1
|
Cao SW, Huang JL, Chen J, Hu YW, Hu XM, Ren TY, Zheng SH, Lin JD, Tang J, Zheng L, Wang Q. Long non-coding RNA UBE2CP3 promotes tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma. Oncotarget 2017; 8:65370-65385. [PMID: 29029437 PMCID: PMC5630337 DOI: 10.18632/oncotarget.18524] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/02/2017] [Indexed: 01/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive, solid malignancy that has a poor prognosis. Long non-coding RNAs (lncRNAs) have been found to be dysregulated in various cancers, including HCC. However, the molecular mechanism involving lncRNAs in HCC remains largely unknown. In this study, lncRNAs differentially expressed between HCC and corresponding non-cancerous tissue were identified by microarray analysis. A specific differentially expressed lncRNA UBE2CP3 (ubiquitin conjugating enzyme E2 C pseudogene 3) was identified. LncRNA UBE2CP3 was frequently up-regulated in HCC samples as assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH) experiments. Clinical data showed that high levels of lncRNA UBE2CP3 were correlated with poor prognosis in HCC patients. Functional studies demonstrated that over-expression of lncRNA UBE2CP3 promoted cell invasion and migration in vitro and in vivo. Mechanistically, enhanced expression of lncRNA UBE2CP3 increased the expression of Snail1 and N-cadherin, but decreased the expression of E-cadherin, thus promoting the process of epithelial to mesenchymal transition (EMT) and finally inducing cell invasion and migration. Furthermore, serum levels of lncRNA UBE2CP3 were increased in HCC patients and decreased after surgery. Our results suggest that lncRNA UBE2CP3 promotes the metastasis of HCC and that serum lncRNA UBE2CP3 may be a new biomarker for the diagnosis of HCC.
Collapse
Affiliation(s)
- Shun-Wang Cao
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jin-Lan Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jing Chen
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiu-Mei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ting-Yu Ren
- Department of Clinical Laboratory Medicine Center, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Shi-Hao Zheng
- Department of Neurosurgery, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Jin-Duan Lin
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Tang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Beatty M, Guduric-Fuchs J, Brown E, Bridgett S, Chakravarthy U, Hogg RE, Simpson DA. Small RNAs from plants, bacteria and fungi within the order Hypocreales are ubiquitous in human plasma. BMC Genomics 2014; 15:933. [PMID: 25344700 PMCID: PMC4230795 DOI: 10.1186/1471-2164-15-933] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 10/16/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The human microbiome plays a significant role in maintaining normal physiology. Changes in its composition have been associated with bowel disease, metabolic disorders and atherosclerosis. Sequences of microbial origin have been observed within small RNA sequencing data obtained from blood samples. The aim of this study was to characterise the microbiome from which these sequences are derived. RESULTS Abundant non-human small RNA sequences were identified in plasma and plasma exosomal samples. Assembly of these short sequences into longer contigs was the pivotal novel step in ascertaining their origin by BLAST searches. Most reads mapped to rRNA sequences. The taxonomic profiles of the microbes detected were very consistent between individuals but distinct from microbiomes reported at other sites. The majority of bacterial reads were from the phylum Proteobacteria, whilst for 5 of 6 individuals over 90% of the more abundant fungal reads were from the phylum Ascomycota; of these over 90% were from the order Hypocreales. Many contigs were from plants, presumably of dietary origin. In addition, extremely abundant small RNAs derived from human Y RNAs were detected. CONCLUSIONS A characteristic profile of a subset of the human microbiome can be obtained by sequencing small RNAs present in the blood. The source and functions of these molecules remain to be determined, but the specific profiles are likely to reflect health status. The potential to provide biomarkers of diet and for the diagnosis and prognosis of human disease is immense.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David Arthur Simpson
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
3
|
Costa FF. Non-coding RNAs and new opportunities for the private sector. Drug Discov Today 2009; 14:446-52. [PMID: 19429503 DOI: 10.1016/j.drudis.2009.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 12/22/2008] [Accepted: 01/28/2009] [Indexed: 01/07/2023]
Abstract
Non-coding RNAs (ncRNAs) have been recently implicated in several molecular mechanisms in eukaryotes. They are a group of transcripts with no protein-coding potential that may have multiple functions and in many cases they have been associated with diseases. Some companies have already started to launch platforms such as arrays and products on the basis of new DNA sequencing technologies aimed at identifying and studying different types of ncRNAs but this represents just a small step toward the understanding of this new area of research. The private sector should start paying more attention to ncRNAs in order to improve the pipeline for drug discovery, drug development and facilitate the identification of new diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Fabrício F Costa
- Cancer Biology and Epigenomics Program, Children's Memorial Research Center and Northwestern University's Feinberg School of Medicine, 2300 Children's Plaza, Box 220, Chicago, IL 60614, USA.
| |
Collapse
|