1
|
Secondo A, Pignataro G, Ambrosino P, Pannaccione A, Molinaro P, Boscia F, Cantile M, Cuomo O, Esposito A, Sisalli MJ, Scorziello A, Guida N, Anzilotti S, Fiorino F, Severino B, Santagada V, Caliendo G, Di Renzo G, Annunziato L. Pharmacological characterization of the newly synthesized 5-amino-N-butyl-2-(4-ethoxyphenoxy)-benzamide hydrochloride (BED) as a potent NCX3 inhibitor that worsens anoxic injury in cortical neurons, organotypic hippocampal cultures, and ischemic brain. ACS Chem Neurosci 2015; 6:1361-70. [PMID: 25942323 DOI: 10.1021/acschemneuro.5b00043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Na(+)/Ca(2+) exchanger (NCX), a 10-transmembrane domain protein mainly involved in the regulation of intracellular Ca(2+) homeostasis, plays a crucial role in cerebral ischemia. In the present paper, we characterized the effect of the newly synthesized compound 5-amino-N-butyl-2-(4-ethoxyphenoxy)-benzamide hydrochloride (BED) on the activity of the three NCX isoforms and on the evolution of cerebral ischemia. BED inhibited NCX isoform 3 (NCX3) activity (IC50 = 1.9 nM) recorded with the help of single-cell microflorimetry, (45)Ca(2+) radiotracer fluxes, and patch-clamp in whole-cell configuration. Furthermore, this drug displayed negligible effect on NCX2, the other isoform expressed within the CNS, and it failed to modulate the ubiquitously expressed NCX1 isoform. Concerning the molecular site of action, the use of chimera strategy and deletion mutagenesis showed that α1 and α2 repeats of NCX3 represented relevant molecular determinants for BED inhibitory action, whereas the intracellular regulatory f-loop was not involved. At 10 nM, BED worsened the damage induced by oxygen/glucose deprivation (OGD) followed by reoxygenation in cortical neurons through a dysregulation of [Ca(2+)]i. Furthermore, at the same concentration, BED significantly enhanced cell death in CA3 subregion of hippocampal organotypic slices exposed to OGD and aggravated infarct injury after transient middle cerebral artery occlusion in mice. These results showed that the newly synthesized 5-amino-N-butyl-2-(4-ethoxyphenoxy)-benzamide hydrochloride is one of the most potent inhibitor of NCX3 so far identified, representing an useful tool to dissect the role played by NCX3 in the control of Ca(2+) homeostasis under physiological and pathological conditions.
Collapse
Affiliation(s)
- Agnese Secondo
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy
| | - Giuseppe Pignataro
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy
| | - Paolo Ambrosino
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy
| | - Anna Pannaccione
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy
| | - Pasquale Molinaro
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy
| | - Francesca Boscia
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy
| | - Maria Cantile
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy
| | - Ornella Cuomo
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy
| | - Alba Esposito
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy
| | - Maria Josè Sisalli
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy
| | - Antonella Scorziello
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | | - Gianfranco Di Renzo
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy
| | - Lucio Annunziato
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|