1
|
Chen BH, Lin ZY, Zeng XX, Jiang YH, Geng F. LRP4-related signalling pathways and their regulatory role in neurological diseases. Brain Res 2024; 1825:148705. [PMID: 38065285 DOI: 10.1016/j.brainres.2023.148705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 12/03/2023] [Indexed: 01/28/2024]
Abstract
The mechanism of action of low-density lipoprotein receptor related protein 4 (LRP4) is mediated largely via the Agrin-LRP4-MuSK signalling pathway in the nervous system. LRP4 contributes to the development of synapses in the peripheral nervous system (PNS). It interacts with signalling molecules such as the amyloid beta-protein precursor (APP) and the wingless type protein (Wnt). Its mechanisms of action are complex and mediated via interaction between the pre-synaptic motor neuron and post-synaptic muscle cell in the PNS, which enhances the development of the neuromuscular junction (NMJ). LRP4 may function differently in the central nervous system (CNS) than in the PNS, where it regulates ATP and glutamate release via astrocytes. It mayaffect the growth and development of the CNS by controlling the energy metabolism. LRP4 interacts with Agrin to maintain dendrite growth and density in the CNS. The goal of this article is to review the current studies involving relevant LRP4 signaling pathways in the nervous system. The review also discusses the clinical and etiological roles of LRP4 in neurological illnesses, such as myasthenia gravis, Alzheimer's disease and epilepsy. In this review, we provide a theoretical foundation for the pathogenesis and therapeutic application of LRP4 in neurologic diseases.
Collapse
Affiliation(s)
- Bai-Hui Chen
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Ze-Yu Lin
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Xiao-Xue Zeng
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Yi-Han Jiang
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Fei Geng
- Department of Physiology, Shantou University Medical College, Shantou 515041, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
2
|
Padarti A, Abou-Fadel J, Zhang J. Resurgence of phosphotyrosine binding domains: Structural and functional properties essential for understanding disease pathogenesis. Biochim Biophys Acta Gen Subj 2021; 1865:129977. [PMID: 34391832 DOI: 10.1016/j.bbagen.2021.129977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Phosphotyrosine Binding (PTB) Domains, usually found on scaffold proteins, are pervasive in many cellular signaling pathways. These domains are the second-largest family of phosphotyrosine recognition domains and since their initial discovery, dozens of PTB domains have been structurally determined. SCOPE OF REVIEW Due to its signature sequence flexibility, PTB domains can bind to a large variety of ligands including phospholipids. PTB peptide binding is divided into classical binding (canonical NPXY motifs) and non-classical binding (all other motifs). The first atypical PTB domain was discovered in cerebral cavernous malformation 2 (CCM2) protein, while only one third in size of the typical PTB domain, it remains functionally equivalent. MAJOR CONCLUSIONS PTB domains are involved in numerous signaling processes including embryogenesis, neurogenesis, and angiogenesis, while dysfunction is linked to major disorders including diabetes, hypercholesterolemia, Alzheimer's disease, and strokes. PTB domains may also be essential in infectious processes, currently responsible for the global pandemic in which viral cellular entry is suspected to be mediated through PTB and NPXY interactions. GENERAL SIGNIFICANCE We summarize the structural and functional updates in the PTB domain over the last 20 years in hopes of resurging interest and further analyzing the importance of this versatile domain.
Collapse
Affiliation(s)
- Akhil Padarti
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA.
| |
Collapse
|
3
|
An Inside Job: Molecular Determinants for Postsynaptic Localization of Nicotinic Acetylcholine Receptors. Molecules 2021; 26:molecules26113065. [PMID: 34063759 PMCID: PMC8196675 DOI: 10.3390/molecules26113065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 11/29/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission at neuromuscular and autonomic ganglionic synapses in the peripheral nervous system. The postsynaptic localization of muscle ((α1)2β1γδ) and neuronal ((α3β4)2β4) nicotinic receptors at these synapses is mediated by interactions between the nAChR intracellular domains and cytoplasmic scaffolding proteins. Recent high resolution structures and functional studies provide new insights into the molecular determinants that mediate these interactions. Surprisingly, they reveal that the muscle nAChR binds 1–3 rapsyn scaffolding molecules, which dimerize and thereby form an interconnected lattice between receptors. Moreover, rapsyn binds two distinct sites on the nAChR subunit cytoplasmic loops; the MA-helix on one or more subunits and a motif specific to the β subunit. Binding at the latter site is regulated by agrin-induced phosphorylation of βY390, and increases the stoichiometry of rapsyn/AChR complexes. Similarly, the neuronal nAChR may be localized at ganglionic synapses by phosphorylation-dependent interactions with 14-3-3 adaptor proteins which bind specific motifs in each of the α3 subunit cytoplasmic loops. Thus, postsynaptic localization of nAChRs is mediated by regulated interactions with multiple scaffolding molecules, and the stoichiometry of these complexes likely helps regulate the number, density, and stability of receptors at the synapse.
Collapse
|
4
|
Paz ML, Barrantes FJ. Autoimmune Attack of the Neuromuscular Junction in Myasthenia Gravis: Nicotinic Acetylcholine Receptors and Other Targets. ACS Chem Neurosci 2019; 10:2186-2194. [PMID: 30916550 DOI: 10.1021/acschemneuro.9b00041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) family, the archetype member of the pentameric ligand-gated ion channels, is ubiquitously distributed in the central and peripheral nervous systems, and its members are the targets for both genetic and acquired forms of neurological disorders. In the central nervous system, nAChRs contribute to the pathological mechanisms of neurodegenerative disorders, such as Alzheimer and Parkinson diseases. In the peripheral nerve-muscle synapse, the vertebrate neuromuscular junction, "classical" myasthenia gravis (MG) and other forms of neuromuscular transmission disorders are antibody-mediated autoimmune diseases. In MG, antibodies to the nAChR bind to the postsynaptic receptors and activate the classical complement pathway culminating in the formation of the membrane attack complex, with the subsequent destruction of the postsynaptic apparatus. Divalent nAChR-antibodies also cause internalization and loss of the nAChRs. Loss of receptors by either mechanism results in the muscle weakness and fatigability that typify the clinical manifestations of the disease. Other targets for antibodies, in a minority of patients, include muscle specific kinase (MuSK) and low-density lipoprotein related protein 4 (LRP4). This brief Review analyzes the current status of muscle-type nAChR in relation to the pathogenesis of autoimmune diseases affecting the peripheral cholinergic synapse.
Collapse
Affiliation(s)
- Mariela L. Paz
- Immunology Department, Faculty of Pharmacy and Biochemistry, IDEHU-CONICET, University of Buenos Aires, Junin 956, C1113AAD Buenos Aires, Argentina
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina
| |
Collapse
|
5
|
Huang ML, Tota EM, Lucas TM, Godula K. Influencing Early Stages of Neuromuscular Junction Formation through Glycocalyx Engineering. ACS Chem Neurosci 2018; 9:3086-3093. [PMID: 30095249 PMCID: PMC6395550 DOI: 10.1021/acschemneuro.8b00295] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Achieving molecular control over the formation of synaptic contacts in the nervous system can provide important insights into their regulation and can offer means for creating well-defined in vitro systems to evaluate modes of therapeutic intervention. Agrin-induced clustering of acetylcholine receptors (AChRs) at postsynaptic sites is a hallmark of the formation of the neuromuscular junction, a synapse between motoneurons and muscle cells. In addition to the cognate agrin receptor LRP4 (low-density lipoprotein receptor related protein-4), muscle cell heparan sulfate (HS) glycosaminoglycans (GAGs) have also been proposed to contribute to AChR clustering by acting as agrin co-receptors. Here, we provide direct evidence for the role of HS GAGs in agrin recruitment to the surface of myotubes, as well as their functional contributions toward AChR clustering. We also demonstrate that engineering of the myotube glycocalyx using synthetic HS GAG polymers can replace native HS structures to gain control over agrin-mediated AChR clustering.
Collapse
Affiliation(s)
| | - Ember M. Tota
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Taryn M. Lucas
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
6
|
Potentially Treatable Disorder Diagnosed Post Mortem by Exome Analysis in a Boy with Respiratory Distress. Int J Mol Sci 2016; 17:306. [PMID: 26927095 PMCID: PMC4813169 DOI: 10.3390/ijms17030306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 11/27/2022] Open
Abstract
We highlight the importance of exome sequencing in solving a clinical case of a child who died at 14 months after a series of respiratory crises. He was the half-brother of a girl diagnosed at 7 years with the early-onset seizure variant of Rett syndrome due to CDKL5 mutation. We performed a test for CDKL5 in the boy, which came back negative. Driven by the mother’s compelling need for a diagnosis, we moved forward performing whole exome sequencing analysis. Surprisingly, two missense mutations in compound heterozygosity were identified in the RAPSN gene encoding a receptor-associated protein with a key role in clustering and anchoring nicotinic acetylcholine receptors at synaptic sites. This gene is responsible for a congenital form of myasthenic syndrome, a disease potentially treatable with cholinesterase inhibitors. Therefore, an earlier diagnosis in this boy would have led to a better clinical management and prognosis. Our study supports the key role of exome sequencing in achieving a definite diagnosis in severe perinatal diseases, an essential step especially when a specific therapy is available.
Collapse
|
7
|
Structural analysis and ion translocation mechanisms of the muscle-type acetylcholine receptor channel. J Appl Biomater Funct Mater 2013; 11:e53-60. [PMID: 23728540 DOI: 10.5301/jabfm.5000148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2012] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The aim of this work is to analyze the conformational changes in the acetylcholine receptor caused by channel opening and to investigate the electrostatic profile during ion translocation through the channel. METHODS A computational model of the human muscle-type acetylcholine receptor (AChR) was built and used to analyze channel structure and its interactions with different ions. Using the Torpedo AChR crystal structure as a homologous template, the 3D structure of the human muscle-type AChR was reconstructed. RESULTS This first model is optimized and an open structure of the channel is generated using Normal Mode Analysis in order to assess morphologic and energetic differences between open and closed structures. In addition, the issue of ion translocation is investigated in further detail. Results elucidate different aspects of the channel: channel gate structure, channel interactions with translocating ions, differences between muscle-type AChR and previous neuronal-type AChR models. CONCLUSIONS The model constructed here is ideal for further computational studies on muscle-type AChR and its pathologic mutations.
Collapse
|
8
|
Ben Ammar A, Soltanzadeh P, Bauché S, Richard P, Goillot E, Herbst R, Gaudon K, Huzé C, Schaeffer L, Yamanashi Y, Higuchi O, Taly A, Koenig J, Leroy JP, Hentati F, Najmabadi H, Kahrizi K, Ilkhani M, Fardeau M, Eymard B, Hantaï D. A mutation causes MuSK reduced sensitivity to agrin and congenital myasthenia. PLoS One 2013; 8:e53826. [PMID: 23326516 PMCID: PMC3541344 DOI: 10.1371/journal.pone.0053826] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 12/05/2012] [Indexed: 11/18/2022] Open
Abstract
Congenital myasthenic syndromes (CMSs) are a heterogeneous group of genetic disorders affecting neuromuscular transmission. The agrin/muscle-specific kinase (MuSK) pathway is critical for proper development and maintenance of the neuromuscular junction (NMJ). We report here an Iranian patient in whom CMS was diagnosed since he presented with congenital and fluctuating bilateral symmetric ptosis, upward gaze palsy and slowly progressive muscle weakness leading to loss of ambulation. Genetic analysis of the patient revealed a homozygous missense mutation c.2503A>G in the coding sequence of MUSK leading to the p.Met835Val substitution. The mutation was inherited from the two parents who were heterozygous according to the notion of consanguinity. Immunocytochemical and electron microscopy studies of biopsied deltoid muscle showed dramatic changes in pre- and post-synaptic elements of the NMJs. These changes induced a process of denervation/reinnervation in native NMJs and the formation, by an adaptive mechanism, of newly formed and ectopic NMJs. Aberrant axonal outgrowth, decreased nerve terminal ramification and nodal axonal sprouting were also noted. In vivo electroporation of the mutated MuSK in a mouse model showed disorganized NMJs and aberrant axonal growth reproducing a phenotype similar to that observed in the patient's biopsy specimen. In vitro experiments showed that the mutation alters agrin-dependent acetylcholine receptor aggregation, causes a constitutive activation of MuSK and a decrease in its agrin- and Dok-7-dependent phosphorylation.
Collapse
MESH Headings
- Agrin/metabolism
- Animals
- Child
- HEK293 Cells
- Humans
- Male
- Mice
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle Weakness/genetics
- Muscle Weakness/metabolism
- Muscle Weakness/physiopathology
- Muscle, Skeletal/innervation
- Muscle, Skeletal/physiopathology
- Mutation, Missense
- Myasthenic Syndromes, Congenital/genetics
- Myasthenic Syndromes, Congenital/metabolism
- Myasthenic Syndromes, Congenital/physiopathology
- Neuromuscular Junction/genetics
- Neuromuscular Junction/metabolism
- Neuromuscular Junction/physiopathology
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Cholinergic/genetics
- Receptors, Cholinergic/metabolism
- Receptors, Growth Factor/genetics
- Receptors, Growth Factor/metabolism
- Signal Transduction
- Synaptic Transmission/genetics
Collapse
Affiliation(s)
- Asma Ben Ammar
- Inserm, UMRS 975, UPMC, Institut du Cerveau et de la Moelle épinière, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Laboratoire de Neurobiologie Moléculaire et Neuropathologie, Institut National de Neurologie, Université Tunis El Manar, La Rabta, Tunis, Tunisia
| | - Payam Soltanzadeh
- Inserm, UMRS 975, UPMC, Institut du Cerveau et de la Moelle épinière, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Stéphanie Bauché
- Inserm, UMRS 975, UPMC, Institut du Cerveau et de la Moelle épinière, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Ecole Pratique des Hautes Etudes, Paris, France
| | - Pascale Richard
- APHP, UF Cardiogénétique et Myogénétique, Service de Biochimie Métabolique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Evelyne Goillot
- Equipe Différenciation Neuromusculaire, IFR128, UMR5161, ENS Lyon, CNRS, INRA, Université de Lyon, Lyon, France
| | - Ruth Herbst
- Medical University of Vienna, Center for Brain Research, Vienna, Austria
| | - Karen Gaudon
- APHP, UF Cardiogénétique et Myogénétique, Service de Biochimie Métabolique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Caroline Huzé
- Equipe Différenciation Neuromusculaire, IFR128, UMR5161, ENS Lyon, CNRS, INRA, Université de Lyon, Lyon, France
| | - Laurent Schaeffer
- Equipe Différenciation Neuromusculaire, IFR128, UMR5161, ENS Lyon, CNRS, INRA, Université de Lyon, Lyon, France
| | - Yuji Yamanashi
- Division of Genetics, Department of Cancer Biology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Osamu Higuchi
- Division of Genetics, Department of Cancer Biology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Antoine Taly
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Illkirch, France
| | - Jeanine Koenig
- Inserm, UMRS 975, UPMC, Institut du Cerveau et de la Moelle épinière, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Jean-Paul Leroy
- Inserm, UMRS 975, UPMC, Institut du Cerveau et de la Moelle épinière, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Fayçal Hentati
- Laboratoire de Neurobiologie Moléculaire et Neuropathologie, Institut National de Neurologie, Université Tunis El Manar, La Rabta, Tunis, Tunisia
| | - Hossein Najmabadi
- University of Social Welfare and Rehabilitation Sciences, Genetics Research Center, Tehran, Islamic Republic of Iran
| | - Kimia Kahrizi
- University of Social Welfare and Rehabilitation Sciences, Genetics Research Center, Tehran, Islamic Republic of Iran
| | - Manouchehr Ilkhani
- Shahid Beheshti University of Medical Sciences, Department of Neurology, Tehran, Islamic Republic of Iran
| | - Michel Fardeau
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Bruno Eymard
- Inserm, UMRS 975, UPMC, Institut du Cerveau et de la Moelle épinière, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- APHP, Centre de Référence en Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Daniel Hantaï
- Inserm, UMRS 975, UPMC, Institut du Cerveau et de la Moelle épinière, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- APHP, Centre de Référence en Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- * E-mail:
| |
Collapse
|
9
|
Abicht A, Dusl M, Gallenmüller C, Guergueltcheva V, Schara U, Della Marina A, Wibbeler E, Almaras S, Mihaylova V, von der Hagen M, Huebner A, Chaouch A, Müller JS, Lochmüller H. Congenital myasthenic syndromes: Achievements and limitations of phenotype-guided gene-after-gene sequencing in diagnostic practice: A study of 680 patients. Hum Mutat 2012; 33:1474-84. [DOI: 10.1002/humu.22130] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/30/2012] [Indexed: 11/09/2022]
|
10
|
Lorenzoni PJ, Scola RH, Kay CSK, Werneck LC. Congenital myasthenic syndrome: a brief review. Pediatr Neurol 2012; 46:141-8. [PMID: 22353287 DOI: 10.1016/j.pediatrneurol.2011.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 12/22/2011] [Indexed: 01/04/2023]
Abstract
Congenital myasthenic syndromes comprise heterogeneous genetic diseases characterized by compromised neuromuscular transmission. Congenital myasthenic syndromes are classified as presynaptic, synaptic, or postsynaptic, depending on the primary defect's location within the neuromuscular junction. Presynaptic forms are the rarest, affecting an estimated 7-8% of patients; synaptic forms account for approximately 14-15% of patients; and the remaining 75-80% are attributable to postsynaptic defects. Clinical manifestations vary by congenital myasthenic syndrome subtype. Electrophysiologic, morphologic, and molecular descriptions of various forms of congenital myasthenic syndromes have led to an enhanced understanding of clinical manifestations and disease pathophysiology. Although congenital myasthenic syndromes are indicated by clinical manifestations, family history, electrophysiologic studies, and responses to acetylcholinesterase inhibitors, overlap in some presentations occurs. Therefore, genetic testing may be necessary to identify specific mutations in CHAT, COLQ, LAMB2, CHRNA, CHRNB, CHRND, CHRNE, CHRNG, RAPSN, DOK7, MUSK, AGRN, SCN4A, GFPT1, or PLEC1 genes. The identification of congenital myasthenic syndromes subtypes will prove important in the treatment of these patients. Different drugs may be beneficial, or should be avoided because they are ineffective or worsen some forms of congenital myasthenic syndromes. We explore the classification, clinical manifestations, electrophysiologic features, genetics, and treatment responses of each congenital myasthenic syndrome subtype.
Collapse
Affiliation(s)
- Paulo José Lorenzoni
- Neuromuscular Disorders Unit, Division of Neurology, Department of Internal Medicine, Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | | | | |
Collapse
|
11
|
Choi KR, Berrera M, Reischl M, Strack S, Albrizio M, Röder IV, Wagner A, Petersen Y, Hafner M, Zaccolo M, Rudolf R. Rapsyn mediates subsynaptic anchoring of PKA type I and stabilisation of acetylcholine receptor in vivo. J Cell Sci 2012; 125:714-23. [PMID: 22331361 DOI: 10.1242/jcs.092361] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The stabilisation of acetylcholine receptors (AChRs) at the neuromuscular junction depends on muscle activity and the cooperative action of myosin Va and protein kinase A (PKA) type I. To execute its function, PKA has to be present in a subsynaptic microdomain where it is enriched by anchoring proteins. Here, we show that the AChR-associated protein, rapsyn, interacts with PKA type I in C2C12 and T-REx293 cells as well as in live mouse muscle beneath the neuromuscular junction. Molecular modelling, immunoprecipitation and bimolecular fluorescence complementation approaches identify an α-helical stretch of rapsyn to be crucial for binding to the dimerisation and docking domain of PKA type I. When expressed in live mouse muscle, a peptide encompassing the rapsyn α-helical sequence efficiently delocalises PKA type I from the neuromuscular junction. The same peptide, as well as a rapsyn construct lacking the α-helical domain, induces severe alteration of acetylcholine receptor turnover as well as fragmentation of synapses. This shows that rapsyn anchors PKA type I in close proximity to the postsynaptic membrane and suggests that this function is essential for synapse maintenance.
Collapse
Affiliation(s)
- Kyeong-Rok Choi
- Institut für Toxikologie und Genetik, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Punga AR, Maj M, Lin S, Meinen S, Rüegg MA. MuSK levels differ between adult skeletal muscles and influence postsynaptic plasticity. Eur J Neurosci 2011; 33:890-8. [PMID: 21255125 DOI: 10.1111/j.1460-9568.2010.07569.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Muscle-specific tyrosine kinase (MuSK) is involved in the formation and maintenance of the neuromuscular junction (NMJ), and is necessary for NMJ integrity. As muscle involvement is strikingly selective in pathological conditions in which MuSK is targeted, including congenital myasthenic syndrome with MuSK mutation and MuSK antibody-seropositive myasthenia gravis, we hypothesized that the postsynaptic response to MuSK-agrin signalling differs between adult muscles. Transcript levels of postsynaptic proteins were compared between different muscles in wild-type adult mice. MuSK expression was high in the soleus and sternomastoid muscles and low in the extensor digitorum longus (EDL) and omohyoid muscles. The acetylcholine receptor (AChR) α subunit followed a similar expression pattern, whereas expression of Dok-7, Lrp4 and rapsyn was comparable between the muscles. We subsequently examined muscles in mice that overexpressed a miniaturized form of neural agrin or MuSK. In these transgenic mice, the soleus and sternomastoid muscles responded with formation of ectopic AChR clusters, whereas such clusters were almost absent in the EDL and omohyoid muscles. Electroporation of Dok-7 revealed its important role as an activator of MuSK in AChR cluster formation in adult muscles. Together, our findings indicate for the first time that adult skeletal muscles harbour different endogenous levels of MuSK and that these levels determine the ability to form ectopic AChR clusters upon overexpression of agrin or MuSK. We believe that these findings are important for our understanding of adult muscle plasticity and the selective muscle involvement in neuromuscular disorders in which MuSK is diminished.
Collapse
Affiliation(s)
- Anna R Punga
- Department of Neurobiology/Pharmacology, Biozentrum, University of Basel, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
13
|
Maselli RA, Arredondo J, Cagney O, Mozaffar T, Skinner S, Yousif S, Davis RR, Gregg JP, Sivak M, Konia TH, Thomas K, Wollmann RL. Congenital myasthenic syndrome associated with epidermolysis bullosa caused by homozygous mutations in PLEC1 and CHRNE. Clin Genet 2010; 80:444-51. [PMID: 21175599 DOI: 10.1111/j.1399-0004.2010.01602.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mutations in the plectin gene (PLEC1) cause epidermolysis bullosa simplex (EBS), which may associate with muscular dystrophy (EBS-MD) or pyloric atresia (EBS-PA). The association of EBS with congenital myasthenic syndrome (CMS) is also suspected to result from PLEC1 mutations. We report here a consanguineous patient with EBS and CMS for whom mutational analysis of PLEC1 revealed a homozygous 36 nucleotide insertion (1506_1507ins36) that results in a reduced expression of PLEC1 mRNA and plectin in the patient muscle. In addition, mutational analysis of CHRNE revealed a homozygous 1293insG, which is a well-known low-expressor receptor mutation. A skin biopsy revealed signs of EBS, and an anconeus muscle biopsy showed signs of a mild myopathy. Endplate studies showed fragmentation of endplates, postsynaptic simplification, and large collections of thread-like mitochondria. Amplitudes of miniature endplate potentials were diminished, but the endplate quantal content was actually increased. The complex phenotype presented here results from mutations in two separate genes. While the skin manifestations are because of the PLEC1 mutation, footprints of mutations in PLEC1 and CHRNE are present at the neuromuscular junction of the patient indicating that abnormalities in both genes contribute to the CMS phenotype.
Collapse
Affiliation(s)
- R A Maselli
- Department of Neurology, University of California Davis, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bergamin E, Hallock PT, Burden SJ, Hubbard SR. The cytoplasmic adaptor protein Dok7 activates the receptor tyrosine kinase MuSK via dimerization. Mol Cell 2010; 39:100-9. [PMID: 20603078 PMCID: PMC2917201 DOI: 10.1016/j.molcel.2010.06.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 03/08/2010] [Accepted: 04/16/2010] [Indexed: 12/29/2022]
Abstract
Formation of the vertebrate neuromuscular junction requires, among others proteins, Agrin, a neuronally derived ligand, and the following muscle proteins: LRP4, the receptor for Agrin; MuSK, a receptor tyrosine kinase (RTK); and Dok7 (or Dok-7), a cytoplasmic adaptor protein. Dok7 comprises a pleckstrin-homology (PH) domain, a phosphotyrosine-binding (PTB) domain, and C-terminal sites of tyrosine phosphorylation. Unique among adaptor proteins recruited to RTKs, Dok7 is not only a substrate of MuSK, but also an activator of MuSK's kinase activity. Here, we present the crystal structure of the Dok7 PH-PTB domains in complex with a phosphopeptide representing the Dok7-binding site on MuSK. The structure and biochemical data reveal a dimeric arrangement of Dok7 PH-PTB that facilitates trans-autophosphorylation of the kinase activation loop. The structure provides the molecular basis for MuSK activation by Dok7 and for rationalizing several Dok7 loss-of-function mutations found in patients with congenital myasthenic syndromes.
Collapse
Affiliation(s)
- Elisa Bergamin
- Structural Biology Program, Kimmel Center for Biology and Medicine of the Skirball Institute, and Department of Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Peter T. Hallock
- Molecular Neurobiology Program, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016
| | - Steven J. Burden
- Molecular Neurobiology Program, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016
| | - Stevan R. Hubbard
- Structural Biology Program, Kimmel Center for Biology and Medicine of the Skirball Institute, and Department of Pharmacology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
15
|
Maselli RA, Arredondo J, Cagney O, Ng JJ, Anderson JA, Williams C, Gerke BJ, Soliven B, Wollmann RL. Mutations in MUSK causing congenital myasthenic syndrome impair MuSK-Dok-7 interaction. Hum Mol Genet 2010; 19:2370-9. [PMID: 20371544 PMCID: PMC2876883 DOI: 10.1093/hmg/ddq110] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We describe a severe congenital myasthenic syndrome (CMS) caused by two missense mutations in the gene encoding the muscle specific receptor tyrosine kinase (MUSK). The identified MUSK mutations M605I and A727V are both located in the kinase domain of MuSK. Intracellular microelectrode recordings and microscopy studies of the neuromuscular junction conducted in an anconeus muscle biopsy revealed decreased miniature endplate potential amplitudes, reduced endplate size and simplification of secondary synaptic folds, which were consistent with postsynaptic deficit. The study also showed a striking reduction of the endplate potential quantal content, consistent with additional presynaptic failure. Expression studies in MuSK deficient myotubes revealed that A727V, which is located within the catalytic loop of the enzyme, caused severe impairment of agrin-dependent MuSK phosphorylation, aggregation of acetylcholine receptors (AChRs) and interaction of MuSK with Dok-7, an essential intracellular binding protein of MuSK. In contrast, M605I, resulted in only moderate impairment of agrin-dependent MuSK phosphorylation, aggregation of AChRs and interaction of MuSK with Dok-7. There was no impairment of interaction of mutants with either the low-density lipoprotein receptor-related protein, Lrp4 (a co-receptor of agrin) or with the mammalian homolog of the Drosophila tumorous imaginal discs (Tid1). Our findings demonstrate that missense mutations in MUSK can result in a severe form of CMS and indicate that the inability of MuSK mutants to interact with Dok-7, but not with Lrp4 or Tid1, is a major determinant of the pathogenesis of the CMS caused by MUSK mutations.
Collapse
Affiliation(s)
- Ricardo A Maselli
- Department of Neurology, School of Veterinary Medicine, University of California Davis, Davis, CA 95618, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Schara U, Barisic N, Deschauer M, Lindberg C, Straub V, Strigl-Pill N, Wendt M, Abicht A, Müller J, Lochmüller H. Ephedrine therapy in eight patients with congenital myasthenic syndrome due to DOK7 mutations. Neuromuscul Disord 2009; 19:828-32. [DOI: 10.1016/j.nmd.2009.09.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
|
17
|
Abstract
Current therapy for myasthenia gravis is directed towards generalized modulation and suppression of the immune system. These approaches have been extensively studied and are effective in many patients with myasthenia, but at the cost of significant adverse effects due to the global effects on the immune system. Future directions in therapy are geared towards focused immunotherapies that aim to improve outcomes while lessening the burden of side effects. This paper reviews both the current accepted treatments for myasthenia gravis as well as promising targeted therapies in development.
Collapse
Affiliation(s)
- Hans D Katzberg
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - Vera Bril
- University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
18
|
Stiegler AL, Burden SJ, Hubbard SR. Crystal structure of the frizzled-like cysteine-rich domain of the receptor tyrosine kinase MuSK. J Mol Biol 2009; 393:1-9. [PMID: 19664639 PMCID: PMC2754272 DOI: 10.1016/j.jmb.2009.07.091] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 07/26/2009] [Accepted: 07/30/2009] [Indexed: 12/18/2022]
Abstract
Muscle-specific kinase (MuSK) is an essential receptor tyrosine kinase for the establishment and maintenance of the neuromuscular junction (NMJ). Activation of MuSK by agrin, a neuronally derived heparan-sulfate proteoglycan, and LRP4 (low-density lipoprotein receptor-related protein-4), the agrin receptor, leads to clustering of acetylcholine receptors on the postsynaptic side of the NMJ. The ectodomain of MuSK comprises three immunoglobulin-like domains and a cysteine-rich domain (Fz-CRD) related to those in Frizzled proteins, the receptors for Wnts. Here, we report the crystal structure of the MuSK Fz-CRD at 2.1 A resolution. The structure reveals a five-disulfide-bridged domain similar to CRDs of Frizzled proteins but with a divergent C-terminal region. An asymmetric dimer present in the crystal structure implicates surface hydrophobic residues that may function in homotypic or heterotypic interactions to mediate co-clustering of MuSK, rapsyn, and acetylcholine receptors at the NMJ.
Collapse
Affiliation(s)
- Amy L. Stiegler
- Department of Pharmacology and Structural Biology, Programs, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016
- Molecular Neurobiology Programs, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016
| | - Steven J. Burden
- Molecular Neurobiology Programs, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016
| | - Stevan R. Hubbard
- Department of Pharmacology and Structural Biology, Programs, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
19
|
Pitt M. Workshop on the use of stimulation single fibre electromyography for the diagnosis of myasthenic syndromes in children held in the Institute of Child Health and Great Ormond Street Hospital for Children in London on April 24th, 2009. Neuromuscul Disord 2009; 19:730-2. [DOI: 10.1016/j.nmd.2009.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 06/05/2009] [Accepted: 07/10/2009] [Indexed: 10/20/2022]
|
20
|
Kim N, Stiegler AL, Cameron TO, Hallock PT, Gomez AM, Huang JH, Hubbard SR, Dustin ML, Burden SJ. Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell 2008; 135:334-42. [PMID: 18848351 PMCID: PMC2933840 DOI: 10.1016/j.cell.2008.10.002] [Citation(s) in RCA: 520] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/12/2008] [Accepted: 10/01/2008] [Indexed: 12/14/2022]
Abstract
Neuromuscular synapse formation requires a complex exchange of signals between motor neurons and skeletal muscle fibers, leading to the accumulation of postsynaptic proteins, including acetylcholine receptors in the muscle membrane and specialized release sites, or active zones in the presynaptic nerve terminal. MuSK, a receptor tyrosine kinase that is expressed in skeletal muscle, and Agrin, a motor neuron-derived ligand that stimulates MuSK phosphorylation, play critical roles in synaptic differentiation, as synapses do not form in their absence, and mutations in MuSK or downstream effectors are a major cause of a group of neuromuscular disorders, termed congenital myasthenic syndromes (CMS). How Agrin activates MuSK and stimulates synaptic differentiation is not known and remains a fundamental gap in our understanding of signaling at neuromuscular synapses. Here, we report that Lrp4, a member of the LDLR family, is a receptor for Agrin, forms a complex with MuSK, and mediates MuSK activation by Agrin.
Collapse
Affiliation(s)
- Natalie Kim
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Helen and Martin Kimmel Center for Biology and Medicine, NYU Medical School, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chevessier F, Girard E, Molgo J, Bartling S, Koenig J, Hantai D, Witzemann V. A mouse model for congenital myasthenic syndrome due to MuSK mutations reveals defects in structure and function of neuromuscular junctions. Hum Mol Genet 2008; 17:3577-95. [DOI: 10.1093/hmg/ddn251] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|