitant increase in vascular inflammation. These mice also exhibited a 1.7-fold increase in plasma cholesterol and an atherogenic lipoprotein profile with increased levels of VLDL. Clearance of VLDL and chylomicron remnants was hampered, leading to accumulation of cholesterol-rich particles in the circulation. Functional and protein analyses complemented by gene expression array identified reduced protein expression of sortilin-1 in liver and increased plasma enzyme activity of lipoprotein lipase, hepatic lipase, and phospholipid transfer protein as mediators of the altered lipid phenotype. These results demonstrate that FOXP3(+) Tregs inhibit atherosclerosis by modulating lipoprotein metabolism.
Collapse
Affiliation(s)
- Roland Klingenberg
- Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Albers JJ, Vuletic S, Cheung MC. Role of plasma phospholipid transfer protein in lipid and lipoprotein metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:345-57. [PMID: 21736953 DOI: 10.1016/j.bbalip.2011.06.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/01/2011] [Accepted: 06/14/2011] [Indexed: 12/13/2022]
Abstract
The understanding of the physiological and pathophysiological role of PLTP has greatly increased since the discovery of PLTP more than a quarter of century ago. A comprehensive review of PLTP is presented on the following topics: PLTP gene organization and structure; PLTP transfer properties; different forms of PLTP; characteristics of plasma PLTP complexes; relationship of plasma PLTP activity, mass and specific activity with lipoprotein and metabolic factors; role of PLTP in lipoprotein metabolism; PLTP and reverse cholesterol transport; insights from studies of PLTP variants; insights of PLTP from animal studies; PLTP and atherosclerosis; PLTP and signal transduction; PLTP in the brain; and PLTP in human disease. PLTP's central role in lipoprotein metabolism and lipid transport in the vascular compartment has been firmly established. However, more studies are needed to further delineate PLTP's functions in specific tissues, such as the lung, brain and adipose tissue. Furthermore, the specific role that PLTP plays in human diseases, such as atherosclerosis, cancer, or neurodegenerative disease, remains to be clarified. Exciting directions for future research include evaluation of PLTP's physiological relevance in intracellular lipid metabolism and signal transduction, which undoubtedly will advance our knowledge of PLTP functions in health and disease. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- John J Albers
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, 401 Queen Anne Ave N, Seattle, WA 98109, USA.
| | | | | |
Collapse
|
6
|
Zhang L, Dai Y, Wang L, Peng W, Zhang Y, Ou Y, Lu J. CpG array analysis of histone H3 lysine 4 trimethylation in peripheral blood mononuclear cells of uremia patients. DNA Cell Biol 2011; 30:179-86. [PMID: 21155670 DOI: 10.1089/dna.2010.1076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Studies of the epigenome have attracted little interest in nephrology, especially in uremia. Several lines of evidence have suggested that there are links between genomic DNA hypomethylation and cardiovascular complications in uremia patients. However, to date, our knowledge about the alterations in histone methylation in uremia is unknown. H3K4me3 variations were analyzed in peripheral blood mononuclear cells from 20 uremia patients and 20 healthy subjects, using chromatin immunoprecipitation microarray (ChIP-chip) approach. ChIP-real-time polymerase chain reaction (PCR) was used to validate the microarray results. mRNA expression and DNA methylation status can be further analyzed by quantitative (q) reverse transcription (RT)-PCR and methyl-DNA immunoprecipitation (MeDIP)-qPCR, respectively. Seven hundred twenty-six increased and 218 decreased H3K4me3 genes displaying significant H3K4me3 differences were found in uremia patients compared with healthy subjects. The results of ChIP-real-time PCR coincided well with microarray results. Expression analysis by qRT-PCR revealed positive correlations between mRNA and H3K4me3 levels. Aberrant DNA methylation can also be found on selected positive genes (CNOT1 PLTP EDG1 TCF3 KIR3DL2). In addition, we even found that there is an inverse relationship between H3K4me3 and promoter DNA methylation in uremia patients. Our studies indicate that there are significant alterations of H3K4me3 in uremia patients; these significant H3K4me3 candidates may help to explain the immunological disturbance and high cardiovascular complications in uremia patients. Such novel findings show the significance of H3K4me3 as a potential biomarker or promising target for epigenetic-based uremia therapies.
Collapse
Affiliation(s)
- Li Zhang
- Department of Nephrology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Luo Y, Shelly L, Sand T, Chang G, Jiang XC. Identification and characterization of dual inhibitors for phospholipid transfer protein and microsomal triglyceride transfer protein. J Pharmacol Exp Ther 2010; 335:653-8. [PMID: 20805304 PMCID: PMC2993556 DOI: 10.1124/jpet.110.171942] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 08/26/2010] [Indexed: 11/22/2022] Open
Abstract
Phospholipid transfer protein (PLTP) plays an important role in atherogenesis and lipoprotein metabolism. PLTP exerts its functions intracellularly and extracellularly. Both PLTP and microsomal triglyceride transfer protein (MTP) have been shown to regulate the secretion of apolipoprotein B (apoB) in hepatocytes. We have previously reported the characterization of inhibitors that selectively inhibit PLTP activity and reduce apoB secretion in hepatocytes. In the present study, we identified more compounds that inhibit both PLTP and MTP activity to various extents. These dual inhibitors are structurally different from the PLTP-selective inhibitors. In human hepatoma cell lines, dual inhibitors seem to be more effective in reducing apoB secretion than selective PLTP or MTP inhibitors. Furthermore, the dual inhibitors markedly reduced triglyceride secretion from hepatocytes. In the absence of PLTP, the dual inhibitors can further reduce apoB secretion, whereas selective PLTP inhibitors had no effect. We conclude that MTP and PLTP may work coordinately in the process of hepatic apoB assembly and secretion. To avoid liver toxicity mediated by MTP inhibition, selective PLTP inhibitors should be pursued.
Collapse
Affiliation(s)
- Yi Luo
- Department of Cardiovascular Metabolic and Endocrine Disease, Pfizer Global Research Division, Pfizer Inc, Groton,Connecticut 06340, USA.
| | | | | | | | | |
Collapse
|
8
|
Liu HR, Wu G, Zhou B, Chen BS. Low cholesteryl ester transfer protein and phospholipid transfer protein activities are the factors making tree shrew and beijing duck resistant to atherosclerosis. Lipids Health Dis 2010; 9:114. [PMID: 20937151 PMCID: PMC2964723 DOI: 10.1186/1476-511x-9-114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 10/12/2010] [Indexed: 11/20/2022] Open
Abstract
Background Tree shrew and beijing duck are regarded as animal models resistant to atherosclerosis (AS). This study was carried out to discover the potential mechanism. Methods Blood samples were collected from healthy men and male animals. Plasma lipid profile and activities of cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP) were measured, compared and analyzed in human, tree shrew, and Beijing duck. Results The results showed that there were species differences on plasma lipid profile and activities of CETP and PLTP in the three species. Compared with human, tree shrew and beijing duck had higher high density lipoprotein cholesterol (HDL-C)/total cholesterol (TC) and HDL-C/low density lipoprotein cholesterol (LDL-C) ratios, but lower CETP and PLTP activities. In the three species, CETP and PLTP activities were negatively related with the ratio of HDL-C/LDL-C. Conclusions The present study suggested that low plasma CETP and PLTP activities may lead to a high HDL-C/LDL-C ratio and a high resistance to AS finally in tree shrew and beijing duck. Moreover, low PLTP activity may also make the animals resistant to AS by the relative high vitamin E content of apoB-containing lipoproteins and high anti-inflammatory and antioxidative properties of HDL particles. A detailed study in the future is recommended.
Collapse
Affiliation(s)
- Hui-rong Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | | | | | | |
Collapse
|
9
|
Luo Y, Shelly L, Sand T, Reidich B, Chang G, Macdougall M, Peakman MC, Jiang XC. Pharmacologic inhibition of phospholipid transfer protein activity reduces apolipoprotein-B secretion from hepatocytes. J Pharmacol Exp Ther 2010; 332:1100-6. [PMID: 19933370 PMCID: PMC2835446 DOI: 10.1124/jpet.109.161232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 11/13/2009] [Indexed: 11/22/2022] Open
Abstract
Phospholipid transfer protein (PLTP) plays an important role in atherogenesis, and its function goes well beyond that of transferring phospholipids between lipoprotein particles. Previous studies showed that genetic deficiency of PLTP in mice causes a substantially impaired hepatic secretion of apolipoprotein-B (apoB), the major protein of atherogenic lipoproteins. To understand whether the impaired apoB secretion is a direct result from lack of PLTP activity, in this study, we further investigated the function of PLTP in apoB secretion by using PLTP inhibitors. We identified a series of compounds containing a 3-benzazepine core structure that inhibit PLTP activity. Compound A, the most potent inhibitor, was characterized further and had little cross-reactivity with microsomal triglyceride transfer protein. Compound A reduced apoB secretion in human hepatoma cell lines and mouse primary hepatocytes. Furthermore, we confirmed that the reduction of apoB secretion mediated by compound A is PLTP-dependent, because the PLTP inhibitor had no effect on apoB secretion from PLTP-deficient hepatocytes. These studies provided evidence that PLTP activity regulates apoB secretion and pharmacologic inhibition of PLTP may be a new therapy for dyslipidemia by reducing apoB secretion.
Collapse
Affiliation(s)
- Yi Luo
- Department of Cardiovascular and Metabolic Diseases, Pfizer Global Research Division, Pfizer Inc., Groton, CT 06340, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Role of Esrrg in the fibrate-mediated regulation of lipid metabolism genes in human ApoA-I transgenic mice. THE PHARMACOGENOMICS JOURNAL 2009; 10:165-79. [PMID: 19949424 PMCID: PMC2875298 DOI: 10.1038/tpj.2009.51] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have used a new ApoA-I transgenic mouse model to identify by global gene expression profiling, candidate genes that affect lipid and lipoprotein metabolism in response to fenofibrate treatment. Multilevel bioinformatical analysis and stringent selection criteria (2-fold change, 0% false discovery rate) identified 267 significantly changed genes involved in several molecular pathways. The fenofibrate-treated group did not have significantly altered levels of hepatic human APOA-I mRNA and plasma ApoA-I compared with the control group. However, the treatment increased cholesterol levels to 1.95-fold mainly due to the increase in high-density lipoprotein (HDL) cholesterol. The observed changes in HDL are associated with the upregulation of genes involved in phospholipid biosynthesis and lipid hydrolysis, as well as phospholipid transfer protein. Significant upregulation was observed in genes involved in fatty acid transport and β-oxidation, but not in those of fatty acid and cholesterol biosynthesis, Krebs cycle and gluconeogenesis. Fenofibrate changed significantly the expression of seven transcription factors. The estrogen receptor-related gamma gene was upregulated 2.36-fold and had a significant positive correlation with genes of lipid and lipoprotein metabolism and mitochondrial functions, indicating an important role of this orphan receptor in mediating the fenofibrate-induced activation of a specific subset of its target genes.
Collapse
|
11
|
Quintão ECR, Cazita PM. Lipid transfer proteins: past, present and perspectives. Atherosclerosis 2009; 209:1-9. [PMID: 19733354 DOI: 10.1016/j.atherosclerosis.2009.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/02/2009] [Accepted: 08/03/2009] [Indexed: 11/15/2022]
Abstract
Lipid transfer proteins (PLTP and CETP) play roles in atherogenesis by modifying the arterial intima cholesterol content via altering the concentration and function of plasma lipoproteins and influencing inflammation. In this regard, endotoxins impair the reverse cholesterol transport (RCT) system in an endotoxemic rodent model, supporting a pro-inflammatory role of HDL reported in chronic diseases where atherosclerosis is premature. High PLTP activity related to atherosclerosis in some clinical studies, but the mechanisms involved could not be ascertained. In experimental animals the relation of elevated plasma PLTP concentration with atherosclerosis was confounded by HDL-C lowering and by unfavorable effects on several inflammatory markers. Coincidently, PLTP also increases in human experimental endotoxemia and in clinical sepsis. Human population investigations seem to favor low CETP as atheroprotective; this is supported by animal models where overexpression of huCETP is atherogenic, most likely due to increased concentration of apoB-lipoprotein-cholesterol. Thus, in spite of CETP facilitating the HDL-C-mediated RCT, the reduction of apoB-LP-cholesterol concentration is the probable antiatherogenic mechanism of CETP inhibition. On the other hand, experimental huCETP expression protects mice from the harmful effects of a bacterial polysaccharide infusion and the mortality rate of severely ill patients correlates with reduction of the plasma CETP concentration. Thus, the roles played by PLTP and CETP on atherosclerosis and acute inflammation seem contradictory. Therefore, the biological roles of PLTP and CETP must be carefully monitored when investigating drugs that inhibit their activity in the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Eder C R Quintão
- Lipids Lab, LIM 10, Faculty of Medical Sciences, University of São Paulo, SP, Brazil.
| | | |
Collapse
|
12
|
Reverse modulation of the HDL Anionic Peptide Factor and phospholipid transfer protein activity in coronary artery disease and type 2 diabetes mellitus. Clin Biochem 2009; 42:845-51. [DOI: 10.1016/j.clinbiochem.2008.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 12/10/2008] [Accepted: 12/11/2008] [Indexed: 11/22/2022]
|
13
|
Samyn H, Moerland M, van Gent T, van Haperen R, van Tol A, de Crom R. Reduction of HDL levels lowers plasma PLTP and affects its distribution among lipoproteins in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:790-6. [PMID: 19422933 DOI: 10.1016/j.bbalip.2009.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 04/17/2009] [Accepted: 04/27/2009] [Indexed: 12/12/2022]
Abstract
Phospholipid transfer protein (PLTP) is associated with HDL particles in plasma, where it transfers phospholipids between lipoproteins and remodels HDL particles. Tangier disease patients, with a mutated ABCA1 transporter, have extremely low plasma HDL concentration and reduced PLTP activity levels, a phenotype that is also observed in mice lacking ABCA1. We investigated whether low HDL levels and low PLTP activity are mechanistically related. Firstly, we studied PLTP expression and distribution among lipoproteins in mice lacking ABCA1 (ABCA1(-/-)). Parallel to the strong reduction in PLTP activity in plasma of ABCA1(-/-) mice, decreased PLTP protein levels were observed. Neither PLTP synthesis in liver or macrophages nor the ability of the macrophages to secrete PLTP were impaired in ABCA1(-/-) mice. However, the PLTP activity level in the medium of cultured macrophages was determined by HDL levels in the medium. PLTP was associated with HDL particles in wild type mice, whereas in ABCA1(-/-) mice, PLTP was associated with VLDL and LDL particles. Secondly, we treated different mouse models with varying plasma HDL and PLTP levels (wild type, ABCA1(-/-), apoE(-/-) and PLTPtg mice, overexpressing human PLTP) with a synthetic LXR ligand, and investigated the relationship between LXR-mediated PLTP induction and HDL levels in plasma. Plasma PLTP activity in wild type mice was induced 5.6-fold after LXR activation, whereas in ABCA1(-/-), apoE(-/-) and PLTPtg mice, all having reduced HDL levels, induction of PLTP activity was 2.4- , 3.2- and 2.0-fold, respectively. The less pronounced PLTP induction in these mice compared to wild type mice was not caused by a decreased PLTP gene expression in the liver or macrophages. Our findings indicate that the extent of LXR-mediated PLTP induction depends on plasma HDL levels. In conclusion, we demonstrate that ABCA1 deficiency in mice affects plasma PLTP level and distribution through an indirect effect on HDL metabolism. In addition, we show that the extent of LXR-mediated PLTP induction is HDL-dependent. These findings indicate that plasma HDL level is an important regulator of plasma PLTP and might play a role in the stabilization of PLTP in plasma.
Collapse
Affiliation(s)
- Hannelore Samyn
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|