1
|
Escobar A, Diab-Liu A, Bosland K, Xu CQ. Microfluidic Device-Based Virus Detection and Quantification in Future Diagnostic Research: Lessons from the COVID-19 Pandemic. BIOSENSORS 2023; 13:935. [PMID: 37887128 PMCID: PMC10605122 DOI: 10.3390/bios13100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
The global economic and healthcare crises experienced over the past three years, as a result of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has significantly impacted the commonplace habits of humans around the world. SARS-CoV-2, the virus responsible for the coronavirus 2019 (COVID-19) phenomenon, has contributed to the deaths of millions of people around the world. The potential diagnostic applications of microfluidic devices have previously been demonstrated to effectively detect and quasi-quantify several different well-known viruses such as human immunodeficiency virus (HIV), influenza, and SARS-CoV-2. As a result, microfluidics has been further explored as a potential alternative to our currently available rapid tests for highly virulent diseases to better combat and manage future potential outbreaks. The outbreak management during COVID-19 was initially hindered, in part, by the lack of available quantitative rapid tests capable of confirming a person's active infectiousness status. Therefore, this review will explore the use of microfluidic technology, and more specifically RNA-based virus detection methods, as an integral part of improved diagnostic capabilities and will present methods for carrying the lessons learned from COVID-19 forward, toward improved diagnostic outcomes for future pandemic-level threats. This review will first explore the context of the COVID-19 pandemic and how diagnostic technology was shown to have required even greater advancements to keep pace with the transmission of such a highly infectious virus. Secondly, the historical significance of integrating microfluidic technology in diagnostics and how the different types of genetic-based detection methods may vary in their potential practical applications. Lastly, the review will summarize the past, present, and future potential of RNA-based virus detection/diagnosis and how it might be used to better prepare for a future pandemic.
Collapse
Affiliation(s)
- Andres Escobar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada;
| | - Alex Diab-Liu
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.D.-L.); (K.B.)
| | - Kamaya Bosland
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.D.-L.); (K.B.)
| | - Chang-qing Xu
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada;
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.D.-L.); (K.B.)
| |
Collapse
|
2
|
Gnaim R, Sheviryov J, Golberg A, Ames G, Oziel M, González CA. Label-Free cDNA Detection Based on Radiofrequency Scattering Parameters: A New Approach for an Inexpensive Gene Sensor. J Med Device 2020. [DOI: 10.1115/1.4045909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
A new gene detection technique that is fast, inexpensive, and easy-to-use is urgently needed in hospitals, clinics, and laboratories without access to expensive equipments. The lack of a practical, minimally invasive, and economical method constitutes the main impediment to the promotion of genetic medicine in developing countries. Radiofrequency scattering parameters are an inexpensive gene sensor potentially capable of noninvasively identifying biological materials. They represent a quantitative value for the electromagnetic reflection/transmission characteristics of certain molecular markers in a given frequency domain. The S21 parameter is the difference between the signal received and that transmitted. The aim of this study is to evaluate the S21 transmittance parameters (magnitude and phase) as an indirect impedance measurement for detecting the label-free complementary deoxyribonucleic acid (cDNA) amplification of the 16S ribosomal subunit gene. S21 values showed differences associated with distinct cDNA concentrations. Hence, this technique could possibly facilitate the design of an inexpensive, label-free, and easy-to-use gene sensor.
Collapse
Affiliation(s)
- Rima Gnaim
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Triangle Regional Research and Development Center, Kfar Qari' 30075, Israel; Porter School, Tel Aviv University, Room 214, Ramat Aviv 69978, Israel
| | - Julia Sheviryov
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Porter School, Room 214, Ramat Aviv 69978, Israel
| | - Alexander Golberg
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Porter School, Room 215, Ramat Aviv 69978, Israel
| | - Gerardo Ames
- Centro de Investigación en Instrumentación e Imagenología Médica (Ci3M), Universidad Autónoma Metropolitana—Iztapalapa, CDMX 09340, Mexico; Centro de Investigación en Instrumentación e Imagenología Médica (Ci3M), Avenue San Rafael Atlixco 186, Leyes de Reforma 1ra Secc 09340, México
| | - Moshe Oziel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - César A. González
- Instituto Politécnico Nacional-Escuela Superior de Medicina, CDMX 11340, México; Plan de San Luis esq. Díaz Mirón, Col. Casco de Santo Tomas, CDMX 11300, México
| |
Collapse
|
3
|
Parahitiyawa NB, Chu FCS, Leung WK, Yam WC, Jin LJ, Samaranayake LP. Clonality of bacterial consortia in root canals and subjacent gingival crevices. ACTA ACUST UNITED AC 2014; 6:32-9. [DOI: 10.1111/jicd.12070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 03/31/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Nipuna B. Parahitiyawa
- Department of Oral Bio-Sciences; Faculty of Dentistry and Department of Microbiology; The University of Hong Kong; Hong Kong SAR China
| | - Frederick C. S. Chu
- Department of Comprehensive Dental Care; Faculty of Dentistry and Department of Microbiology; The University of Hong Kong; Hong Kong SAR China
| | - Wai K. Leung
- Department of Periodontology; Faculty of Dentistry and Department of Microbiology; The University of Hong Kong; Hong Kong SAR China
| | - Wing C. Yam
- Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong SAR China
| | - Li Jian Jin
- Department of Periodontology; Faculty of Dentistry and Department of Microbiology; The University of Hong Kong; Hong Kong SAR China
| | | |
Collapse
|
4
|
Fábryová H, Celec P. On the origin and diagnostic use of salivary RNA. Oral Dis 2013; 20:146-52. [PMID: 23517132 DOI: 10.1111/odi.12098] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/23/2013] [Accepted: 02/24/2013] [Indexed: 01/09/2023]
Abstract
Saliva as a diagnostic fluid enables non-invasive sampling, which can be performed even by an untrained person. Saliva is, thus, particularly useful for large population screenings, for children, elderly and whenever repeated samplings are needed. Saliva is a plasma filtrate actively modified by the salivary glands. Saliva could replace some routine blood tests in the future. The sources of salivary RNA include oral epithelial cells and oral micro-organisms. Recent developments suggest that using known salivary RNA markers, it is possible to diagnose diseases such as oral carcinoma and other diseases will be added soon. Salivary RNA can be used to identify oral bacteria and to determine the expression of specific genes. On a systemic level, it provides information about the whole oral transcriptome and microbiome. Despite the small amount of salivary RNA, the issues with its isolation have been overcome. Saliva, thus, contains RNA of sufficient quality and quantity for sensitive and specific analyses. Salivary RNA can provide medically relevant information about oral microbiome, oral carcinoma, but also breast and pancreatic cancer and is, thus, a promising tool for future research and clinical diagnostics.
Collapse
Affiliation(s)
- H Fábryová
- Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | | |
Collapse
|
5
|
Cornett EM, O’Steen MR, Kolpashchikov DM. Operating Cooperatively (OC) sensor for highly specific recognition of nucleic acids. PLoS One 2013; 8:e55919. [PMID: 23441157 PMCID: PMC3575382 DOI: 10.1371/journal.pone.0055919] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/03/2013] [Indexed: 11/18/2022] Open
Abstract
Molecular Beacon (MB) probes have been extensively used for nucleic acid analysis because of their ability to produce fluorescent signal in solution instantly after hybridization. The indirect binding of MB probe to a target analyte offers several advantages, including: improved genotyping accuracy and the possibility to analyse folded nucleic acids. Here we report on a new design for MB-based sensor, called ‘Operating Cooperatively’ (OC), which takes advantage of indirect binding of MB probe to a target analyte. The sensor consists of two unmodified DNA strands, which hybridize to a universal MB probe and a nucleic acid analyte to form a fluorescent complex. OC sensors were designed to analyze two human SNPs and E.coli 16S rRNA. High specificity of the approach was demonstrated by the detection of true analyte in over 100 times excess amount of single base substituted analytes. Taking into account the flexibility in the design and the simplicity in optimization, we conclude that OC sensors may become versatile and efficient tools for instant DNA and RNA analysis in homogeneous solution.
Collapse
Affiliation(s)
- Evan M. Cornett
- Chemistry Department, College of Sciences, University of Central Florida, Orlando, Florida, United States of America
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Martin R. O’Steen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Dmitry M. Kolpashchikov
- Chemistry Department, College of Sciences, University of Central Florida, Orlando, Florida, United States of America
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
- * E-mail:
| |
Collapse
|
6
|
Gerasimova YV, Kolpashchikov DM. Detection of bacterial 16S rRNA using a molecular beacon-based X sensor. Biosens Bioelectron 2012; 41:386-90. [PMID: 23021850 DOI: 10.1016/j.bios.2012.08.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 01/14/2023]
Abstract
We demonstrate how a long structurally constrained RNA can be analyzed in homogeneous solution at ambient temperatures with high specificity using a sophisticated biosensor. The sensor consists of a molecular beacon probe as a signal reporter and two DNA adaptor strands, which have fragments complementary to the reporter and to the analyzed RNA. One adaptor strand uses its long RNA-binding arm to unwind the RNA secondary structure. Second adaptor strand with a short RNA-binding arm hybridizes only to a completely complementary site, thus providing high recognition specificity. Overall the three-component sensor and the target RNA form a four-stranded DNA crossover (X) structure. Using this sensor, Escherichia coli16S rRNA was detected in real time with the detection limit of ~0.17 nM. The high specificity of the analysis was proven by differentiating Bacillus subtilis from E. coli 16S rRNA sequences. The sensor responds to the presence of the analyte within seconds.
Collapse
Affiliation(s)
- Yulia V Gerasimova
- Chemistry Department, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, USA.
| | | |
Collapse
|
7
|
Abstract
Salivary diagnostics is a dynamic and emerging field utilizing nanotechnology and molecular diagnostics to aid in the diagnosis of oral and systemic diseases. In this article the author critically reviews the latest advances using oral biomarkers for disease detection. The use of oral fluids is broadening perspectives in clinical diagnosis, disease monitoring, and decision making for patient care. Important elements determining the future possibilities and challenges in this field are also discussed.
Collapse
Affiliation(s)
- Daniel Malamud
- Department of Basic Sciences, New York University College of Dentistry, New York, NY 10010, USA.
| |
Collapse
|
8
|
Saleh-Lakha S, Trevors JT. Perspective: Microfluidic applications in microbiology. J Microbiol Methods 2010; 82:108-11. [DOI: 10.1016/j.mimet.2010.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
|
9
|
Abstract
As a broad generalization, clinicians and laboratory personnel who use microfluidics-based automated or semi-automated instrumentation to perform biomedical assays on real-world samples are more pleased with the state of the assays than they are with the state of the front-end sample preparation. The end-to-end procedure requires one to collect, manipulate, prepare, and analyze the sample. The appeal of microfluidics for this procedure is partly based on its combination of small size and its ability to process very small liquid volumes, thus minimizing the use of possibly expensive reagents. However, real-world samples are often large and incompatible with the input port and the mum-scale channels of a microfluidic device, and very small liquid volumes can be inappropriate in analyzing low concentrations of target analytes. It can be a worthy challenge to take a raw sample, introduce it into a microfluidics-based system, and perform the sample preparation, which may include separation and concentration of the target analytes, so that one can benefit from the reagent-conserving small volumes and obtain the correct answer when finally implementing the assay of interest.
Collapse
Affiliation(s)
- Raymond Mariella
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
| |
Collapse
|
10
|
Fábián T, Fejérdy P, Csermely P. Salivary Genomics, Transcriptomics and Proteomics: The Emerging Concept of the Oral Ecosystem and their Use in the Early Diagnosis of Cancer and other Diseases. Curr Genomics 2008; 9:11-21. [PMID: 19424479 PMCID: PMC2674305 DOI: 10.2174/138920208783884900] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 02/15/2008] [Accepted: 02/17/2008] [Indexed: 12/14/2022] Open
Abstract
There is an increasingly growing interest world-wide for the genomics, transcriptomics and proteomics of saliva and the oral cavity, since they provide a non-invasive source of unprecedently rich genetic information. The complexity of oral systems biology goes much beyond the human genome, transcriptome and proteome revealed by oral mucosal cells, gingival crevicular fluid, and saliva, and includes the complexity of the oral microbiota, the symbiotic assembly of bacterial, fungal and other microbial flora in the oral cavity. In our review we summarize the recent information on oral genomics, transcriptomics and proteomics, of both human and microbial origin. We also give an introduction and practical advice on sample collection, handling and storage for analysis. Finally, we show the usefulness of salivary and oral genomics in early diagnosis of cancer, as well as in uncovering other systemic diseases, infections and oral disorders. We close the review by highlighting a number of possible exploratory pathways in this emerging, hot research field.
Collapse
Affiliation(s)
- T.K Fábián
- Clinic of Prosthetic Dentistry, Semmelweis University, Faculty of Dentistry, Budapest, Hungary
| | - P Fejérdy
- Clinic of Prosthetic Dentistry, Semmelweis University, Faculty of Dentistry, Budapest, Hungary
| | - P Csermely
- Institute of Medical Chemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|