1
|
Hinge S, Dhole S, Banpurkar A, Kulkarni G. Conformational changes in 6 MeV electron beam irradiated aqueous bovine serum albumin. Biochim Biophys Acta Gen Subj 2025; 1869:130744. [PMID: 39694299 DOI: 10.1016/j.bbagen.2024.130744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Understanding the folding and unfolding mechanism of the protein is not only crucial in applications like biomedical, pharmaceutical, tissue engineering but also to the food industry. In the present study, an electron beam with 6 MeV energy derived from the Microtron accelerator was utilized to irradiate the aqueous solution of bovine serum albumin (BSA) at fluences of 5 × 1014 and 10 × 1014 e-/cm2. The control and irradiated BSA solutions were analyzed using UV-visible and FTIR spectroscopy. UV-visible spectroscopy showed a hyperchromic red shift in 235 nm (π → π*) and a blue shift in 268 nm (n → π*) bands with increasing fluence. Changes in aromatic acid residues of the proteins tertiary structure were observed from the 2nd derivative of absorbance spectra. FTIR spectra revealed a decrease in peak area corresponding to β-turns (21.80 to 15.50 %), and random coil (41.30 to 28.80 %) and increase in peak area was observed for β-sheet (29.25 to 35.40 %). These findings reveal the conformal changes in the electron irradiated BSA. Further, a decrease in the interfacial tension at the air/water interface suggests increase in hydrophobicity of the aqueous solution with fluence.
Collapse
Affiliation(s)
- Sarika Hinge
- Department of Physics, Savitribai Phule Pune University, Pune 411007, India.
| | - Sanjay Dhole
- Department of Physics, Savitribai Phule Pune University, Pune 411007, India
| | - Arun Banpurkar
- Department of Physics, Savitribai Phule Pune University, Pune 411007, India
| | - Gauri Kulkarni
- Department of Physics, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
2
|
Khanra S, Singh S, Singh TG. Mechanistic exploration of ubiquitination-mediated pathways in cerebral ischemic injury. Mol Biol Rep 2024; 52:22. [PMID: 39607439 DOI: 10.1007/s11033-024-10123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
The ubiquitin-proteasome system (UPS) plays a pivotal role in regulating protein homeostasis and cellular processes, including protein degradation, trafficking, DNA repair, and cell signaling. During cerebral ischemia, ischemic conditions profoundly disrupt UPS activity, leading to proteasomal dysfunction and the accumulation of abnormal proteins. This imbalance contributes to neuronal injury and cell death observed in ischemic stroke. The UPS is intricately linked to various signaling pathways crucial for neuronal survival, inflammation, and cellular stress response, such as NF-κB, TRIM, TRIP, JAK-STAT, PI3K/Akt, and ERK1/2. Alterations in the ubiquitination process can significantly impact the activation and regulation of these pathways, exacerbating ischemic brain injury. Therapeutic approaches targeting the UPS in cerebral ischemia aim to rebalance protein levels, reduce proteotoxic stress, and mitigate neuronal injury. Strategies include proteasome inhibition, targeting specific ubiquitin ligases and deubiquitinating enzymes, and modulating ubiquitination-mediated regulation of key signaling pathways implicated in ischemia-induced pathophysiology. Therefore, the present review discusses the molecular mechanisms underlying UPS dysfunction in ischemic stroke is crucial for developing effective therapeutic interventions. Modulating ubiquitination-mediated pathways through therapeutic interventions targeting specific UPS components holds significant promise for mitigating ischemic brain injury and promoting neuroprotection and functional recovery in patients with cerebral ischemia.
Collapse
Affiliation(s)
- Supriya Khanra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
3
|
Wang H, Xie Z. Cullin-Conciliated Regulation of Plant Immune Responses: Implications for Sustainable Crop Protection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2997. [PMID: 39519916 PMCID: PMC11548191 DOI: 10.3390/plants13212997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Cullins are crucial components of the ubiquitin-proteasome system, playing pivotal roles in the regulation of protein metabolism. This review provides insight into the wide-ranging functions of cullins, particularly focusing on their impact on plant growth, development, and environmental stress responses. By modulating cullin-mediated protein mechanisms, researchers can fine-tune hormone-signaling networks to improve various agronomic traits, including plant architecture, flowering time, fruit development, and nutrient uptake. Furthermore, the targeted manipulation of cullins that are involved in hormone-signaling pathways, e.g., cytokinin, auxin, gibberellin, abscisic acids, and ethylene, can boost crop growth and development while increasing yield and enhancing stress tolerance. Furthermore, cullins also play important roles in plant defense mechanisms through regulating the defense-associated protein metabolism, thus boosting resistance to pathogens and pests. Additionally, this review highlights the potential of integrating cullin-based strategies with advanced biological tools, such as CRISPR/Cas9-mediated genome editing, genetic engineering, marker-associated selections, gene overexpression, and gene knockout, to achieve precise modifications for crop improvement and sustainable agriculture, with the promise of creating resilient, high-yielding, and environmentally friendly crop varieties.
Collapse
Affiliation(s)
- Hongtao Wang
- Laboratory of Biological Germplasm Resources Evaluation and Application in Changbai Mountain, School of Life Science, Tonghua Normal University, Yucai Road Tonghua 950, Tonghua 137000, China;
| | - Zhiming Xie
- College of Life Sciences, Baicheng Normal University, Baicheng 137000, China
| |
Collapse
|
4
|
Pollak R, Koch L, König B, Ribeiro SS, Samanta N, Huber K, Ebbinghaus S. Cell stress and phase separation stabilize the monomeric state of pseudoisocyanine chloride employed as a self-assembly crowding sensor. Commun Chem 2024; 7:230. [PMID: 39375435 PMCID: PMC11458801 DOI: 10.1038/s42004-024-01315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
Cellular stress and ageing involve an increase in crowding and aggregation of amylogenic proteins. We here investigate if crowding is the intrinsic cause of aggregation and utilise a previously established non-protein aggregation sensor, namely pseudoisocyanine chloride (PIC). PIC shows fibrillization in cells into a highly fluorescent J-aggregated state and is sensitive to crowding. Surprisingly, cell stress conditions stabilise the monomeric rather than the aggregated state of PIC both in the cytoplasm and in stress granules. Regarding the different physiochemical changes of the cytoplasm occurring upon cell stress, involving volume reduction, phase separation and solidification, the intrinsic crowding effect is not the key factor to drive associated self-assembly processes.
Collapse
Affiliation(s)
- Roland Pollak
- Lehrstuhl für Biophysikalische Chemie, Ruhr-Universität Bochum, Bochum, Germany
- Institut für Physikalische und Theoretische Chemie, TU Braunschweig, Braunschweig, Germany
- Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, Bochum, Germany
| | - Leon Koch
- Institute of Physical Chemistry, University Paderborn, Paderborn, Germany
| | - Benedikt König
- Lehrstuhl für Biophysikalische Chemie, Ruhr-Universität Bochum, Bochum, Germany
- Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, Bochum, Germany
| | - Sara S Ribeiro
- Lehrstuhl für Biophysikalische Chemie, Ruhr-Universität Bochum, Bochum, Germany
- Institut für Physikalische und Theoretische Chemie, TU Braunschweig, Braunschweig, Germany
- Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, Bochum, Germany
| | - Nirnay Samanta
- Institut für Physikalische und Theoretische Chemie, TU Braunschweig, Braunschweig, Germany
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, Saint Louis, MO, USA
| | - Klaus Huber
- Institute of Physical Chemistry, University Paderborn, Paderborn, Germany.
| | - Simon Ebbinghaus
- Lehrstuhl für Biophysikalische Chemie, Ruhr-Universität Bochum, Bochum, Germany.
- Institut für Physikalische und Theoretische Chemie, TU Braunschweig, Braunschweig, Germany.
- Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, Bochum, Germany.
| |
Collapse
|
5
|
Ansari NK, Khan HS, Naeem A. Doxorubicin as a Drug Repurposing for Disruption of α-Chymotrypsinogen-A Aggregates. Protein J 2024; 43:842-857. [PMID: 39014260 DOI: 10.1007/s10930-024-10217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
Protein conformation is affected by interaction of several small molecules resulting either stabilization or disruption depending on the nature of the molecules. In our earlier communication, Hg2+ was known to disrupt the native structure of α-Cgn A leading to aggregation (Ansari, N.K., Rais, A. & Naeem, A. Methotrexate for Drug Repurposing as an Anti-Aggregatory Agent to Mercuric Treated α-Chymotrypsinogen-A. Protein J (2024). https://doi.org/10.1007/s10930-024-10187-z ). Accumulation of β-rich aggregates in the living system is found to be linked with copious number of disorders. Here, we have investigated the effect of varying concentration of doxorubicin (DOX) i.e. 0-100 µM on the preformed aggregates of α-Cgn A upon incubation with 120 µM Hg2+. The decrease in the intrinsic fluorescence and enzyme activity with respect to increase in the Hg2+ concentration substantiate the formation of aggregates. The DOX showed the dose dependent decrease in the ThT fluorescence, turbidity and RLS measurements endorsing the dissolution of aggregates which were consistent with red shift in ANS, confirming the breakdown of aggregates. The α-Cgn A has 30% α-helical content which decreases to 3% in presence of Hg2+. DOX increased the α-helicity to 28% confirming its anti-aggregatory potential. The SEM validates the formation of aggregates with Hg2+ and their dissolution upon incubation with the DOX. Hemolysis assay checked the cytotoxicity of α-Cgn A aggregates. Docking revealed that the DOX interacted Lys203, Cys201, Cys136, Ser159, Leu10, Trp207, Val137 and Thr134 of α-Cgn A through hydrophobic interactions and Gly133, Thr135 and Lys202 forms hydrogen bonds.
Collapse
Affiliation(s)
- Neha Kausar Ansari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P, 202002, India
| | - Hamza Sahib Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P, 202002, India
| | - Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P, 202002, India.
| |
Collapse
|
6
|
Takamuku T, Haraguchi T, Sasaki R, Hozoji Y, Sadakane K, Iwase H. Alcohol-Induced Denaturation of Hen Egg White Lysozyme Studied by Infrared, Circular Dichroism, and Small-Angle Neutron Scattering. J Phys Chem B 2024; 128:4076-4086. [PMID: 38642057 DOI: 10.1021/acs.jpcb.4c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
In aqueous binary solvents with fluorinated alcohols, 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), and aliphatic alcohols, ethanol (EtOH) and 2-propanol (2-PrOH), the denaturation of hen egg white lysozyme (HEWL) with increasing alcohol mole fraction xA has been investigated in a wide view from the molecular vibration to the secondary and ternary structures. Circular dichroism (CD) measurement showed that the secondary structure of α-helix content of HEWL increases on adding a small amount of the fluorinated alcohol to the aqueous solution, while the β-sheet content decreases. On the contrary, the secondary structure does not significantly change by the addition of the aliphatic alcohols. Correspondingly, the infrared (IR) spectroscopic measurements revealed that the amide I band red-shifts on the addition of the fluorinated alcohol. However, the band remains unchanged in the aliphatic alcohol systems with increasing alcohol content. To observe the ternary structure of HEWL, small-angle neutron scattering (SANS) experiments with H/D substitution technique have been applied to the HEWL solutions. The SANS experiments were successful in revealing the details of how the geometry of the HEWL changes as a function of xA. The SANS profiles indicated the spherical structure of HEWL in all of the alcohol systems in the xA range examined. The mean radius of HEWL in the two fluorinated alcohol systems increases from ∼16 to ∼18 Å during the change in the secondary structure against the increase in the fluorinated alcohol content. On contrast, the radius does not significantly change in both aliphatic alcohol systems below xA = 0.3 but expands to ∼19 Å as the alcohol content is close to the limitation of the HEWL solubility. According to the present results, together with our knowledge of the alcohol cluster formation and the interaction of the trifluoromethyl (CF3) groups with the hydrophobic moieties of biomolecules, the effects of alcohols on the denaturation of the protein have been discussed on a molecular scale.
Collapse
Affiliation(s)
- Toshiyuki Takamuku
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi, Saga 840-8502, Japan
| | - Tomoya Haraguchi
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Honjo-machi, Saga 840-8502, Japan
| | - Ryu Sasaki
- Functional Biomolecular Science, Graduate School of Advanced Health Sciences, Saga University, Honjo-machi, Saga 840-8502, Japan
| | - Yusuke Hozoji
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi, Saga 840-8502, Japan
| | - Koichiro Sadakane
- Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Hiroki Iwase
- Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
7
|
Deng W, Shang H, Tong Y, Liu X, Huang Q, He Y, Wu J, Ba X, Chen Z, Chen Y, Tang K. The application of nanoparticles-based ferroptosis, pyroptosis and autophagy in cancer immunotherapy. J Nanobiotechnology 2024; 22:97. [PMID: 38454419 PMCID: PMC10921615 DOI: 10.1186/s12951-024-02297-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024] Open
Abstract
Immune checkpoint blockers (ICBs) have been applied for cancer therapy and achieved great success in the field of cancer immunotherapy. Nevertheless, the broad application of ICBs is limited by the low response rate. To address this issue, increasing studies have found that the induction of immunogenic cell death (ICD) in tumor cells is becoming an emerging therapeutic strategy in cancer treatment, not only straightly killing tumor cells but also enhancing dying cells immunogenicity and activating antitumor immunity. ICD is a generic term representing different cell death modes containing ferroptosis, pyroptosis, autophagy and apoptosis. Traditional chemotherapeutic agents usually inhibit tumor growth based on the apoptotic ICD, but most tumor cells are resistant to the apoptosis. Thus, the induction of non-apoptotic ICD is considered to be a more efficient approach for cancer therapy. In addition, due to the ineffective localization of ICD inducers, various types of nanomaterials have been being developed to achieve targeted delivery of therapeutic agents and improved immunotherapeutic efficiency. In this review, we briefly outline molecular mechanisms of ferroptosis, pyroptosis and autophagy, as well as their reciprocal interactions with antitumor immunity, and then summarize the current progress of ICD-induced nanoparticles based on different strategies and illustrate their applications in the cancer therapy.
Collapse
Affiliation(s)
- Wen Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Cai J, Xie D, Kong F, Zhai Z, Zhu Z, Zhao Y, Xu Y, Sun T. Effect and Mechanism of Rapamycin on Cognitive Deficits in Animal Models of Alzheimer's Disease: A Systematic Review and Meta-analysis of Preclinical Studies. J Alzheimers Dis 2024; 99:53-84. [PMID: 38640155 DOI: 10.3233/jad-231249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Background Alzheimer's disease (AD), the most common form of dementia, remains long-term and challenging to diagnose. Furthermore, there is currently no medication to completely cure AD patients. Rapamycin has been clinically demonstrated to postpone the aging process in mice and improve learning and memory abilities in animal models of AD. Therefore, rapamycin has the potential to be significant in the discovery and development of drugs for AD patients. Objective The main objective of this systematic review and meta-analysis was to investigate the effects and mechanisms of rapamycin on animal models of AD by examining behavioral indicators and pathological features. Methods Six databases were searched and 4,277 articles were retrieved. In conclusion, 13 studies were included according to predefined criteria. Three authors independently judged the selected literature and methodological quality. Use of subgroup analyses to explore potential mechanistic effects of rapamycin interventions: animal models of AD, specific types of transgenic animal models, dosage, and periodicity of administration. Results The results of Morris Water Maze (MWM) behavioral test showed that escape latency was shortened by 15.60 seconds with rapamycin therapy, indicating that learning ability was enhanced in AD mice; and the number of traversed platforms was increased by 1.53 times, indicating that the improved memory ability significantly corrected the memory deficits. CONCLUSIONS Rapamycin therapy reduced age-related plaque deposition by decreasing AβPP production and down-regulating β-secretase and γ-secretase activities, furthermore increased amyloid-β clearance by promoting autophagy, as well as reduced tau hyperphosphorylation by up-regulating insulin-degrading enzyme levels.
Collapse
Affiliation(s)
- Jie Cai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fanjing Kong
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhenwei Zhai
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhishan Zhu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yanru Zhao
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Tao Sun
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Phytochemical composition and potential anti-inflammatory and antioxidant mechanisms of leaf extracts of Sida linifolia L. (Malvaceae). J Herb Med 2023. [DOI: 10.1016/j.hermed.2023.100630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
Orusmurzaeva Z, Maslova A, Tambieva Z, Sadykova E, Askhadova P, Umarova K, Merzhoeva A, Albogachieva K, Ulikhanyan K, Povetkin S. Investigation of the chemical composition and physicochemical properties of Chlorella vulgaris biomass treated with pulsed discharges technology for potential use in the food industry. POTRAVINARSTVO 2022. [DOI: 10.5219/1803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The use of chlorella as a dietary supplement has great prospects. Nevertheless, the processing of chlorella is associated with certain difficulties that limit its use on an industrial scale. Problems with the processing are primarily related to the thick and strong cell wall of chlorella (50-100 nm), which is poorly digested by most vertebrate species due to its complex multilayer structure. Our experiments have shown that discharge pulse treatment contributes to the destruction of the strong cell wall of chlorella. The results of atomic force microscopy and the determination of the antioxidant activity of the suspension confirm this. A study of the chemical composition of dried chlorella biomass showed a content of 56.8% protein and 12.6% fat, which causes a high nutritional value of chlorella. The study of the physicochemical properties of the prepared chlorella preparation showed pronounced hydrophilicity of proteins. Observation of gels with different contents of chlorella preparation, formed during heating and subsequent cooling and stored for seven days at +8 °C, showed that the gels do not emit a synergistic liquid. Total gels based on the chlorella preparation are characterized by high stability. Based on the results obtained, we concluded that the preparation based on disintegrated chlorella has a high potential for functional and technological application in food technologies
Collapse
|
11
|
Emmanuel Chimeh E, Nicodemus Emeka N, Florence Nkechi N, Amaechi Linda O, Oka Samon A, Emmanuel Chigozie A, Parker Elijah J, Barine Innocent N, Ezike Tobechukwu C, Nwachukwu Philip A, Hope Chimbuezie N, Chidimma Peace E, Onyinye Mary-Jane O, Godspower Chima N, Theresa Chinyere E, Alotaibi Saqer S, Albogami Sarah M, Gaber El-Saber B. Bioactive Compounds, anti-inflammatory, anti-nociceptive and antioxidant potentials of ethanolic leaf fraction of Sida linifolia L. (Malvaceae). ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Sakaguchi N, Kaumbekova S, Itano R, Torkmahalleh MA, Shah D, Umezawa M. Changes in the Secondary Structure and Assembly of Proteins on Fluoride Ceramic (CeF 3) Nanoparticle Surfaces. ACS APPLIED BIO MATERIALS 2022; 5:2843-2850. [PMID: 35653551 PMCID: PMC9214759 DOI: 10.1021/acsabm.2c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
Abstract
Fluoride nanoparticles (NPs) are materials utilized in the biomedical field for applications including imaging of the brain. Their interactions with biological systems and molecules are being investigated, but the mechanism underlying these interactions remains unclear. We focused on possible changes in the secondary structure and aggregation state of proteins on the surface of NPs and investigated the principle underlying the changes using the amyloid β peptide (Aβ16-20) based on infrared spectrometry. CeF3 NPs (diameter 80 nm) were synthesized via thermal decomposition. Infrared spectrometry showed that the presence of CeF3 NPs promotes the formation of the β-sheet structure of Aβ16-20. This phenomenon was attributed to the hydrophobic interaction between NPs and Aβ peptides in aqueous environments, which causes the Aβ peptides to approach each other on the NP surface and form ordered hydrogen bonds. Because of the coexisting salts on the secondary structure and assembly of Aβ peptides, the formation of the β-sheet structure of Aβ peptides on the NP surface was suppressed in the presence of NH4+ and NO3- ions, suggesting the possibility that Aβ peptides were adsorbed and bound to the NP surface. The formation of the β-sheet structure of Aβ peptides was promoted in the presence of NH4+, whereas it was suppressed in the presence of NO3- because of the electrostatic interaction between the lysine residue of the Aβ peptide and the ions. Our findings will contribute to comparative studies on the effect of different NPs with different physicochemical properties on the molecular state of proteins.
Collapse
Affiliation(s)
- Naoya Sakaguchi
- Department
of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Samal Kaumbekova
- Department
of Chemical and Materials Engineering, School of Engineering and Digital
Sciences, Nazarbayev University, Kabanbay Batyr 53, Nur-Sultan 010000, Kazakhstan
| | - Ryodai Itano
- Department
of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Mehdi Amouei Torkmahalleh
- Department
of Chemical and Materials Engineering, School of Engineering and Digital
Sciences, Nazarbayev University, Kabanbay Batyr 53, Nur-Sultan 010000, Kazakhstan
| | - Dhawal Shah
- Department
of Chemical and Materials Engineering, School of Engineering and Digital
Sciences, Nazarbayev University, Kabanbay Batyr 53, Nur-Sultan 010000, Kazakhstan
| | - Masakazu Umezawa
- Department
of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| |
Collapse
|
13
|
Surface-Functionalized NdVO 4:Gd 3+ Nanoplates as Active Agents for Near-Infrared-Light-Triggered and Multimodal-Imaging-Guided Photothermal Therapy. Pharmaceutics 2022; 14:pharmaceutics14061217. [PMID: 35745790 PMCID: PMC9230566 DOI: 10.3390/pharmaceutics14061217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/26/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Development of nanotheranostic agents with near-infrared (NIR) absorption offers an effective tool for fighting malignant diseases. Lanthanide ion neodymium (Nd3+)-based nanomaterials, due to the maximum absorption at around 800 nm and unique optical properties, have caught great attention as potential agents for simultaneous cancer diagnosis and therapy. Herein, we employed an active nanoplatform based on gadolinium-ion-doped NdVO4 nanoplates (NdVO4:Gd3+ NPs) for multiple-imaging-assisted photothermal therapy. These NPs exhibited enhanced NIR absorption and excellent biocompatibility after being grafted with polydopamine (pDA) and bovine serum albumin (BSA) layers on their surface. Upon expose to an 808 nm laser, these resulting NPs were able to trigger hyperthermia rapidly and cause photo-destruction of cancer cells. In a xenograft tumor model, tumor growth was also significantly inhibited by these photothermal agents under NIR laser irradiation. Owing to the multicomponent nanostructures, we demonstrated these nanoagents as being novel contrast agents for in vivo magnetic resonance (MR) imaging, X-ray computed tomography (CT), photoacoustic (PA) imaging, and second biological window fluorescent imaging of tumor models. Thus, we believe that this new kind of nanotherapeutic will benefit the development of emerging nanosystems for biological imaging and cancer therapy.
Collapse
|
14
|
Fanni AM, Okoye D, Monge FA, Hammond J, Maghsoodi F, Martin TD, Brinkley G, Phipps ML, Evans DG, Martinez JS, Whitten DG, Chi EY. Controlled and Selective Photo-oxidation of Amyloid-β Fibrils by Oligomeric p-Phenylene Ethynylenes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14871-14886. [PMID: 35344326 PMCID: PMC10452927 DOI: 10.1021/acsami.1c22869] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) has been explored as a therapeutic strategy to clear toxic amyloid aggregates involved in neurodegenerative disorders such as Alzheimer's disease. A major limitation of PDT is off-target oxidation, which can be lethal for the surrounding cells. We have shown that a novel class of oligo-p-phenylene ethynylenes (OPEs) exhibit selective binding and fluorescence turn-on in the presence of prefibrillar and fibrillar aggregates of disease-relevant proteins such as amyloid-β (Aβ) and α-synuclein. Concomitant with fluorescence turn-on, OPE also photosensitizes singlet oxygen under illumination through the generation of a triplet state, pointing to the potential application of OPEs as photosensitizers in PDT. Herein, we investigated the photosensitizing activity of an anionic OPE for the photo-oxidation of Aβ fibrils and compared its efficacy to the well-known but nonselective photosensitizer methylene blue (MB). Our results show that, while MB photo-oxidized both monomeric and fibrillar conformers of Aβ40, OPE oxidized only Aβ40 fibrils, targeting two histidine residues on the fibril surface and a methionine residue located in the fibril core. Oxidized fibrils were shorter and more dispersed but retained the characteristic β-sheet rich fibrillar structure and the ability to seed further fibril growth. Importantly, the oxidized fibrils displayed low toxicity. We have thus discovered a class of novel theranostics for the simultaneous detection and oxidization of amyloid aggregates. Importantly, the selectivity of OPE's photosensitizing activity overcomes the limitation of off-target oxidation of traditional photosensitizers and represents an advancement of PDT as a viable strategy to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Adeline M. Fanni
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, NM. 87131
| | - Daniel Okoye
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
| | - Florencia A. Monge
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, NM. 87131
| | - Julia Hammond
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM. 87131
- Rose-Hulman Institute of Technology, Terre Haute, IN 47803
| | - Fahimeh Maghsoodi
- Nanoscience and Microsystems Engineering Graduate Program, University of New Mexico, Albuquerque, NM 87131
| | - Tye D. Martin
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, NM. 87131
| | - Gabriella Brinkley
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM. 87131
- Chemical Engineering Department, University of Minnesota, Duluth, MN 55812
| | - M. Lisa Phipps
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Deborah G. Evans
- Department of Chemistry and Chemical Biology, University of New Mexico, NM 87131
| | - Jennifer S. Martinez
- Center for Materials Interfaces in Research and Applications, Northern Arizona University, Flagstaff, AZ 86011
- Department of Applied Physics and Materials Science, Northern Arizona University, Flagstaff, AZ 86011
| | - David G. Whitten
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM. 87131
| | - Eva Y. Chi
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM. 87131
| |
Collapse
|
15
|
Amirahmadi M, Salesi M, Yousefi R, Daryanosh F, Nemati J, Kurganov BI. The impact of concurrent training and antioxidant supplementation on the factors associated with the ocular lens opacity in diabetic rats. Arch Physiol Biochem 2022; 128:126-140. [PMID: 31573372 DOI: 10.1080/13813455.2019.1668019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The current study was aimed to investigate the protective effect of vitamins C and E (VCE) supplementation, exercise, and their concurrent application against cataract incidence in the diabetic rats. The obtained results indicated that different supplementation and training treatments were capable to preserve the lens transparency in the diabetic rats. Also, upon applying different supplementation and training treatments, the level of glutathione (GSH) and activity of antioxidant enzymes in the diabetic rats was preserved approximately close to their control levels. In addition, different treatments were capable to maintain the structural integrity of the lens proteins in diabetic rats. Moreover, VCE supplementation, exercise and their simultaneous application prevented lens crystallins of diabetic rats against fibrillation and formation of the increased oligomeric sizes. The results of this study signify the importance of antioxidant supplementation and exercise in reducing the detrimental effects of hyperglycemia on the eye lenses.
Collapse
Affiliation(s)
- Mousa Amirahmadi
- Department of Sport Sciences, College of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Mohsen Salesi
- Department of Sport Sciences, College of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Farhad Daryanosh
- Department of Sport Sciences, College of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Javad Nemati
- Department of Sport Sciences, College of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Boris I Kurganov
- Laboratory of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
16
|
Hu Q, He Y, Wang F, Wu J, Ci Z, Chen L, Xu R, Yang M, Lin J, Han L, Zhang D. Microwave technology: a novel approach to the transformation of natural metabolites. Chin Med 2021; 16:87. [PMID: 34530887 PMCID: PMC8444431 DOI: 10.1186/s13020-021-00500-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/04/2021] [Indexed: 12/13/2022] Open
Abstract
Microwave technology is used throughout the world to generate heat using energy from the microwave range of the electromagnetic spectrum. It is characterized by uniform energy transfer, low energy consumption, and rapid heating which preserves much of the nutritional value in food products. Microwave technology is widely used to process food such as drying, because food and medicinal plants are the same organisms. Microwave technology is also used to process and extract parts of plants for medicinal purposes; however, the special principle of microwave radiation provide energy to reaction for transforming chemical components, creating a variety of compounds through oxidation, hydrolysis, rearrangement, esterification, condensation and other reactions that transform original components into new ones. In this paper, the principles, influencing factors of microwave technology, and the transformation of natural metabolites using microwave technology are reviewed, with an aim to provide a theoretical basis for the further study of microwave technology in the processing of medicinal materials.
Collapse
Affiliation(s)
- Qi Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yanan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fang Wang
- State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Jing Wu
- Xinqi Microwave Co., Ltd., Guiyang, 550000, China
| | - Zhimin Ci
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lumeng Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ming Yang
- State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
17
|
Zhang L, Wang Z, Yuan X, Sui R, Falahati M. Evaluation of heptelidic acid as a potential inhibitor for tau aggregation-induced Alzheimer's disease and associated neurotoxicity. Int J Biol Macromol 2021; 183:1155-1161. [PMID: 33971235 DOI: 10.1016/j.ijbiomac.2021.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/13/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Tau is a major component of protein plaques in tauopathies, especially Alzheimer's disease (AD). The purpose of the present study is to explore the inhibitory effects of heptelidic acid as a bioactive compound from fungus T. koningii on tau fibrillization and associated neurotoxicity. The influences of various concentrations of heptelidic acid on tau fibrillization and underlying neurotoxicity were explored by assessment of the biophysical (ThT/Nile red fluorescence, CR absorbance, CD, and TEM) and cellular (MTT, LDH, and caspase-3) assays. It was shown that heptelidic acid inhibited tau fibrillization in a concentration-dependent manner. On the other hand, cellular assays indicated that the viability, LDH release, and caspase-3 activity were regulated when neurons were exposed to tau samples co-incubated with heptelidic acid. In conclusion, it may be indicated that heptelidic acid inhibited tau fibrillization which was accompanied by formation of amorphous aggregated species of tau with much less neurotoxicity than tau amyloid alone. Thus, heptelidic acid can be considered as a potential candidate in preventive care studies to inhibit the formation of tau plaques as neurotoxic species.
Collapse
Affiliation(s)
- Lei Zhang
- School of Nursing, Jinzhou Medical University, Jinzhou 121099, China
| | - Zhuo Wang
- School of Nursing, Jinzhou Medical University, Jinzhou 121099, China
| | - Xueling Yuan
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Rubo Sui
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China.
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
18
|
Dyakin VV, Wisniewski TM, Lajtha A. Racemization in Post-Translational Modifications Relevance to Protein Aging, Aggregation and Neurodegeneration: Tip of the Iceberg. Symmetry (Basel) 2021; 13:455. [PMID: 34350031 PMCID: PMC8330555 DOI: 10.3390/sym13030455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Homochirality of DNA and prevalent chirality of free and protein-bound amino acids in a living organism represents the challenge for modern biochemistry and neuroscience. The idea of an association between age-related disease, neurodegeneration, and racemization originated from the studies of fossils and cataract disease. Under the pressure of new results, this concept has a broader significance linking protein folding, aggregation, and disfunction to an organism's cognitive and behavioral functions. The integrity of cognitive function is provided by a delicate balance between the evolutionarily imposed molecular homo-chirality and the epigenetic/developmental impact of spontaneous and enzymatic racemization. The chirality of amino acids is the crucial player in the modulation the structure and function of proteins, lipids, and DNA. The collapse of homochirality by racemization is the result of the conformational phase transition. The racemization of protein-bound amino acids (spontaneous and enzymatic) occurs through thermal activation over the energy barrier or by the tunnel transfer effect under the energy barrier. The phase transition is achieved through the intermediate state, where the chirality of alpha carbon vanished. From a thermodynamic consideration, the system in the homo-chiral (single enantiomeric) state is characterized by a decreased level of entropy. The oscillating protein chirality is suggesting its distinct significance in the neurotransmission and flow of perceptual information, adaptive associative learning, and cognitive laterality. The common pathological hallmarks of neurodegenerative disorders include protein misfolding, aging, and the deposition of protease-resistant protein aggregates. Each of the landmarks is influenced by racemization. The brain region, cell type, and age-dependent racemization critically influence the functions of many intracellular, membrane-bound, and extracellular proteins including amyloid precursor protein (APP), TAU, PrP, Huntingtin, α-synuclein, myelin basic protein (MBP), and collagen. The amyloid cascade hypothesis in Alzheimer's disease (AD) coexists with the failure of amyloid beta (Aβ) targeting drug therapy. According to our view, racemization should be considered as a critical factor of protein conformation with the potential for inducing order, disorder, misfolding, aggregation, toxicity, and malfunctions.
Collapse
Affiliation(s)
- Victor V. Dyakin
- Virtual Reality Perception Lab (VRPL), The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| | - Thomas M. Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Abel Lajtha
- Center for Neurochemistry, The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| |
Collapse
|
19
|
Chang M, Hou Z, Wang M, Li C, Lin J. Recent Advances in Hyperthermia Therapy-Based Synergistic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004788. [PMID: 33289219 DOI: 10.1002/adma.202004788] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Indexed: 06/12/2023]
Abstract
The past decades have witnessed hyperthermia therapy (HTT) as an emerging strategy against malignant tumors. Nanomaterial-based photothermal therapy (PTT) and magnetic hyperthermia (MHT), as highly effective and noninvasive treatment models, offer advantages over other strategies in the treatment of different types of tumors. However, both PTT and MHT cannot completely cure cancer due to recurrence and distal metastasis. In recent years, cancer immunotherapy has attracted widespread attention owing to its capability to activate the body's own natural defense to identify, attack, and eradicate cancer cells. Significant efforts have been devoted to studying the activated immune responses caused by hyperthermia-ablated tumors. In this article, the synergistic mechanism of HTT in immunotherapy, including immunogenic cell death and reversal of the immunosuppressive tumor microenvironment is discussed. The reports of the combination of HTT or HTT-based multimodal therapy with immunotherapy, including immunoadjuvant exploitation, immune checkpoint blockade therapy, and adoptive cellular immunotherapy are summarized. As highlighted, these strategies could achieve synergistically enhanced therapeutic outcomes against both primary tumors and metastatic lesions, prevent cancer recurrence, and prolong the survival period. Finally, current challenges and prospective developments in HTT-synergized immunotherapy are also reviewed.
Collapse
Affiliation(s)
- Mengyu Chang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei, 230026, P. R. China
| | - Zhiyao Hou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangdong, 511436, P. R. China
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, P. R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
20
|
Majewski J, Jones EM, Vander Zanden CM, Biernat J, Mandelkow E, Chi EY. Lipid membrane templated misfolding and self-assembly of intrinsically disordered tau protein. Sci Rep 2020; 10:13324. [PMID: 32770092 PMCID: PMC7414892 DOI: 10.1038/s41598-020-70208-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/21/2020] [Indexed: 01/21/2023] Open
Abstract
The aggregation of the intrinsically disordered tau protein into highly ordered β-sheet-rich fibrils is implicated in the pathogenesis of a range of neurodegenerative disorders. The mechanism of tau fibrillogenesis remains unresolved, particularly early events that trigger the misfolding and assembly of the otherwise soluble and stable tau. We investigated the role the lipid membrane plays in modulating the aggregation of three tau variants, the largest isoform hTau40, the truncated construct K18, and a hyperphosphorylation-mimicking mutant hTau40/3Epi. Despite being charged and soluble, the tau proteins were also highly surface active and favorably interacted with anionic lipid monolayers at the air/water interface. Membrane binding of tau also led to the formation of a macroscopic, gelatinous layer at the air/water interface, possibly related to tau phase separation. At the molecular level, tau assembled into oligomers composed of ~ 40 proteins misfolded in a β-sheet conformation at the membrane surface, as detected by in situ synchrotron grazing-incidence X-ray diffraction. Concomitantly, membrane morphology and lipid packing became disrupted. Our findings support a general tau aggregation mechanism wherein tau’s inherent surface activity and favorable interactions with anionic lipids drive tau-membrane association, inducing misfolding and self-assembly of the disordered tau into β-sheet-rich oligomers that subsequently seed fibrillation and deposition into diseased tissues.
Collapse
Affiliation(s)
- Jaroslaw Majewski
- Division of Molecular and Cellular Biology, National Science Foundation, Alexandria, VA, 22314, USA.,Department of Chemical and Biological Engineering and Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA.,Theoretical Biology and Biophysics Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Emmalee M Jones
- Nanoscience and Microsystems Engineering Graduate Program, University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Chemical and Biological Engineering and Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Crystal M Vander Zanden
- Department of Chemical and Biological Engineering and Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Chemistry and Biochemistry, University of Colorado at Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Jacek Biernat
- Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany.,CAESAR Research Center, 53175, Bonn, Germany
| | - Eckhard Mandelkow
- Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany.,CAESAR Research Center, 53175, Bonn, Germany
| | - Eva Y Chi
- Department of Chemical and Biological Engineering and Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
21
|
Fanni AM, Monge FA, Lin CY, Thapa A, Bhaskar K, Whitten DG, Chi EY. High Selectivity and Sensitivity of Oligomeric p-Phenylene Ethynylenes for Detecting Fibrillar and Prefibrillar Amyloid Protein Aggregates. ACS Chem Neurosci 2019; 10:1813-1825. [PMID: 30657326 DOI: 10.1021/acschemneuro.8b00719] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Misfolding and aggregation of amyloid proteins into fibrillar aggregates is a central pathogenic event in neurodegenerative disorders such as Alzheimer's (AD) and Parkinson's diseases (PD). Currently, there is a lack of reliable sensors for detecting the range of protein aggregates involved in disease etiology, particularly the prefibrillar aggregate conformations that are more neurotoxic. In this study, the fluorescent sensing of two novel oligomeric p-phenylene ethynylenes (OPEs), anionic OPE1- and cationic OPE2+, for detecting prefibrillar and fibrillar aggregates of AD-associated amyloid-β (Aβ40 and Aβ42) and PD-associated α-synuclein proteins (wildtype, and single mutants A30P, E35K, and A53T) over their monomeric counterparts, were tested. Furthermore, the performance of OPEs was evaluated and compared to thioflavin T (ThT), the most widely used fibril dye. Our results show that OPE1- and OPE2+ exhibited aggregate-specific binding inducing large fluorescence turn-on and spectral shifts based on a combination of backbone planarization, hydrophobic unquenching, and superluminescent OPE complex formation sensing modes. OPEs exhibited higher selectivity, higher binding affinity, and comparable limits of detection for Aβ40 fibrils compared to ThT. OPE2+ exhibited the largest fluorescence turn-on and highest sensitivity. Significantly, OPEs detected prefibrillar aggregates of Aβ42 and α-synuclein that ThT failed to detect. The superior sensing performance, the nonprotein specific detection, and the ability to selectively detect fibrillar and prefibrillar amyloid protein aggregates point to the potential of OPEs to overcome the limitations of existing probes and promise significant advancement in the detection of the myriad of protein aggregates involved in the early stages of AD and PD.
Collapse
|
22
|
Yaacob N, Ahmad Kamarudin NH, Leow ATC, Salleh AB, Rahman RNZRA, Ali MSM. Effects of Lid 1 Mutagenesis on Lid Displacement, Catalytic Performances and Thermostability of Cold-active Pseudomonas AMS8 Lipase in Toluene. Comput Struct Biotechnol J 2019; 17:215-228. [PMID: 30828413 PMCID: PMC6383135 DOI: 10.1016/j.csbj.2019.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/14/2019] [Accepted: 01/19/2019] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas fluorescens AMS8 lipase lid 1 structure is rigid and holds unclear roles due to the absence of solvent-interactions. Lid 1 region was stabilized by 17 hydrogen bond linkages and displayed lower mean hydrophobicity (0.596) compared to MIS38 lipase. Mutating lid 1 residues, Thr-52 and Gly-55 to aromatic hydrophobic-polar tyrosine would churned more side-chain interactions between lid 1 and water or toluene. This study revealed that T52Y leads G55Y and its recombinant towards achieving higher solvent-accessible surface area and longer half-life at 25 to 37 °C in 0.5% (v/v) toluene. T52Y also exhibited better substrate affinity with long-chain carbon substrate in aqueous media. The affinity for pNP palmitate, laurate and caprylate increased in 0.5% (v/v) toluene in recombinant AMS8, but the affinity in similar substrates was substantially declined in lid 1 mutated lipases. Regarding enzyme efficiency, the recombinant AMS8 lipase displayed highest value of kcat/Km in 0.5% (v/v) toluene, mainly with pNPC. In both hydrolysis reactions with 0% and 0.5% (v/v) toluene, the enzyme efficiency of G55Y was found higher than T52Y for pNPL and pNPP. At 0.5% (v/v) toluene, both mutants showed reductions in activation energy and enthalpy values as temperature increased from 25 to 35 °C, displaying better catalytic functions. Only T52Y exhibited increase in entropy values at 0.5% (v/v) toluene indicating structure stability. As a conclusion, Thr-52 and Gly-55 are important residues for lid 1 stability as their existence helps to retain the geometrical structure of alpha-helix and connecting hinge.
Collapse
Affiliation(s)
- Norhayati Yaacob
- Enzyme Technology Laboratory, Laboratory of Molecular Biomedicine (MOLEMED), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Malaysia.,Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Malaysia
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| |
Collapse
|
23
|
Islam S, Mir AR, Arfat MY, Khan F, Zaman M, Ali A. Structural and immunological characterization of hydroxyl radical modified human IgG: Clinical correlation in rheumatoid arthritis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 194:194-201. [PMID: 29351859 DOI: 10.1016/j.saa.2018.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/28/2017] [Accepted: 01/10/2018] [Indexed: 06/07/2023]
Abstract
Structural alterations in proteins under oxidative stress have been widely implicated in the immuno-pathology of various disorders. This study has evaluated the extent of damage in the conformational characteristics of IgG by hydroxyl radical (OH) and studied its implications in the immuno-pathology of rheumatoid arthritis (RA). Using various biophysical and biochemical techniques, changes in aromatic microenvironment of the IgG and the protein aggregation became evident after treatment with OH. The SDS-PAGE study confirmed the protein aggregation while far ultraviolet circular dichroism spectroscopy (Far-UV CD) and fourier transform infrared spectroscopy (FTIR) inferred towards the alterations in secondary structure of IgG under OH stress. Dynamic light scattering showed that the modification increased the hydrodynamic radius and polydispersity of IgG. The free arginine and lysine content reduced upon modification. OH induced aggregation was confirmed by enhanced thioflavin-T (ThT) fluorescence and red shift in the congo red (CR) absorbance. The study on experimental animals reiterates the earlier findings of enhanced immunogenicity of OH treated IgG (OH-IgG) compared to that of native IgG. OH-IgG strongly interacted with the antibodies derived from the serum of 80 rheumatoid arthritis (RA) patients. The overwhelming and strong tendency of OH-IgG to bind the antibodies derived from the serum of RA patients points towards the modification of IgG under patho-physiological conditions in RA that generate neo-epitopes and eventually cause the generation of auto antibodies that circulate in the patient sera. Further studies on this aspect may possibly lead to the development of a biomarker for RA.
Collapse
Affiliation(s)
- Sidra Islam
- Department of Biochemistry, Jawarharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Abdul Rouf Mir
- Department of Biochemistry, Jawarharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Mir Yasir Arfat
- Department of Biochemistry, Jawarharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Farzana Khan
- Department of Biochemistry, Jawarharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Masihuz Zaman
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Asif Ali
- Department of Biochemistry, Jawarharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| |
Collapse
|
24
|
Polanco JC, Li C, Bodea LG, Martinez-Marmol R, Meunier FA, Götz J. Amyloid-β and tau complexity — towards improved biomarkers and targeted therapies. Nat Rev Neurol 2017; 14:22-39. [DOI: 10.1038/nrneurol.2017.162] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Božinovski DM, Petrović PV, Belić MR, Zarić SD. Insight into the Interactions of Amyloid β-Sheets with Graphene Flakes: Scrutinizing the Role of Aromatic Residues in Amyloids that Interact with Graphene. Chemphyschem 2017; 19:1226-1233. [DOI: 10.1002/cphc.201700847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Dragana M. Božinovski
- Science Program; Texas A&M University at Qatar; Texas A&M Engineering Building Education City Doha Qatar
| | - Predrag V. Petrović
- Science Program; Texas A&M University at Qatar; Texas A&M Engineering Building Education City Doha Qatar
| | - Milivoj R. Belić
- Science Program; Texas A&M University at Qatar; Texas A&M Engineering Building Education City Doha Qatar
| | - Snežana D. Zarić
- Department of Chemistry; University of Belgrade; Studentski trg 12-16 11000 Belgrade Serbia
- Science Program; Texas A&M University at Qatar; Texas A&M Engineering Building Education City Doha Qatar
| |
Collapse
|
26
|
Moghadam SS, Oryan A, Kurganov BI, Tamaddon AM, Alavianehr MM, Moosavi-Movahedi AA, Yousefi R. The structural damages of lens crystallins induced by peroxynitrite and methylglyoxal, two causative players in diabetic complications and preventive role of lens antioxidant components. Int J Biol Macromol 2017; 103:74-88. [PMID: 28472684 DOI: 10.1016/j.ijbiomac.2017.04.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 12/12/2022]
Abstract
Peroxynitrite (PON) and methylglyoxal (MGO), two diabetes-associated compounds, are believed to be important causative players in development of diabetic cataracts. In the current study, different spectroscopic methods, gel electrophoresis, lens culture and microscopic assessments were applied to examine the impact of individual, subsequent or simultaneous modification of lens crystallins with MGO and PON on their structure, oligomerization and aggregation. The protein modifications were confirmed with detection of the significantly increased quantity of carbonyl groups and decreased levels of sulfhydryl, tyrosine and tryptophan. Also, lens proteins modification with these chemical agents was accompanied with important structural alteration, oligomerization, disulfide/chromophore mediated protein crosslinking and important proteolytic instability. All these structural damages were more pronounced when the lens proteins were modified in the presence of both mentioned chemical agents, either in sequential or simultaneous manner. Ascorbic acid and glutathione, as the main components of lens antioxidant defense mechanism, were also capable to markedly prevent the damaging effects of PON and MGO on lens crystallins, as indicated by gel electrophoresis. The results of this study may highlight the importance of lens antioxidant defense system in protection of crystallins against the structural insults induced by PON and MGO during chronic hyperglycemia in the diabetic patients.
Collapse
Affiliation(s)
- Sogand Sasan Moghadam
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Boris I Kurganov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia
| | - Ali-Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery and School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.
| |
Collapse
|
27
|
Joers V, Tansey MG, Mulas G, Carta AR. Microglial phenotypes in Parkinson's disease and animal models of the disease. Prog Neurobiol 2017; 155:57-75. [PMID: 27107797 PMCID: PMC5073045 DOI: 10.1016/j.pneurobio.2016.04.006] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/19/2022]
Abstract
Over the last decade the important concept has emerged that microglia, similar to other tissue macrophages, assume different phenotypes and serve several effector functions, generating the theory that activated microglia can be organized by their pro-inflammatory or anti-inflammatory and repairing functions. Importantly, microglia exist in a heterogenous population and their phenotypes are not permanently polarized into two categories; they exist along a continuum where they acquire different profiles based on their local environment. In Parkinson's disease (PD), neuroinflammation and microglia activation are considered neuropathological hallmarks, however their precise role in relation to disease progression is not clear, yet represent a critical challenge in the search of disease-modifying strategies. This review will critically address current knowledge on the activation states of microglia as well as microglial phenotypes found in PD and in animal models of PD, focusing on the expression of surface molecules as well as pro-inflammatory and anti-inflammatory cytokine production during the disease process. While human studies have reported an elevation of both pro- or anti-inflammatory markers in the serum and CSF of PD patients, animal models have provided insights on dynamic changes of microglia phenotypes in relation to disease progression especially prior to the development of motor deficits. We also review recent evidence of malfunction at multiple steps of NFκB signaling that may have a causal interrelationship with pathological microglia activation in animal models of PD. Finally, we discuss the immune-modifying strategies that have been explored regarding mechanisms of chronic microglial activation.
Collapse
Affiliation(s)
- Valerie Joers
- Department of Physiology, Emory University, Atlanta, GA, United States; Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Malú G Tansey
- Department of Physiology, Emory University, Atlanta, GA, United States.
| | - Giovanna Mulas
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Italy.
| |
Collapse
|
28
|
Donabedian P, Evanoff M, Monge FA, Whitten DG, Chi EY. Substituent, Charge, and Size Effects on the Fluorogenic Performance of Amyloid Ligands: A Small-Library Screening Study. ACS OMEGA 2017; 2:3192-3200. [PMID: 30023689 PMCID: PMC6044928 DOI: 10.1021/acsomega.7b00231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/01/2017] [Indexed: 05/24/2023]
Abstract
Developing new molecular ligands for the direct detection and tracking of amyloid protein aggregates is key to understanding and defeating myriad neurodegenerative and other disorders including Alzheimer's and Parkinson's diseases. A crucial factor in the performance of an amyloid dye is its ability to detect the amyloid structural motif independent of the sequence of the amyloid-forming protomer. The current study investigates structure-function relationships of a class of novel phenyleneethynylene (PPE)-based dyes and fluorescent polymers using amyloid fibrils formed by two model proteins: lysozyme and insulin. A small library of 18 PPE compounds that vary in molecular weights, charge densities, water solubilities, and types and geometries of functional groups was tested. One compound, the small anionic oligo(p-phenylene ethynylene) electrolyte OPE1, was identified as a selective sensor for the amyloid conformation of both lysozyme and insulin. On the basis of protein binding and photophysical changes observed in the dye from this set of PPE compounds, keys to the selective detection of the amyloid protein conformation include moderate size, negative charge, and substituents that provide high microenvironment sensitivity to the fluorescence yield. These principles can serve as a guide for the further refinement of the effective amyloid-sensing molecules.
Collapse
Affiliation(s)
- Patrick
L. Donabedian
- Nanoscience and Microsystems Engineering Graduate
Program, Center for Biomedical
Engineering, Biomedical Engineering Graduate Program, and Department of Chemical and Biological
Engineering, University of New Mexico, MSC01 1141, Albuquerque, New Mexico 87131, United States
| | - Mallory Evanoff
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Florencia A. Monge
- Nanoscience and Microsystems Engineering Graduate
Program, Center for Biomedical
Engineering, Biomedical Engineering Graduate Program, and Department of Chemical and Biological
Engineering, University of New Mexico, MSC01 1141, Albuquerque, New Mexico 87131, United States
| | - David G. Whitten
- Nanoscience and Microsystems Engineering Graduate
Program, Center for Biomedical
Engineering, Biomedical Engineering Graduate Program, and Department of Chemical and Biological
Engineering, University of New Mexico, MSC01 1141, Albuquerque, New Mexico 87131, United States
| | - Eva Y. Chi
- Nanoscience and Microsystems Engineering Graduate
Program, Center for Biomedical
Engineering, Biomedical Engineering Graduate Program, and Department of Chemical and Biological
Engineering, University of New Mexico, MSC01 1141, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
29
|
Pilchova I, Klacanova K, Dibdiakova K, Saksonova S, Stefanikova A, Vidomanova E, Lichardusova L, Hatok J, Racay P. Proteasome Stress Triggers Death of SH-SY5Y and T98G Cells via Different Cellular Mechanisms. Neurochem Res 2017; 42:3170-3185. [PMID: 28725954 DOI: 10.1007/s11064-017-2355-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 07/07/2017] [Accepted: 07/12/2017] [Indexed: 01/24/2023]
Abstract
Overload or dysfunction of ubiquitin-proteasome system (UPS) is implicated in mechanisms of neurodegeneration associated with neurodegenerative diseases, e.g. Parkinson and Alzheimer disease, and ischemia-reperfusion injury. The aim of this study was to investigate the possible association between viability of neuroblastoma SH-SY5Y and glioblastoma T98G cells treated with bortezomib, inhibitor of 26S proteasome, and accumulation of ubiquitin-conjugated proteins with respect to direct cytotoxicity of aggregates of ubiquitin-conjugated proteins. Bortezomib-induced death of SH-SY5Y cells was documented after 24 h of treatment while death of T98G cells was delayed up to 48 h. Already after 4 h of treatment of both SH-SY5Y and T98G cells with bortezomib, increased levels of both ubiquitin-conjugated proteins with molecular mass more than 150 kDa and Hsp70 were observed whereas Hsp90 was elevated in T98G cells and decreased in SH-SY5Y cells. With respect to the cell death mechanism, we have documented bortezomib-induced activation of caspase 3 in SH-SY5Y cells that was probably a result of increased expression of pro-apoptotic proteins, PUMA and Noxa. In T98G cells, bortezomib-induced expression of caspase 4, documented after 24 h of treatment, with further activation of caspase 3, observed after 48 h of treatment. The delay in activation of caspase 3 correlated well with the delay of death of T98G cells. Our results do not support the possibility about direct cytotoxicity of aggregates of ubiquitin-conjugated proteins. They are more consistent with a view that proteasome inhibition is associated with both transcription-dependent and -independent changes in expression of pro-apoptotic proteins and consequent cell death initiation associated with caspase 3 activation.
Collapse
Affiliation(s)
- Ivana Pilchova
- Biomedical Center Martin JFM CU and Department of Medical Biochemistry JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovak Republic
| | - Katarina Klacanova
- Biomedical Center Martin JFM CU and Department of Medical Biochemistry JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovak Republic
| | - Katarina Dibdiakova
- Biomedical Center Martin JFM CU and Department of Medical Biochemistry JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovak Republic
| | - Simona Saksonova
- Biomedical Center Martin JFM CU and Department of Medical Biochemistry JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovak Republic
| | - Andrea Stefanikova
- Biomedical Center Martin JFM CU and Department of Medical Biochemistry JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovak Republic
| | - Eva Vidomanova
- Biomedical Center Martin JFM CU and Department of Medical Biochemistry JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovak Republic
| | - Lucia Lichardusova
- Biomedical Center Martin JFM CU and Department of Medical Biochemistry JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovak Republic
| | - Jozef Hatok
- Biomedical Center Martin JFM CU and Department of Medical Biochemistry JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovak Republic
| | - Peter Racay
- Biomedical Center Martin JFM CU and Department of Medical Biochemistry JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovak Republic.
| |
Collapse
|
30
|
Onoda A, Kawasaki T, Tsukiyama K, Takeda K, Umezawa M. Perivascular Accumulation of β-Sheet-Rich Proteins in Offspring Brain following Maternal Exposure to Carbon Black Nanoparticles. Front Cell Neurosci 2017; 11:92. [PMID: 28408868 PMCID: PMC5374146 DOI: 10.3389/fncel.2017.00092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/16/2017] [Indexed: 11/13/2022] Open
Abstract
Environmental stimulation during brain development is an important risk factor for the development of neurodegenerative disease. Clinical evidence indicates that prenatal exposure to particulate air pollutants leads to diffuse damage to the neurovascular unit in the developing brain and accelerates neurodegeneration. Maternal exposure to carbon black nanoparticles (CB-NPs), used as a model for particulate air pollution, induces long-lasting diffuse perivascular abnormalities. We aimed to comprehensively characterize the perivascular abnormalities related to maternal NPs exposure using Fourier transform infrared microspectroscopy (in situ FT-IR) and classical staining analysis. Pregnant ICR mice were intranasally treated with a CB-NPs suspension (95 μg/kg at a time) on gestational days 5 and 9. Brains were collected 6 weeks after birth and sliced to prepare 10-μm-thick serial sections. Reflective spectra of in situ FT-IR were acquired using lattice measurements (x-axis: 7, y-axis: 7, 30-μm apertures) around a centered blood vessel. We also performed mapping analysis of protein secondary structures. Serial sections were stained with using periodic acid-Schiff or immunofluorescence to examine the phenotypes of the perivascular areas. Peaks of amide I bands in spectra from perivascular areas were shifted by maternal NPs exposure. However, there were two types of peak-shift in one mouse in the exposure group. Some vessels had a large peak-shift and others had a small peak-shift. In situ FT-IR combined with traditional staining revealed that the large peak-shift was induced around blood vessel adjacent to astrocytes with glial fibrillary acidic protein and aquaporin-4 over-expression and perivascular macrophages (PVMs) with enlarged lysosome granules. Furthermore, protein secondary structural analysis indicated that maternal NPs exposure led to increases in β-sheet content and decreases in α-helix content in areas that are mostly close to the centered blood vessel displaying histopathological changes. These results suggest that β-sheet-rich waste proteins, which are denatured by maternal NPs exposure, likely accumulate in the perivascular space as they are processed by the clearance systems in the brain. This may in turn lead the denaturation of PVMs and astrocyte activation. The risk of neurodegeneration may be enhanced by exposure to particulate air pollutants during brain development following the perivascular accumulation of β-sheet-rich waste proteins.
Collapse
Affiliation(s)
- Atsuto Onoda
- Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University of ScienceNoda, Japan.,The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of ScienceNoda, Japan.,Research Fellow of Japan Society for the Promotion of ScienceTokyo, Japan
| | - Takayasu Kawasaki
- Infrared Free Electron Laser Research Center, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of ScienceNoda, Japan
| | - Koichi Tsukiyama
- Infrared Free Electron Laser Research Center, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of ScienceNoda, Japan.,Department of Chemistry, Faculty of Science, Tokyo University of ScienceTokyo, Japan
| | - Ken Takeda
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of ScienceNoda, Japan
| | - Masakazu Umezawa
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of ScienceNoda, Japan.,Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of ScienceTokyo, Japan
| |
Collapse
|
31
|
Haspel N, Zheng J, Aleman C, Zanuy D, Nussinov R. A Protocol for the Design of Protein and Peptide Nanostructure Self-Assemblies Exploiting Synthetic Amino Acids. Methods Mol Biol 2017; 1529:323-352. [PMID: 27914060 PMCID: PMC7900906 DOI: 10.1007/978-1-4939-6637-0_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
In recent years there has been increasing interest in nanostructure design based on the self-assembly properties of proteins and polymers. Nanodesign requires the ability to predictably manipulate the properties of the self-assembly of autonomous building blocks, which can fold or aggregate into preferred conformational states. The design includes functional synthetic materials and biological macromolecules. Autonomous biological building blocks with available 3D structures provide an extremely rich and useful resource. Structural databases contain large libraries of protein molecules and their building blocks with a range of sizes, shapes, surfaces, and chemical properties. The introduction of engineered synthetic residues or short peptides into these building blocks can greatly expand the available chemical space and enhance the desired properties. Herein, we summarize a protocol for designing nanostructures consisting of self-assembling building blocks, based on our recent works. We focus on the principles of nanostructure design with naturally occurring proteins and synthetic amino acids, as well as hybrid materials made of amyloids and synthetic polymers.
Collapse
Affiliation(s)
- Nurit Haspel
- Department of Computer Science, The University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA, 02125, USA.
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Carlos Aleman
- Departament d'Enginyeria Química, E. T. S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona, Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C', C/Pasqual i Vila s/n, E-08028, Barcelona, Spain
| | - David Zanuy
- Departament d'Enginyeria Química, E. T. S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona, Spain
| | - Ruth Nussinov
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Inst. of Molecular Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA
| |
Collapse
|
32
|
|
33
|
Zhang M, Ren B, Chen H, Sun Y, Ma J, Jiang B, Zheng J. Molecular Simulations of Amyloid Structures, Toxicity, and Inhibition. Isr J Chem 2016. [DOI: 10.1002/ijch.201600075] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mingzhen Zhang
- Department of Chemical and Biomolecular Engineering The University of Akron Akron OH 44325 USA
| | - Baiping Ren
- Department of Chemical and Biomolecular Engineering The University of Akron Akron OH 44325 USA
| | - Hong Chen
- Department of Chemical and Biomolecular Engineering The University of Akron Akron OH 44325 USA
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
| | - Jie Ma
- Department of Chemical and Biomolecular Engineering The University of Akron Akron OH 44325 USA
- State Key Laboratory of Pollution Control and Resource Reuse School of Environmental Science and Engineering Tongji University Shanghai 200092 P. R. China
| | - Binbo Jiang
- Department of Chemical and Biomolecular Engineering The University of Akron Akron OH 44325 USA
- College of Chemical and Biological Engineering Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering The University of Akron Akron OH 44325 USA
| |
Collapse
|
34
|
Vinogradov VV, Avnir D. Enzyme renaturation to higher activity driven by the sol-gel transition: Carbonic anhydrase. Sci Rep 2015; 5:14411. [PMID: 26394694 PMCID: PMC4585781 DOI: 10.1038/srep14411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/26/2015] [Indexed: 12/27/2022] Open
Abstract
We describe a so-far unknown route for renaturing denatured enzymes, namely subjecting the denatured enzyme to an oxide sol-gel transition. The phenomenon was revealed in a detailed study of denatured carbonic anhydrase which was subjected to an alumina sol-gel transition, up to the thermally stabilizing entrapment in the final xerogel. Remarkably, not only that the killed enzyme regained its activity during the sol-gel process, but its activity increased to 180% of the native enzyme. To the best of our knowledge, this is the first report of enhanced activity following by renaturing (a "Phoenix effect"). Kinetic study which revealed a five-orders of magnitude (!) increase in the Arrhenius prefactor upon entrapment compared to solution. Circular dichroism analysis, differential scanning calorimetry, zeta potential analyses as well as synchronous fluorescence measurements, all of which were used to characterize the phenomenon, are consistent with a proposed mechanism which is based on the specific orienting interactions of the active site of the enzyme with respect to the alumina interface and its pores network.
Collapse
Affiliation(s)
- Vladimir V. Vinogradov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg, 197101, Russian Federation
| | - David Avnir
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, the Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
35
|
Karumanchi DK, Karunaratne N, Lurio L, Dillon JP, Gaillard ER. Non-enzymatic glycation of α-crystallin as an in vitro model for aging, diabetes and degenerative diseases. Amino Acids 2015. [DOI: 10.1007/s00726-015-2052-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Abstract
Highly sophisticated mechanisms that modulate protein structure and function, which involve synthesis and degradation, have evolved to maintain cellular homeostasis. Perturbations in these mechanisms can lead to protein dysfunction as well as deleterious cell processes. Therefore in recent years the etiology of a great number of diseases has been attributed to failures in mechanisms that modulate protein structure. Interconnections among metabolic and cell signaling pathways are critical for homeostasis to converge on mechanisms associated with protein folding as well as for the preservation of the native structure of proteins. For instance, imbalances in secretory protein synthesis pathways lead to a condition known as endoplasmic reticulum (ER) stress which elicits the adaptive unfolded protein response (UPR). Therefore, taking this into consideration, a key part of this paper is developed around the protein folding phenomenon, and cellular mechanisms which support this pivotal condition. We provide an overview of chaperone protein function, UPR via, spatial compartmentalization of protein folding, proteasome role, autophagy, as well as the intertwining between these processes. Several diseases are known to have a molecular etiology in the malfunction of mechanisms responsible for protein folding and in the shielding of native structure, phenomena which ultimately lead to misfolded protein accumulation. This review centers on our current knowledge about pathways that modulate protein folding, and cell responses involved in protein homeostasis.
Collapse
|
37
|
Rao VA. Perspectives on Engineering Biobetter Therapeutic Proteins with Greater Stability in Inflammatory Environments. BIOBETTERS 2015. [DOI: 10.1007/978-1-4939-2543-8_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Atmanli A, Hu D, Domian IJ. Molecular etching: a novel methodology for the generation of complex micropatterned growth surfaces for human cellular assays. Adv Healthc Mater 2014; 3:1759-64. [PMID: 24805162 PMCID: PMC4224634 DOI: 10.1002/adhm.201400010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/29/2014] [Indexed: 12/21/2022]
Abstract
The extracellular matrix (ECM) is the non-cellular component of all tissues consisting of many different bioactive macromolecules including proteins, proteoglycans, glycoproteins and gradients of growth factors. It is a highly complex and dynamic structure that is subject to constant remodeling in vivo . The ECM not only provides essential structural support for tissues and cell layers but also modulates molecular and biomechanical signaling cues.[1 -4 ] ECM composition is tightly regulated during normal development and hemostasis and varies with tissue type as well as developmental stage. Hearts of different developmental stages have significant differences in ECM composition and elasticity.[5 , 6 ] Dysregulation of the ECM has also been shown to result in human aortic and connective tissue diseases.[7 ] In addition, ECM has been shown to control cell behavior and function through its elasticity, topography, and dimensionality. In vitro , culture surface stiffness has been shown to directly control the lineage commitment of mesenchymal stem cells.[8 , 9 ]
Collapse
Affiliation(s)
- Ayhan Atmanli
- Cardiovascular Research Center Massachusetts General Hospital 185 Cambridge Street, Boston, MA 02114, USA
- Harvard Medical School 250 Longwood Avenue, Boston, MA 02115, USA Dr. Ibrahim J. Domian
| | - Dongjian Hu
- Cardiovascular Research Center Massachusetts General Hospital 185 Cambridge Street, Boston, MA 02114, USA
- Harvard Medical School 250 Longwood Avenue, Boston, MA 02115, USA Dr. Ibrahim J. Domian
| | - Ibrahim J. Domian
- Cardiovascular Research Center Massachusetts General Hospital 185 Cambridge Street, Boston, MA 02114, USA
- Harvard Medical School 250 Longwood Avenue, Boston, MA 02115, USA Dr. Ibrahim J. Domian
- Harvard Stem Cell Institute 1350 Massachusetts Avenue Cambridge, MA 02138, USA
| |
Collapse
|
39
|
Muneeruddin K, Thomas JJ, Salinas PA, Kaltashov IA. Characterization of small protein aggregates and oligomers using size exclusion chromatography with online detection by native electrospray ionization mass spectrometry. Anal Chem 2014; 86:10692-9. [PMID: 25310183 DOI: 10.1021/ac502590h] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Self-association of proteins is important in a variety of processes ranging from acquisition of native quaternary structure (where the association is tightly controlled and proceeds in a highly ordered fashion) to aggregation and amyloidosis. The latter is frequently accompanied (or indeed triggered) by the loss of the native structure, but a clear understanding of the complex relationship between conformational changes and protein self-association/aggregation remains elusive due to the great difficulty in characterizing these complex and frequently heterogeneous species. In this study, size exclusion chromatography (SEC) was used in combination with online detection by native electrospray ionization mass spectrometry (ESI MS) to characterize a commercial protein sample (serum albumin) that forms small aggregates. Although noncovalent dimers and trimers of this protein are readily detected by native ESI MS alone, combination of SEC and ESI MS allows a distinction to be made between the oligomers present in solution and those formed during the ESI process (artifacts of ESI MS). Additionally, native ESI MS detection allows a partial loss of conformation integrity to be detected across all albumin species present in solution. Finally, ESI MS detection allows these analyses to be carried out readily even in the presence of other abundant proteins coeluting with albumin. Native ESI MS as an online detection method for SEC also enables meaningful characterization of species representing different quaternary organization of a recombinant glycoprotein human arylsulfatase A even when their rapid interconversion prevents their separation on the SEC time scale.
Collapse
Affiliation(s)
- Khaja Muneeruddin
- Department of Chemistry, University of Massachusetts-Amherst , Amherst, Massachusetts 01003, United States
| | | | | | | |
Collapse
|
40
|
Zhang M, Hu R, Liang G, Chang Y, Sun Y, Peng Z, Zheng J. Structural and Energetic Insight into the Cross-Seeding Amyloid Assemblies of Human IAPP and Rat IAPP. J Phys Chem B 2014; 118:7026-36. [DOI: 10.1021/jp5022246] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mingzhen Zhang
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Rundong Hu
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Guizhao Liang
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education,
Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li, Taoyuan 320, Taiwan
| | - Yan Sun
- Department
of Biochemical Engineering and Key Laboratory of Systems Bioengineering
of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhenmeng Peng
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jie Zheng
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
41
|
Verification of the Intermolecular Parallel β-Sheet in E22K-Aβ42 Aggregates by Solid-State NMR Using Rotational Resonance: Implications for the Supramolecular Arrangement of the Toxic Conformer of Aβ42. Biosci Biotechnol Biochem 2014; 72:2170-5. [DOI: 10.1271/bbb.80250] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
42
|
Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:175062. [PMID: 24900954 PMCID: PMC4036420 DOI: 10.1155/2014/175062] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/19/2014] [Accepted: 04/20/2014] [Indexed: 01/26/2023]
Abstract
Mitochondrial dysfunctions are supposed to be responsible for many neurodegenerative diseases dominating in Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). A growing body of evidence suggests that defects in mitochondrial metabolism and particularly of electron transport chain may play a role in pathogenesis of AD. Structurally and functionally damaged mitochondria do not produce sufficient ATP and are more prominent in producing proapoptotic factors and reactive oxygen species (ROS), and this can be an early stage of several mitochondrial disorders, including neurodegenerative diseases. Mitochondrial dysfunctions may be caused by both mutations in mitochondrial or nuclear DNA that code mitochondrial components and by environmental causes. In the following review, common aspects of mitochondrial impairment concerned about neurodegenerative diseases are summarized including ROS production, impaired mitochondrial dynamics, and apoptosis. Also, damaged function of electron transport chain complexes and interactions between pathological proteins and mitochondria are described for AD particularly and marginally for PD and HD.
Collapse
|
43
|
Sluchanko NN, Roman SG, Chebotareva NA, Gusev NB. Chaperone-like activity of monomeric human 14-3-3ζ on different protein substrates. Arch Biochem Biophys 2014; 549:32-9. [PMID: 24681339 DOI: 10.1016/j.abb.2014.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/05/2014] [Accepted: 03/18/2014] [Indexed: 12/28/2022]
Abstract
Members of the 14-3-3 protein family interact with hundreds of different, predominantly phosphorylated, proteins. 14-3-3 dimers are prevalent but exist at the equilibrium with the monomers. Our previous studies using the engineered monomeric 14-3-3ζ (14-3-3ζm) showed that 14-3-3ζ monomer retained binding activity towards selected phosphorylated partners and, in addition, it prevented heat-induced aggregation of myosin subfragment 1. Since the chaperone-like activity of 14-3-3 monomers has been insufficiently studied, here we have analyzed the effect of 14-3-3ζm on the aggregation of different model proteins. We found that 14-3-3ζm demonstrated considerable chaperone-like activity by inhibiting the DTT-induced aggregation of insulin and thermally-induced aggregation of alcohol dehydrogenase and phosphorylase kinase. Importantly, the anti-aggregating activity of 14-3-3ζm was concentration-dependent and overall, was more pronounced than that of its dimeric counterpart. In some cases, the chaperone-like effect of 14-3-3ζm was comparable, or even higher, than that of the small heat shock proteins, HspB6 and HspB5. We suggest that 14-3-3s not only can bind and regulate the activity of multiple phosphoproteins, but also possess moonlighting chaperone-like activity, which is especially pronounced in the case of monomeric forms of 14-3-3 which can be present under certain stress conditions.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russian Federation.
| | - Svetlana G Roman
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russian Federation
| | - Natalia A Chebotareva
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russian Federation
| | - Nikolai B Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991, Russian Federation
| |
Collapse
|
44
|
Iram A, Naeem A. Protein Folding, Misfolding, Aggregation and Their Implications in Human Diseases: Discovering Therapeutic Ways to Amyloid-Associated Diseases. Cell Biochem Biophys 2014; 70:51-61. [DOI: 10.1007/s12013-014-9904-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Matsuo K, Hiramatsu H, Gekko K, Namatame H, Taniguchi M, Woody RW. Characterization of intermolecular structure of β(2)-microglobulin core fragments in amyloid fibrils by vacuum-ultraviolet circular dichroism spectroscopy and circular dichroism theory. J Phys Chem B 2014; 118:2785-95. [PMID: 24512563 DOI: 10.1021/jp409630u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intermolecular structures are important factors for understanding the conformational properties of amyloid fibrils. In this study, vacuum-ultraviolet circular dichroism (VUVCD) spectroscopy and circular dichroism (CD) theory were used for characterizing the intermolecular structures of β2-microglobulin (β2m) core fragments in the amyloid fibrils. The VUVCD spectra of β2m20-41, β2m21-31, and β2m21-29 fragments in the amyloid fibrils exhibited characteristic features, but they were affected not only by the backbone conformations but also by the aromatic side-chain conformations. To estimate the contributions of aromatic side-chains to the spectra, the theoretical spectra were calculated from the simulated structures of β2m21-29 amyloid fibrils with various types of β-sheet stacking (parallel or antiparallel) using CD theory. We found that the experimental spectrum of β2m21-29 fibrils is largely affected by aromatic-backbone couplings, which are induced by the interaction between transitions within the aromatic and backbone chromophores, and these couplings are sensitive to the type of stacking among the β-sheets of the fibrils. Further theoretical analyses of simulated structures incorporating mutated aromatic residues suggested that the β2m21-29 fibrils are composed of amyloid accumulations in which the parallel β-sheets stack in an antiparallel manner and that the characteristic Phe-Tyr interactions among the β-sheet stacks affect the aromatic-backbone coupling. These findings indicate that the coupling components, which depend on the characteristic intermolecular structures, induce the spectral differences among three fragments in the amyloid fibrils. These advanced spectral analyses using CD theory provide a useful method for characterizing the intermolecular structures of protein and peptide fragment complexes.
Collapse
Affiliation(s)
- Koichi Matsuo
- Hiroshima Synchrotron Radiation Center, Hiroshima University , Higashi-Hiroshima 739-0046, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Mulligan VK, Chakrabartty A. Protein misfolding in the late-onset neurodegenerative diseases: Common themes and the unique case of amyotrophic lateral sclerosis. Proteins 2013; 81:1285-303. [DOI: 10.1002/prot.24285] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 12/12/2022]
Affiliation(s)
| | - Avijit Chakrabartty
- Department of Biochemistry; Toronto Ontario M5G 1L7 Canada
- Department of Medical Biophysics; University of Toronto; Toronto Ontario M5G 1L7 Canada
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute/University Health Network; Toronto Ontario M5G 1L7 Canada
| |
Collapse
|
47
|
Seo JH, Kakinoki S, Inoue Y, Nam K, Yamaoka T, Ishihara K, Kishida A, Yui N. The significance of hydrated surface molecular mobility in the control of the morphology of adhering fibroblasts. Biomaterials 2013; 34:3206-14. [DOI: 10.1016/j.biomaterials.2013.01.080] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 01/24/2013] [Indexed: 12/27/2022]
|
48
|
Hai J, Lin Q, Wu YF, Huang XS, Zhang GY, Wang F. Effects of N-stearoyl-L-tyrosine on the hippocampal ubiquitin-proteasome system in rats with chronic cerebral hypoperfusion. Neurol Res 2013; 35:734-43. [PMID: 23562289 DOI: 10.1179/1743132812y.0000000154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Chronic cerebral hypoperfusion (CCH) leads to neurodegeneration and cognitive impairment. Ubiquitinated protein aggregates are commonly present in neurodegenerative disorders and are believed to cause neuronal degeneration. Here, we investigated the effects of N-stearoyl-L-tyrosine (NSTyr) on the hippocampal ubiquitin-proteasome system (UPS) in rats with CCH. METHODS After induction of CCH, NSTyr was intraperitoneally administered daily for 3 months. Protein aggregation was analyzed by ethanolic phosphotungstic acid (EPTA) electron microscopy (EM), immunogold EM, laser-scanning confocal microscopy, and Western blot. Proteasome peptidase activity was measured by peptidase activity assays. RESULTS By using EPTA EM, immunogold EM and high-resolution laser-scanning confocal microscopy, we found that CCH resulted in the accumulation of ubiquitinated protein aggregates in rat hippocampal CA1 neurons. Western blot revealed that the levels of free ubiquitin were significantly reduced and that the levels of ubiquitinated proteins were markedly increased in the hippocampus of CCH rats. Direct activity measurements demonstrated that proteasome peptidase activity in the hippocampal region of rats was decreased after CCH induction. In the hippocampal tissue of CCH rats treated with NSTyr, however, ubiquitinated protein aggregates decreased and proteasome peptidase activity increased. DISCUSSION These data indicate that NSTyr may exert protective effects on rat hippocampal UPS function via endogenous regulation.
Collapse
Affiliation(s)
- Jian Hai
- Tongji University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
49
|
Liang G, Zhao J, Yu X, Zheng J. Comparative molecular dynamics study of human islet amyloid polypeptide (IAPP) and rat IAPP oligomers. Biochemistry 2013; 52:1089-100. [PMID: 23331123 DOI: 10.1021/bi301525e] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human islet amyloid polypeptide (hIAPP or amylin) is a causative agent in pancreatic amyloid deposits found in patients with type 2 diabetes. The aggregation of full-length hIAPP(1-37) into small oligomeric species is increasingly believed to be responsible for cell dysfunction and death. However, rat IAPP (rIAPP(1-37)), which differs from hIAPP in only six of 37 residues, loses its aggregation ability to form toxic amyloid species. Atomic details of the effect of sequence on the structure and toxicity between the amyloidogenic, toxic hIAPP peptide and the nonamyloidogenic, nontoxic rIAPP peptide remain unclear. Here, we probe sequence-induced differences in structural stability, conformational dynamics, and driving forces between different hIAPP and rIAPP polymorphic forms from monomer to pentamer using molecular dynamics simulations. Simulations show that hIAPP forms from trimer to pentamer exhibit high structural stability with well-preserved in-register parallel β-sheet and the U-bend conformation. The hIAPP trimer appears to be a smallest minimal seed in solution. The stabilities of parallel hIAPP oligomers increase with the number of peptides. Conversely, replacement of hIAPP sequence by rIAPP sequence causes a significant loss of favorable interpeptide interactions in all rIAPP oligomers, destabilizing the C-terminal β-sheet, turn conformation, and overall stability. A less β-sheet-rich structure and a disturbed U-shaped topology exert a large energy penalty on the self-assemble of the rIAPP peptides into highly ordered, in-register β-sheet-rich protofibrils and fibrils, which explains the nonamyloidogenic activity of rIAPP. Moreover, the absence of interior water within the U-turn region in the well-packed higher-order hIAPP oligomers, not in the poorly packed rIAPP oligomers, also stabilizes peptide association. This work provides atomic details of the sequence-structure relationship between the amyloidogenic hIAPP and its analogues such as the nonamyloidogenic rIAPP and some mutants, which could help in the development of novel therapeutic agents to block the formation of toxic hIAPP oligomeric species for type 2 diabetes.
Collapse
Affiliation(s)
- Guizhao Liang
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, USA
| | | | | | | |
Collapse
|
50
|
Pucciarelli S, Bonacucina G, Bernabucci F, Cespi M, Mencarelli G, De Fronzo GS, Natalini P, Palmieri GF. A Study on the Stability and Enzymatic Activity of Yeast Alcohol Dehydrogenase in Presence of the Self-Assembling Block Copolymer Poloxamer 407. Appl Biochem Biotechnol 2012; 167:298-313. [DOI: 10.1007/s12010-012-9692-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
|