Sciamanna I, Vitullo P, Curatolo A, Spadafora C. Retrotransposons, reverse transcriptase and the genesis of new genetic information.
Gene 2009;
448:180-6. [PMID:
19631262 DOI:
10.1016/j.gene.2009.07.011]
[Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/30/2009] [Accepted: 07/14/2009] [Indexed: 01/18/2023]
Abstract
Spermatozoa of virtually all species can take up exogenous DNA or RNA molecules and internalize them into nuclei. A sperm endogenous reverse transcriptase activity can reverse-transcribe the internalized molecules in cDNA copies: exogenous RNA is reverse-transcribed in a one-step reaction, whereas DNA is first transcribed into RNA and subsequently reverse-transcribed. In either case, the newly synthesized cDNAs are delivered from sperm cells to oocytes at fertilization and are further propagated throughout embryogenesis and in tissues of adult animals. The reverse-transcribed sequences are underrepresented (below 1 copy/genome), mosaic distributed in tissues of adult individuals, transmitted in a non-Mendelian fashion from founders to F1 progeny, transcriptionally competent, variably expressed in different tissues and temporally transient, as they progressively disappear in aged animals. Based on these features, the reverse-transcribed sequences behave as extrachromosomal, biologically active retrogenes and induce novel phenotypic traits in animals. This RT-dependent mechanism, presumably originating from LINE-1 retroelements, generates transcriptionally competent retrogenes in sperm cells. These data strengthen the emerging view of a novel transgenerational genetics as the source of a continuous flow of novel epigenetic and phenotypic traits, independent from those associated to chromosomes. The distinctive features of this retrotransposon-based phenomenon share analogies with a recently discovered form of RNA-mediated inheritance, compatible with a Lamarckian-type adaptation.
Collapse