1
|
Lopes Cantuária V, Rodrigues CM, Dias IR, Ottone VDO, Costa BO, Godinho LF, Silva G, Schetino MAA, Rocha-Vieira E, Dias-Peixoto MF, Honorato-Sampaio K. Intense Caloric Restriction from Birth Protects the Heart Against Ischemia/Reperfusion Injury and Reduces Reactive Oxygen Species in Ovariectomized Rats. Antioxidants (Basel) 2025; 14:169. [PMID: 40002357 PMCID: PMC11851507 DOI: 10.3390/antiox14020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
This study investigates the cardioprotective effects of intense caloric restriction (ICR) from birth in ovariectomized rats, a model of estrogen deficiency mimicking menopause. Our findings demonstrate that ICR significantly improved both basal and post-ischemic cardiac function, even in the absence of estrogens. The restricted animals exhibited enhanced cardiac contractility and relaxation, particularly after ischemia/reperfusion (I/R) injury, with superior functional recovery compared to control groups. Notably, ICR reduced key cardiometabolic risk factors, including blood pressure, heart rate, and adiposity, while improving glucose tolerance and insulin sensitivity. Additionally, while mitochondrial biogenesis remained unaffected, ICR preserved mitochondrial integrity by reducing the number of damaged mitochondria. This was linked to a reduction in oxidative stress, as evidenced by lower reactive oxygen species (ROS) production in the hearts of restricted animals. These results suggest that ICR offers a protective effect against cardiovascular dysfunction induced by estrogen depletion, potentially through enhanced antioxidant defenses and mitochondrial protection.
Collapse
Affiliation(s)
- Vinícius Lopes Cantuária
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (V.L.C.); (V.d.O.O.); (M.A.A.S.); (E.R.-V.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (B.O.C.); (L.F.G.); (G.S.); (M.F.D.-P.)
| | - Cíntia Maria Rodrigues
- Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (C.M.R.); (I.R.D.)
| | - Isabella Rocha Dias
- Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (C.M.R.); (I.R.D.)
| | - Vinícius de Oliveira Ottone
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (V.L.C.); (V.d.O.O.); (M.A.A.S.); (E.R.-V.)
| | - Bruna Oliveira Costa
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (B.O.C.); (L.F.G.); (G.S.); (M.F.D.-P.)
| | - Lourdes Fernanda Godinho
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (B.O.C.); (L.F.G.); (G.S.); (M.F.D.-P.)
| | - Gabriela Silva
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (B.O.C.); (L.F.G.); (G.S.); (M.F.D.-P.)
| | - Marco Antônio Alves Schetino
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (V.L.C.); (V.d.O.O.); (M.A.A.S.); (E.R.-V.)
| | - Etel Rocha-Vieira
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (V.L.C.); (V.d.O.O.); (M.A.A.S.); (E.R.-V.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (B.O.C.); (L.F.G.); (G.S.); (M.F.D.-P.)
| | - Marco Fabrício Dias-Peixoto
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (B.O.C.); (L.F.G.); (G.S.); (M.F.D.-P.)
- Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (C.M.R.); (I.R.D.)
| | - Kinulpe Honorato-Sampaio
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (V.L.C.); (V.d.O.O.); (M.A.A.S.); (E.R.-V.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, MG, Brazil; (B.O.C.); (L.F.G.); (G.S.); (M.F.D.-P.)
| |
Collapse
|
2
|
Correa BHM, Becari L, Peliky Fontes MA, Simões-e-Silva AC, Kangussu LM. Involvement of the Renin-Angiotensin System in Stress: State of the Art and Research Perspectives. Curr Neuropharmacol 2022; 20:1212-1228. [PMID: 34554902 PMCID: PMC9886820 DOI: 10.2174/1570159x19666210719142300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Along with other canonical systems, the renin-angiotensin system (RAS) has shown important roles in stress. This system is a complex regulatory proteolytic cascade composed of various enzymes, peptides, and receptors. Besides the classical (ACE/Ang II/AT1 receptor) and the counter-regulatory (ACE2/Ang-(1-7)/Mas receptor) RAS axes, evidence indicates that nonclassical components, including Ang III, Ang IV, AT2 and AT4, can also be involved in stress. OBJECTIVE AND METHODS This comprehensive review summarizes the current knowledge on the participation of RAS components in different adverse environmental stimuli stressors, including air jet stress, cage switch stress, restraint stress, chronic unpredictable stress, neonatal isolation stress, and post-traumatic stress disorder. RESULTS AND CONCLUSION In general, activation of the classical RAS axis potentiates stress-related cardiovascular, endocrine, and behavioral responses, while the stimulation of the counter-regulatory axis attenuates these effects. Pharmacological modulation in both axes is optimistic, offering promising perspectives for stress-related disorders treatment. In this regard, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are potential candidates already available since they block the classical axis, activate the counter-regulatory axis, and are safe and efficient drugs.
Collapse
Affiliation(s)
- Bernardo H. M. Correa
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
| | - Luca Becari
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
| | - Marco Antônio Peliky Fontes
- Department of Physiology & Biophysics - Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil;
| | - Ana Cristina Simões-e-Silva
- Department of Pediatrics, Faculty of Medicine, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lucas M. Kangussu
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; ,Address correspondence to this author at the Department of Morphology, Biological Sciences Institute – Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; Tel: (+55-31) 3409-2772; E-mail:
| |
Collapse
|
3
|
Francesca F, Caitlin A, Sarah L, Robyn GL. Antroquinonol administration in animal preclinical studies for Alzheimer's disease (AD): A new avenue for modifying progression of AD pathophysiology. Brain Behav Immun Health 2022; 21:100435. [PMID: 35252893 PMCID: PMC8892093 DOI: 10.1016/j.bbih.2022.100435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022] Open
Abstract
Despite the rise of Alzheimer's disease (AD) in an ageing population, no cure is currently available for this disorder. This study assessed the role of a natural compound, Antroquinonol, in modifying the progression of AD when administered at the start and/or before appearance of symptoms and when the disease was well established, in a transgenic animal model. Antroquinonol was administered daily for 8 weeks, in 11 week (early stage) and 9 month (late stage) male transgenic mice (3 times Transgenic mice PS1M146V, APPSwe, and tauP301L, 3 Tg XAD) and their respective aged controls. Behavioural testing (including Elevated Plus Maze Watermaze, Recognition object testing and Y maze) was performed at the end of the drug administration. In addition AD biomarkers (Amyloid beta 42 (Aβ42), tau and phospho-tau levels), oxidative stress and inflammatory markers, were assessed in tested mice brains after their sacrifice at the end of the treatment. When administered before the start of symptoms at 11 weeks, Antroquinonol treatment at 34 mg/kg (D2) and more consistently at 75 mg/kg (D3), had a significant effect on reducing systemic inflammatory markers (Interleukin 1, IL-1β and TNF-α) and AD biomarker (Amyloid Beta 42, Aβ42 and tau) levels in the brain. The reduction of behavioural impairment reported for 3TgXAD mice was observed significantly for the D3 drug dose only and for all behavioural tests, when administered at 11 weeks. Similarly, beneficial effects of Antroquinonol (at higher dose D3) were noted in the transgenic mice in terms of AD biomarkers (tau and phosphorylated-tau), systemic inflammatory (IL-1β), brain anti-inflammatory (Nrf2) and oxidative (3-Nitrotyrosine, 3NT) markers. Improvement of memory impairment was also reported when Antroquinonol (D3) was administered at late stage (9 months). Since Antroquinonol has been used without adverse effects in previous successful clinical trials, this drug may offer a new avenue of treatment to modify AD development and progression.
Collapse
Affiliation(s)
- Fernandez Francesca
- School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, Queensland, 4014, Australia
- Centre for Genomics and Personalised Medicine, Genomics Research Centre, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
| | - Aust Caitlin
- School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, Queensland, 4014, Australia
- Centre for Genomics and Personalised Medicine, Genomics Research Centre, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
| | - Lye Sarah
- School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, Queensland, 4014, Australia
- Centre for Genomics and Personalised Medicine, Genomics Research Centre, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
| | - Griffiths Lyn Robyn
- Centre for Genomics and Personalised Medicine, Genomics Research Centre, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
- Corresponding author. Centre for Genomics and Personalised Health Genomics Research Centre, Queensland University of Technology, Australia.
| |
Collapse
|
4
|
Cardioprotective effects of severe calorie restriction from birth in adult ovariectomized rats. Life Sci 2021; 275:119411. [PMID: 33774029 DOI: 10.1016/j.lfs.2021.119411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
AIMS Menopause is a female condition induced by a reduction of ovarian hormone and is related to an increase in cardiovascular diseases in women. We have shown that severe calorie restriction (SCR) from birth reduces the cardiometabolic risk in adult male Wistar rats. In this study, we investigated the effects of SCR from birth to adulthood on cardiovascular function of ovariectomized rats. MAIN METHODS From birth to adulthood, rats were daily fed ad libitum (control group - C) or with 50% of the amount consumed by the control group (calorie-restricted group - R). At 90 days, half of the rats in each group underwent bilateral ovariectomy (OVX), totaling 4 groups: C-Sham, C-OVX, R-Sham, R-OVX. Systolic blood pressure (SBP), heart rate (HR) and, double product (DP) index were recorded by tail-cuff plethysmography. Cardiac function was analyzed by the Langendorff technique and cardiomyocyte diameter was accessed by histologic analysis. Additionally, cardiac SERCA2 content and redox status were evaluated. KEY FINDINGS C-OVX rats exhibited reduced cardiac function and cardiac non-enzymatic total antioxidant capacity (TAC). R-Sham animals showed reduced SBP, DP, HR, improved cardiac function, reduced cardiac protein carbonyl derivatives and increased TAC, catalase, and superoxide dismutase activities. R-OVX rats maintained reduced SBP, DP, HR, and increased contractility and relaxation indexes. R-Sham and R-OVX rats exhibited preserved heart mass and reduced cardiomyocyte diameter. Cardiac SERCA2 content did not differ between the groups. SIGNIFICANCE Taken together, our findings show cardioprotective effects of SCR from birth in adult ovariectomized rats.
Collapse
|
5
|
Gender difference in the effects of cacao polyphenols on blood pressure and glucose/lipid metabolism in prediabetic subjects: a double-blinded, randomized, placebo-controlled crossover trial. Hypertens Res 2019; 42:1083-1085. [PMID: 30655627 DOI: 10.1038/s41440-019-0208-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/16/2018] [Accepted: 12/16/2018] [Indexed: 01/25/2023]
|
6
|
Tazumi S, Omoto S, Nagatomo Y, Kawahara M, Yokota-Nakagi N, Kawakami M, Takamata A, Morimoto K. Estrogen replacement attenuates stress-induced pressor responses through vasorelaxation via β 2-adrenoceptors in peripheral arteries of ovariectomized rats. Am J Physiol Heart Circ Physiol 2017; 314:H213-H223. [PMID: 29030338 DOI: 10.1152/ajpheart.00148.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined whether chronic estrogen replacement has an inhibitory effect on stress-induced pressor responses via activation of β2-adrenoceptor (AR) in peripheral arteries of ovariectomized rats. Female Wistar rats aged 9 wk were ovariectomized. After 4 wk, pellets containing either 17β-estradiol (E2) or placebo (Pla) were subcutaneously implanted into the rats. After 4 wk of treatment, rats underwent cage-switch stress, and, in a separate experiment, a subset received an infusion of isoproterenol (ISO) with or without pretreatment with the β1-AR blocker atenolol or the β2-AR blocker butoxamine. In addition, the isolated mesenteric artery was used to assess the concentration-related relaxing responses to ISO and the β1- or β2-AR mRNA level. The cage-switch stress-induced pressor response was significantly attenuated in the E2-treated group compared with the Pla-treated group. Pretreatment with atenolol reduced blood pressure responses in both groups. However, butoxamine enhanced the pressor response only in the E2-treated group, resulting in no difference between the two groups. In addition, the intravenous ISO-induced depressor response was significantly enhanced in the E2-treated group compared with the Pla-treated group. Furthermore, the difference in the depressor response was abolished by pretreatment with butoxamine but not by atenolol. In the isolated mesenteric artery, butoxamine caused a rightward shift in ISO-induced concentration-related relaxation in the E2-treated group. The β2-AR mRNA level in the mesenteric artery was higher in the E2-treated group than in the Pla-treated group. These results suggest that estrogen replacement attenuated the stress-induced pressor response probably by suppressing vasoconstriction via activation of β2-ARs in peripheral arteries of ovariectomized rats. NEW & NOTEWORTHY In this study, we show, for the first time, that estrogen replacement has an inhibitory effect on the psychological stress-induced pressor response through vasorelaxation via β2-adrenoceptors, probably due to overexpression of β2-adrenoceptor mRNA, in peripheral arteries of ovariectomized rats.
Collapse
Affiliation(s)
- Shoko Tazumi
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women's University , Nara , Japan
| | - Sayo Omoto
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women's University , Nara , Japan
| | - Yu Nagatomo
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women's University , Nara , Japan
| | - Mariko Kawahara
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women's University , Nara , Japan
| | - Naoko Yokota-Nakagi
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women's University , Nara , Japan
| | - Mizuho Kawakami
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women's University , Nara , Japan
| | - Akira Takamata
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women's University , Nara , Japan
| | - Keiko Morimoto
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women's University , Nara , Japan
| |
Collapse
|
7
|
Tazumi S, Yokota N, Kawakami M, Omoto S, Takamata A, Morimoto K. Effects of estrogen replacement on stress-induced cardiovascular responses via renin-angiotensin system in ovariectomized rats. Am J Physiol Regul Integr Comp Physiol 2016; 311:R898-R905. [DOI: 10.1152/ajpregu.00415.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 08/07/2016] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine whether chronic estrogen replacement in ovariectomized rats inhibits the pressor response to psychological stress by attenuating the activation of the renin-angiotensin system. Female Wistar rats aged 9 wk were ovariectomized. After 4 wk, the rats were randomly assigned to be implanted subcutaneously with pellets containing either 17β-estradiol (E2) or placebo (Pla). After 4 wk of treatment, the rats underwent cage-switch stress and, in a separate experiment, a subset received an infusion of angiotensin II. The cage-switch stress rapidly elevated blood pressure (BP) and heart rate (HR) as measured by radiotelemetry in both groups. However, the BP and HR responses to the stress were significantly attenuated in the E2 group compared with the Pla group. An angiotensin II type 1 receptor blocker, losartan, given in drinking water, abolished the difference in the pressor response to stress between the two groups. Moreover, the stress-induced elevation in plasma renin activity and angiotensin II concentration was significant in the Pla group, but not in the E2 group. In addition, the expression of renin mRNA in the kidney was lower in the E2 group relative to the Pla group. Finally, we found that intravenous angiotensin II infusion increased BP and decreased HR to a similar degree in both groups. These results suggest that the inhibitory effects of estrogen on psychological stress-induced activation of the renin-angiotensin system could be at least partially responsible for the suppression of the pressor responses to psychological stress seen in estrogen-replaced ovariectomized rats.
Collapse
Affiliation(s)
- Shoko Tazumi
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women’s University, Kita-Uoya Nishi-machi, Japan
| | - Naoko Yokota
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women’s University, Kita-Uoya Nishi-machi, Japan
| | - Mizuho Kawakami
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women’s University, Kita-Uoya Nishi-machi, Japan
| | - Sayo Omoto
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women’s University, Kita-Uoya Nishi-machi, Japan
| | - Akira Takamata
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women’s University, Kita-Uoya Nishi-machi, Japan
| | - Keiko Morimoto
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women’s University, Kita-Uoya Nishi-machi, Japan
| |
Collapse
|
8
|
Xiao D, Huang X, Yang S, Zhang L. Estrogen normalizes perinatal nicotine-induced hypertensive responses in adult female rat offspring. Hypertension 2013; 61:1246-54. [PMID: 23529162 DOI: 10.1161/hypertensionaha.113.01152] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Perinatal nicotine exposure caused a sex-dependent heightened vascular response to angiotensin II (Ang II) and increased blood pressure in adult male but not in female rat offspring. The present study tested the hypothesis that estrogen normalizes perinatal nicotine-induced hypertensive response to Ang II in female offspring. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps from day 4 of gestation to day 10 after birth. Ovariectomy and 17β-estradiol replacement were performed on 8-week-old female offspring. At 5 months of age, Ang II-induced blood pressure responses were not changed by nicotine treatment in the sham groups. In contrast, nicotine significantly enhanced Ang II-induced blood pressure responses as compared with saline control in the ovariectomy groups, which was associated with increased Ang II-induced vascular contractions. These heightened responses were abrogated by 17β-estradiol replacement. In addition, nicotine enhanced Ang II receptor type I, NADPH (nicotinamide adenine dinucleotide phosphate) oxidase type 2 protein expressions, and reactive oxygen species production of aortas as compared with saline control in the ovariectomy groups. Antioxidative agents, both apocynin and tempol, inhibited Ang II-induced vascular contraction and eliminated the differences of contractions between nicotine-treated and control ovariectomy rats. These findings support a key role of estrogen in the sex difference of perinatal nicotine-induced programming of vascular dysfunction, and suggest that estrogen may counteract heightened reactive oxygen species production, leading to protection of females from development programming of hypertensive phenotype in adulthood.
Collapse
Affiliation(s)
- Daliao Xiao
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA 92350, USA.
| | | | | | | |
Collapse
|
9
|
Ceylan-Isik AF, Erdogan-Tulmac OB, Ari N, Ozansoy G, Ren J. Effect of 17beta-oestradiol replacement on vascular responsiveness in ovariectomized diabetic rats. Clin Exp Pharmacol Physiol 2009; 36:e65-71. [PMID: 19566816 DOI: 10.1111/j.1440-1681.2009.05255.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Women with functional ovaries exhibit a gender advantage in terms of the prevalence of cardiovascular diseases. However, whether this gender bias pertains in diabetes is unknown. 2. The aim of the present study was to examine the effects of 17beta-oestradiol (E2) on vascular responsiveness in normal and diabetic ovariectomized (OVX) rats. Aged-matched female rats were divided into four groups as follows: (i) OVX; (ii) OVX + E2 treated; (iii) diabetic OVX; and (iv) diabetic OVX + E2 treated. Bilateral ovariectomy was performed and streptozotocin was used to induce experimental diabetes. Rats were treated with 1 mg/kg per day, p.o., E2 for 8 weeks. 3. Although E2 treatment had no effect on blood glucose levels in normal and diabetic OVX rats, it significantly reduced systolic blood pressure and prevented diabetes-induced loss of bodyweight gain. 4. In segments of the thoracic aorta, concentration-dependent vasoconstrictor responses to KCl and phenylephrine were significantly attenuated following E2 treatment in both the normal and diabetic groups. The sarcoplasmic/endoplasmic reticulum calcium ATPase inhibitor thapsigargin (10(-6) mol/L) and the Ca(2+) channel blocker nifedipine (10(-6) mol/L) inhibited the transient vasoconstriction to PE in all groups. The constrictor effect of PE was increased by the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME; 10(-6) mol/L), but was reduced by superoxide dismutase (SOD; 100 U/mL) and the cyclo-oxygenase inhibitor indomethacin (10(-6) mol/L) in all groups. Responses to acetylcholine (ACh; 10(-6) mol/L) demonstrated reduced endothelium-dependent relaxation in non-E2-treated groups. Relaxation responses to ACh were increased by 100 U/mL SOD and 10(-6) mol/L indomethacin, but were reduced by 10(-6) mol/L l-NAME in all groups. There were no differences among the four groups in terms of relaxation responses to sodium nitroprusside (10(-11) to 10(-6) mol/L). 5. In conclusion, the results of the present study suggest that oestrogen treatment has beneficial effects on vascular function in both diabetic and non-diabetic OVX rats due to Ca(2+) regulation and anti-oxidation.
Collapse
Affiliation(s)
- Asli F Ceylan-Isik
- Ankara University Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey.
| | | | | | | | | |
Collapse
|