1
|
Chadi H, Moraga-Fernández A, Sánchez-Sánchez M, Chenchouni H, Fernández de Mera IG, Garigliany MM, de la Fuente J, Tennah S, Sedrati T, Ghalmi F. Molecular detection and associated risk factors of Anaplasma marginale, A. ovis and A. platys in sheep from Algeria with evidence of the absence of A. phagocytophilum. Acta Trop 2024; 249:107040. [PMID: 37839669 DOI: 10.1016/j.actatropica.2023.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Anaplasma species are obligate intracellular rickettsial pathogens that cause significant diseases in animals and humans. Despite their importance, limited information on Anaplasma infections in Algeria has been published thus far. This study aimed to assess the infection rate, characterize Anaplasma species, and identify associated risk factors in selected sheep farms across Oum El Bouaghi region in Algeria. In 2018, we collected 417 blood samples from sheep (Ovis aries) and performed molecular characterization of Anaplasma species infecting these animals. This characterization involved the use of 16S rRNA, msp2, rpoB, and msp5 genes, which were analyzed through nested PCR, qPCR, cPCR, DNA sequencing, and subsequent phylogenetic analysis. Our findings revealed infection rates of 12.7 % for Anaplasma species detected, with Anaplasma ovis at 10.8 %, Anaplasma marginale at 1.7 %, and Anaplasma platys at 0.2 %. Interestingly, all tested animals were found negative for Anaplasma phagocytophilum. Statistical analyses, including the Chi-square test and Fisher exact test, failed to establish any significant relationships (p > 0.05) between A. ovis and A. platys infections and variables such as age, sex, sampling season, and tick infestation level. However, A. marginale infection exhibited a significant association with age (p < 0.05), with a higher incidence observed in lambs (5.2 %) compared to other age groups. Remarkably, this study represents the first molecular detection of A. platys and A. marginale in Algerian sheep. These findings suggest that Algerian sheep may serve as potential reservoirs for these pathogens. This research contributes valuable insights into the prevalence and characteristics of Anaplasma infections in Algerian sheep populations, emphasizing the need for further investigation and enhanced surveillance to better understand and manage these diseases.
Collapse
Affiliation(s)
- Hafidha Chadi
- Research Laboratory Management of Local Animal Resources, Higher National Veterinary School (ENSV), El Harrach, Algiers 16004, Algeria; Department of Applied Biology, Faculty of Exact Sciences and Nature and Life Sciences, University of Echahid Cheikh Larbi Tebessi, Tebessa 12000, Algeria.
| | - Alberto Moraga-Fernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ronda de Toledo 12, Ciudad Real 13005, Spain
| | - Marta Sánchez-Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ronda de Toledo 12, Ciudad Real 13005, Spain
| | | | - Isabel G Fernández de Mera
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ronda de Toledo 12, Ciudad Real 13005, Spain
| | - Mutien-Marie Garigliany
- Fundamental and Applied Research for Animals and Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Belgium
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ronda de Toledo 12, Ciudad Real 13005, Spain; Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Safia Tennah
- Research Laboratory Management of Local Animal Resources, Higher National Veterinary School (ENSV), El Harrach, Algiers 16004, Algeria
| | - Tahar Sedrati
- Research Laboratory Management of Local Animal Resources, Higher National Veterinary School (ENSV), El Harrach, Algiers 16004, Algeria; Department of Biology, University of Mohamed El Bachir El Ibrahimi, Bordj Bou Arréridj 34000, Algeria
| | - Farida Ghalmi
- Research Laboratory Management of Local Animal Resources, Higher National Veterinary School (ENSV), El Harrach, Algiers 16004, Algeria
| |
Collapse
|
2
|
Atif FA, Mehnaz S, Qamar MF, Roheen T, Sajid MS, Ehtisham-ul-Haque S, Kashif M, Ben Said M. Epidemiology, Diagnosis, and Control of Canine Infectious Cyclic Thrombocytopenia and Granulocytic Anaplasmosis: Emerging Diseases of Veterinary and Public Health Significance. Vet Sci 2021; 8:vetsci8120312. [PMID: 34941839 PMCID: PMC8705095 DOI: 10.3390/vetsci8120312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
This review highlights the diagnostic methods used, the control strategies adopted, and the global epidemiological status of canine cyclic thrombocytopenia and granulocytic anaplasmosis at the animal–human interface. Canine anaplasmosis is an important worldwide disease, mainly caused by Anaplasma platys and A. phagocytophilum with zoonotic implications. A. platys chiefly infects platelets in canids, while A. phagocytophilum is the most common zoonotic pathogen infecting neutrophils of various vertebrate hosts. Diagnosis is based on the identification of clinical signs, the recognition of intracellular inclusions observed by microscopic observation of stained blood smear, and/or methods detecting antibodies or nucleic acids, although DNA sequencing is usually required to confirm the pathogenic strain. Serological cross-reactivity is the main problem in serodiagnosis. Prevalence varies from area to area depending on tick exposure. Tetracyclines are significant drugs for human and animal anaplasmosis. No universal vaccine is yet available that protects against diverse geographic strains. The control of canine anaplasmosis therefore relies on the detection of vectors/reservoirs, control of tick vectors, and prevention of iatrogenic/mechanical transmission. The control strategies for human anaplasmosis include reducing high-risk tick contact activities (such as gardening and hiking), careful blood transfusion, by passing immunosuppression, recognizing, and control of reservoirs/vectors.
Collapse
Affiliation(s)
- Farhan Ahmad Atif
- Medicine Section, Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore 54600, Pakistan; (S.M.); (M.K.)
- Correspondence: or (F.A.A.); or (M.B.S.); Tel.: +92-47-7671270 (F.A.A.); +216-58-964147 (M.B.S.)
| | - Saba Mehnaz
- Medicine Section, Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore 54600, Pakistan; (S.M.); (M.K.)
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Muhammad Fiaz Qamar
- Department of Pathobiology, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore 54600, Pakistan; (M.F.Q.); (S.E.-u.-H.)
| | - Taleeha Roheen
- Department of Chemistry (Biochemistry), University of Sargodha, Sargodha 40100, Pakistan;
| | - Muhammad Sohail Sajid
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Syed Ehtisham-ul-Haque
- Department of Pathobiology, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore 54600, Pakistan; (M.F.Q.); (S.E.-u.-H.)
| | - Muhammad Kashif
- Medicine Section, Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore 54600, Pakistan; (S.M.); (M.K.)
| | - Mourad Ben Said
- Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
- Laboratory of Microbiology at the National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
- Correspondence: or (F.A.A.); or (M.B.S.); Tel.: +92-47-7671270 (F.A.A.); +216-58-964147 (M.B.S.)
| |
Collapse
|
3
|
Ben Said M, Belkahia H, Selmi R, Messadi L. Computational selection of minimum length groESL operon required for Anaplasma species attribution and strain diversity analysis. Mol Cell Probes 2019; 48:101467. [DOI: 10.1016/j.mcp.2019.101467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/06/2019] [Accepted: 09/25/2019] [Indexed: 01/18/2023]
|
4
|
Ben Said M, Belkahia H, Messadi L. Anaplasma spp. in North Africa: A review on molecular epidemiology, associated risk factors and genetic characteristics. Ticks Tick Borne Dis 2018; 9:543-555. [PMID: 29398602 DOI: 10.1016/j.ttbdis.2018.01.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/02/2018] [Accepted: 01/12/2018] [Indexed: 01/23/2023]
Abstract
The genus Anaplasma belonging to the Anaplasmataceae family (order Rickettsiales) comprises obligate intracellular Gram-negative bacteria of veterinary and public health importance. Six species and five types of strains genetically related are currently assigned to the genus Anaplasma including Anaplasma marginale, A. centrale, A. bovis, A. phagocytophilum, A. ovis and A. platys as classified species, and "A. capra", A. odocolei sp. nov., A. phagocytophilum-like 1 (Anaplasma sp.-Japan), A. phagocytophilum-like 2 (Anaplasma sp.-China) and A. platys-like (also named Candidatus Anaplasma camelii) as unclassified strains. Most of these Anaplasma species and strains have been molecularly identified in several animal and/or tick species in the north of Africa. The aim of this review is to summarize the current knowledge about molecular epidemiology, associated risk factors and genetic diversity of Anaplasma species and related strains infecting animals and/or their incriminated tick vectors in North Africa. All these data should be considered when establishing of common management and control programs for anaplasmosis infecting humans and different animal species in North African countries.
Collapse
Affiliation(s)
- Mourad Ben Said
- Service de Microbiologie et d'Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de La Manouba, Sidi Thabet, Tunisia.
| | - Hanène Belkahia
- Service de Microbiologie et d'Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de La Manouba, Sidi Thabet, Tunisia
| | - Lilia Messadi
- Service de Microbiologie et d'Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de La Manouba, Sidi Thabet, Tunisia
| |
Collapse
|
5
|
Hayward J, Sanchez J, Perry A, Huang C, Rodriguez Valle M, Canals M, Payne RJ, Stone MJ. Ticks from diverse genera encode chemokine-inhibitory evasin proteins. J Biol Chem 2017; 292:15670-15680. [PMID: 28778927 DOI: 10.1074/jbc.m117.807255] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Indexed: 12/22/2022] Open
Abstract
To prolong residence on their hosts, ticks secrete many salivary factors that target host defense molecules. In particular, the tick Rhipicephalus sanguineus has been shown to produce three salivary glycoproteins named "evasins," which bind to host chemokines, thereby inhibiting the recruitment of leukocytes to the location of the tick bite. Using sequence similarity searches, we have identified 257 new putative evasin sequences encoded by the genomes or salivary or visceral transcriptomes of numerous hard ticks, spanning the genera Rhipicephalus, Amblyomma, and Ixodes of the Ixodidae family. Nine representative sequences were successfully expressed in Escherichia coli, and eight of the nine candidates exhibited high-affinity binding to human chemokines. Sequence alignments enabled classification of the evasins into two subfamilies: C8 evasins share a conserved set of eight Cys residues (four disulfide bonds), whereas C6 evasins have only three of these disulfide bonds. Most of the identified sequences contain predicted secretion leader sequences, N-linked glycosylation sites, and a putative site of tyrosine sulfation. We conclude that chemokine-binding evasin proteins are widely expressed among tick species of the Ixodidae family, are likely to play important roles in subverting host defenses, and constitute a valuable pool of anti-inflammatory proteins for potential future therapeutic applications.
Collapse
Affiliation(s)
- Jenni Hayward
- From the Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology and
| | - Julie Sanchez
- From the Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology and
| | - Andrew Perry
- the Monash Bioinformatics Platform, Monash University, Clayton, Victoria 3800, Australia
| | - Cheng Huang
- From the Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology and
| | - Manuel Rodriguez Valle
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010
| | - Meritxell Canals
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, and
| | - Richard J Payne
- the School of Chemistry, The University of Sydney, New South Wales 2006, Australia
| | - Martin J Stone
- From the Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology and
| |
Collapse
|
6
|
de la Fuente J, Kopáček P, Lew-Tabor A, Maritz-Olivier C. Strategies for new and improved vaccines against ticks and tick-borne diseases. Parasite Immunol 2016; 38:754-769. [PMID: 27203187 DOI: 10.1111/pim.12339] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/13/2016] [Indexed: 01/12/2023]
Abstract
Ticks infest a variety of animal species and transmit pathogens causing disease in both humans and animals worldwide. Tick-host-pathogen interactions have evolved through dynamic processes that accommodated the genetic traits of the hosts, pathogens transmitted and the vector tick species that mediate their development and survival. New approaches for tick control are dependent on defining molecular interactions between hosts, ticks and pathogens to allow for discovery of key molecules that could be tested in vaccines or new generation therapeutics for intervention of tick-pathogen cycles. Currently, tick vaccines constitute an effective and environmentally sound approach for the control of ticks and the transmission of the associated tick-borne diseases. New candidate protective antigens will most likely be identified by focusing on proteins with relevant biological function in the feeding, reproduction, development, immune response, subversion of host immunity of the tick vector and/or molecules vital for pathogen infection and transmission. This review addresses different approaches and strategies used for the discovery of protective antigens, including focusing on relevant tick biological functions and proteins, reverse genetics, vaccinomics and tick protein evolution and interactomics. New and improved tick vaccines will most likely contain multiple antigens to control tick infestations and pathogen infection and transmission.
Collapse
Affiliation(s)
- J de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - P Kopáček
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - A Lew-Tabor
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, St. Lucia, Qld, Australia.,Centre for Comparative Genomics, Murdoch University, Perth, WA, Australia
| | - C Maritz-Olivier
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
7
|
Moroff S, Sokolchik I, Woodring T, Woodruff C, Atkinson B, Lappin MR. Detection of antibodies against Anaplasma phagocytophilum in dogs using an automated fluorescence based system. Vet J 2014; 202:348-52. [PMID: 25312718 DOI: 10.1016/j.tvjl.2014.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 11/29/2022]
Abstract
Infection with Anaplasma phagocytophilum can cause significant illness in some dogs and accurate diagnostic assays are needed. The objectives of the study were to optimize an automated fluorescence system for the detection of antibodies against A. phagocytophilum in canine serum. Serum and blood was collected temporally from seven dogs inoculated parenterally with culture-derived A. phagocytophilum and from 36 dogs exposed to wild-caught, adult Ixodes scapularis for 7 days. The system was optimized using the samples from the parenterally inoculated dogs. The ability to detect antibodies against A. phagocytophilum in the I. scapularis exposed dogs by the automated system was compared with a diagnostic kit (ELISA) and an indirect fluorescent antibody assay (IFA). Each blood sample was also assayed for A. phagocytophilum DNA by polymerase chain reaction (PCR). Of the 36 dogs exposed to I. scapularis, A. phagocytophilum DNA was amplified from blood from 22 dogs by PCR with first positive results occurring on weeks 1 (seven dogs), 2 (nine dogs), 3 (four dogs), 4 (one dog), or 5 (one dog). PCR results were positive prior to detection of antibodies in any of the three antibody assays for 19 dogs. The automated fluorescence system and IFA detected antibodies against A. phagocytophilum earlier than the ELISA. In conclusion, A. phagocytophilum PCR assays on blood are indicated in dogs with suspected acute anaplasmosis if serum antibody assays are negative.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael R Lappin
- Center for Companion Animal Studies at Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
8
|
Stuen S, Granquist EG, Silaghi C. Anaplasma phagocytophilum--a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol 2013; 3:31. [PMID: 23885337 PMCID: PMC3717505 DOI: 10.3389/fcimb.2013.00031] [Citation(s) in RCA: 393] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/30/2013] [Indexed: 11/21/2022] Open
Abstract
The bacterium Anaplasma phagocytophilum has for decades been known to cause the disease tick-borne fever (TBF) in domestic ruminants in Ixodes ricinus-infested areas in northern Europe. In recent years, the bacterium has been found associated with Ixodes-tick species more or less worldwide on the northern hemisphere. A. phagocytophilum has a broad host range and may cause severe disease in several mammalian species, including humans. However, the clinical symptoms vary from subclinical to fatal conditions, and considerable underreporting of clinical incidents is suspected in both human and veterinary medicine. Several variants of A. phagocytophilum have been genetically characterized. Identification and stratification into phylogenetic subfamilies has been based on cell culturing, experimental infections, PCR, and sequencing techniques. However, few genome sequences have been completed so far, thus observations on biological, ecological, and pathological differences between genotypes of the bacterium, have yet to be elucidated by molecular and experimental infection studies. The natural transmission cycles of various A. phagocytophilum variants, the involvement of their respective hosts and vectors involved, in particular the zoonotic potential, have to be unraveled. A. phagocytophilum is able to persist between seasons of tick activity in several mammalian species and movement of hosts and infected ticks on migrating animals or birds may spread the bacterium. In the present review, we focus on the ecology and epidemiology of A. phagocytophilum, especially the role of wildlife in contribution to the spread and sustainability of the infection in domestic livestock and humans.
Collapse
Affiliation(s)
- Snorre Stuen
- Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science Sandnes, Norway.
| | | | | |
Collapse
|
9
|
Kung F, Anguita J, Pal U. Borrelia burgdorferi and tick proteins supporting pathogen persistence in the vector. Future Microbiol 2013; 8:41-56. [PMID: 23252492 DOI: 10.2217/fmb.12.121] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Borrelia burgdorferi, a pathogen transmitted by Ixodes ticks, is responsible for a prevalent illness known as Lyme disease, and a vaccine for human use is unavailable. Recently, genome sequences of several B. burgdorferi strains and Ixodes scapularis ticks have been determined. In addition, remarkable progress has been made in developing molecular genetic tools to study the pathogen and vector, including their intricate relationship. These developments are helping unravel the mechanisms by which Lyme disease pathogens survive in a complex enzootic infection cycle. Notable discoveries have already contributed to understanding the spirochete gene regulation accounting for the temporal and spatial expression of B. burgdorferi genes during distinct phases of the lifecycle. A number of pathogen and vector gene products have also been identified that contribute to microbial virulence and/or persistence. These research directions will enrich our knowledge of vector-borne infections and contribute towards the development of preventative strategies against Lyme disease.
Collapse
Affiliation(s)
- Faith Kung
- Department of Veterinary Medicine & Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
10
|
Bensaci M, Bhattacharya D, Clark R, Hu LT. Oral vaccination with vaccinia virus expressing the tick antigen subolesin inhibits tick feeding and transmission of Borrelia burgdorferi. Vaccine 2012; 30:6040-6. [PMID: 22864146 DOI: 10.1016/j.vaccine.2012.07.053] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/16/2012] [Accepted: 07/23/2012] [Indexed: 11/24/2022]
Abstract
Immunization with the Ixodes scapularis protein, subolesin, has previously been shown to protect hosts against tick infestation and to decrease acquisition of Anaplsma marginale and Babesia bigemina. Here we report the efficacy of subolesin, a conserved tick protein that can act as a regulator of gene expression, expressed from vaccinia virus for use as an orally delivered reservoir - targeted vaccine for prevention of tick infestation and acquisition/transmission of Borrelia burgdorferi to its tick and mouse hosts. We cloned subolesin into vaccinia virus and showed that it is expressed from mammalian cells infected with the recombinant virus in vitro. We then vaccinated mice by oral gavage. A single dose of the vaccine was sufficient for mice to generate antibody response to subolesin. Vaccination with the subolesin expressing vaccinia virus inhibited tick infestation by 52% compared to control vaccination with vaccinia virus and reduced uptake of B. burgdorferi among the surviving ticks that fed to repletion by 34%. There was a reduction in transmission of B. burgdorferi to uninfected vaccinated mice of 40% compared to controls. These results suggest that subolesin has potential as a component of a reservoir targeted vaccine to decrease B. burgdorferi, Babesia and Anaplasma species infections in their natural hosts.
Collapse
Affiliation(s)
- Mekki Bensaci
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA 02111, USA
| | | | | | | |
Collapse
|