1
|
Guerin AA, Nestler EJ, Berk M, Lawrence AJ, Rossell SL, Kim JH. Genetics of methamphetamine use disorder: A systematic review and meta-analyses of gene association studies. Neurosci Biobehav Rev 2021; 120:48-74. [PMID: 33217458 PMCID: PMC7856253 DOI: 10.1016/j.neubiorev.2020.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/01/2023]
Abstract
Genetic susceptibility to methamphetamine use disorder is poorly understood. No twin or adequately powered genome-wide association studies (GWASs) have been conducted. However, there are a large number of hypothesis-driven candidate gene association studies, which were systematically reviewed herein. Seventy-six studies were identified, investigating markers of 75 different genes. Allele frequencies, odds ratios, 95 % confidence intervals and power were calculated. Risk of bias was also assessed as a quality measure. Meta-analyses were conducted for gene markers if three or more studies were available. Eleven markers from adequately powered studies were significantly associated with methamphetamine use disorder, with Fatty Acid Amide Hydrolase (FAAH) and Brain Derived Neurotrophic Factor (BDNF) representing promising targets. Limitations of these studies include unclear rationale for candidate gene selection, low power and high risk of bias. Future research should include replications to enable more meta-analyses, well-powered GWASs or whole exome or genome sequencing, as well as twin and family studies to further complement the findings of this review to uncover genetic contributions toward methamphetamine use disorder.
Collapse
Affiliation(s)
- Alexandre A Guerin
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Berk
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Andrew J Lawrence
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Susan L Rossell
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia; Department of Psychiatry, St Vincent's Hospital, Melbourne, VIC, Australia
| | - Jee Hyun Kim
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia.
| |
Collapse
|
2
|
Shabani S, Houlton SK, Hellmuth L, Mojica E, Mootz JRK, Zhu Z, Reed C, Phillips TJ. A Mouse Model for Binge-Level Methamphetamine Use. Front Neurosci 2016; 10:493. [PMID: 27853417 PMCID: PMC5090006 DOI: 10.3389/fnins.2016.00493] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/14/2016] [Indexed: 11/21/2022] Open
Abstract
Binge/crash cycles of methamphetamine (MA) use are frequently reported by individuals suffering from MA use disorders. A MA binge is self-reported as multiple daily doses that commonly accumulate to 800 mg/day (~10 mg/kg/day for a 170 pound human). A genetic animal model with a similar vulnerability to binge-level MA intake is missing. We used selectively bred MA high drinking (MAHDR) and low drinking (MALDR) mouse lines to determine whether several procedural variations would result in binge-level MA intake. Data were also collected in two progenitor populations of the MA drinking lines, the DBA/2J (D2) strain and the F2 cross of the D2 and C57BL/6J strains. The impact of 3 factors was examined: (1) concentration of MA in the two-bottle choice procedure used for selective breeding; (2) ratio of bottles containing MA vs. water, and (3) length of the withdrawal (or abstinence) period between MA drinking sessions. When MA concentration was progressively increased every 4 days in 20 mg/l amounts from 20 to 140 mg/l, maximum intake in MALDR mice was 1.1 mg/kg, whereas MAHDR mice consumed as much as 14.6 mg/kg. When these concentrations were tested in a multiple bottle choice procedure, the highest ratio of MA to water bottles (3:1) was associated with escalated MA intake of up to 29.1 mg/kg in MAHDR mice and 12.0 mg/kg in F2 mice; MALDR mice did not show a ratio-dependent escalation in MA intake. Finally, MAHDR and D2 mice were offered 3 bottles of MA vs. water at increasing concentrations from 20 to 80 mg/l, and tested under an intermittent 6-h withdrawal period, which was lengthened to 30 h (D2 mice) or to 30 or 78 h (MAHDR). D2 and MAHDR mice initially consumed similar amounts of 14-16 mg/kg MA, but D2 mice reduced their MA intake 3-fold after introduction of 30-h abstinence periods, whereas MAHDR mice retained their high level of intake regardless of withdrawal period. MAHDR mice provide a genetic model of binge-level MA intake appropriate for the study of associated MA-induced neurobiological changes and pharmaceutical treatments.
Collapse
Affiliation(s)
| | | | - Laura Hellmuth
- Department of Biology, Minot State UniversityMinot, ND, USA
| | - Erika Mojica
- Department of Biology, Minot State UniversityMinot, ND, USA
| | - John R. K. Mootz
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science UniversityPortland, OR, USA
| | - Zhen Zhu
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science UniversityPortland, OR, USA
| | - Cheryl Reed
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science UniversityPortland, OR, USA
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science UniversityPortland, OR, USA
- VA Portland Health Care SystemPortland, OR, USA
| |
Collapse
|
3
|
Grant KM, LeVan TD, Wells SM, Li M, Stoltenberg SF, Gendelman HE, Carlo G, Bevins RA. Methamphetamine-associated psychosis. J Neuroimmune Pharmacol 2011; 7:113-39. [PMID: 21728034 PMCID: PMC3280383 DOI: 10.1007/s11481-011-9288-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 06/21/2011] [Indexed: 01/03/2023]
Abstract
Methamphetamine (METH) is a frequent drug of abuse in U.S. populations and commonly associated with psychosis. This may be a factor in frequent criminal justice referrals and lengthy treatment required by METH users. Persecutory delusions and auditory hallucinations are the most consistent symptoms of METH-associated psychosis (MAP). MAP has largely been studied in Asian populations and risk factors have varied across studies. Duration, frequency and amount of use as well as sexual abuse, family history, other substance use, and co-occurring personality and mood disorders are risk factors for MAP. MAP may be unique with its long duration of psychosis and recurrence without relapse to METH. Seven candidate genes have been identified that may be associated with MAP. Six of these genes are also associated with susceptibility, symptoms, or treatment of schizophrenia and most are linked to glutamatergic neurotransmission. Animal studies of pre-pulse inhibition, attenuation of social interaction, and stereotypy and alterations in locomotion are used to study MAP in rodents. Employing various models, rodent studies have identified neuroanatomical and neurochemical changes associated with METH use. Throughout this review, we identify key gaps in our understanding of MAP and suggest potential directions for future research.
Collapse
Affiliation(s)
- Kathleen M Grant
- Department of Internal Medicine, VA Nebraska-Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE 68198-5300, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011; 63:182-217. [PMID: 21303898 DOI: 10.1124/pr.110.002642] [Citation(s) in RCA: 1894] [Impact Index Per Article: 135.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled dopamine receptors (D1, D2, D3, D4, and D5) mediate all of the physiological functions of the catecholaminergic neurotransmitter dopamine, ranging from voluntary movement and reward to hormonal regulation and hypertension. Pharmacological agents targeting dopaminergic neurotransmission have been clinically used in the management of several neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, bipolar disorder, Huntington's disease, attention deficit hyperactivity disorder (ADHD(1)), and Tourette's syndrome. Numerous advances have occurred in understanding the general structural, biochemical, and functional properties of dopamine receptors that have led to the development of multiple pharmacologically active compounds that directly target dopamine receptors, such as antiparkinson drugs and antipsychotics. Recent progress in understanding the complex biology of dopamine receptor-related signal transduction mechanisms has revealed that, in addition to their primary action on cAMP-mediated signaling, dopamine receptors can act through diverse signaling mechanisms that involve alternative G protein coupling or through G protein-independent mechanisms via interactions with ion channels or proteins that are characteristically implicated in receptor desensitization, such as β-arrestins. One of the future directions in managing dopamine-related pathologic conditions may involve a transition from the approaches that directly affect receptor function to a precise targeting of postreceptor intracellular signaling modalities either directly or through ligand-biased signaling pharmacology. In this comprehensive review, we discuss dopamine receptor classification, their basic structural and genetic organization, their distribution and functions in the brain and the periphery, and their regulation and signal transduction mechanisms. In addition, we discuss the abnormalities of dopamine receptor expression, function, and signaling that are documented in human disorders and the current pharmacology and emerging trends in the development of novel therapeutic agents that act at dopamine receptors and/or on related signaling events.
Collapse
Affiliation(s)
- Jean-Martin Beaulieu
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval–Centre de Recherche de l'Université Laval Robert-Giffard, Québec-City, Québec, Canada
| | | |
Collapse
|
5
|
Methamphetamine use parameters do not predict neuropsychological impairment in currently abstinent dependent adults. Drug Alcohol Depend 2010; 106:154-63. [PMID: 19815352 PMCID: PMC2814900 DOI: 10.1016/j.drugalcdep.2009.08.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 08/15/2009] [Accepted: 08/17/2009] [Indexed: 11/23/2022]
Abstract
Methamphetamine (meth) abuse is increasingly of public health concern and has been associated with neurocognitive dysfunction. Some previous studies have been hampered by background differences between meth users and comparison subjects, as well as unknown HIV and hepatitis C (HCV) status, which can also affect brain functioning. We compared the neurocognitive functioning of 54 meth dependent (METH+) study participants who had been abstinent for an average of 129 days, to that of 46 demographically comparable control subjects (METH-) with similar level of education and reading ability. All participants were free of HIV and HCV infection. The METH+ group exhibited higher rates of neuropsychological impairment in most areas tested. Among meth users, neuropsychologically normal (n=32) and impaired (n=22) subjects did not differ with respect to self-reported age at first use, total years of use, route of consumption, or length of abstinence. Those with motor impairment had significantly greater meth use in the past year, but impairment in cognitive domains was unrelated to meth exposure. The apparent lack of correspondence between substance use parameters and cognitive impairment suggests the need for further study of individual differences in vulnerability to the neurotoxic effects of methamphetamine.
Collapse
|
6
|
NMDA receptor phosphorylation at a site affected in schizophrenia controls synaptic and behavioral plasticity. J Neurosci 2009; 29:11965-72. [PMID: 19776282 DOI: 10.1523/jneurosci.2109-09.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phosphorylation of the NR1 subunit of NMDA receptors (NMDARs) at serine (S) 897 is markedly reduced in schizophrenia patients. However, the role of NR1 S897 phosphorylation in normal synaptic function and adaptive behaviors are unknown. To address these questions, we generated mice in which the NR1 S897 is replaced with alanine (A). This knock-in mutation causes severe impairment in NMDAR synaptic incorporation and NMDAR-mediated synaptic transmission. Furthermore, the phosphomutant animals have reduced AMPA receptor (AMPAR)-mediated synaptic transmission, decreased AMPAR GluR1 subunit in the synapse, and impaired long-term potentiation. Finally, the mutant mice exhibit behavioral deficits in social interaction and sensorimotor gating. Our results suggest that an impairment in NR1 phosphorylation leads to glutamatergic hypofunction that can contribute to behavioral deficits associated with psychiatric disorders.
Collapse
|