1
|
Garg P, Ramisetty S, Nair M, Kulkarni P, Horne D, Salgia R, Singhal SS. Strategic advancements in targeting the PI3K/AKT/mTOR pathway for Breast cancer therapy. Biochem Pharmacol 2025; 236:116850. [PMID: 40049296 DOI: 10.1016/j.bcp.2025.116850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/17/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Breast cancer (BC) is a complex disease that affects millions of women worldwide. Its growing impact calls for advanced treatment strategies to improve patient outcomes. The PI3K/AKT/mTOR pathway is a key focus in BC therapy because it plays a major role in important processes like tumor growth, survival, and resistance to treatment. Targeting this pathway could lead to better treatment options and outcomes. The present review explores how the PI3K/AKT/mTOR pathway becomes dysregulated in BC, focusing on the genetic changes like PIK3CA mutations and PTEN loss that leads to its aggravation. Current treatment options include the use of inhibitors targeting PI3K, AKT, and mTOR with combination therapies showing promise in overcoming drug resistance and improving effectiveness. Looking ahead, next-generation inhibitors and personalized treatment plans guided by biomarker analysis may provide more accurate and effective options for patients. Integrating these pathway inhibitors with immunotherapy offers an exciting opportunity to boost anti-tumor responses and improve survival rates. This review offers a comprehensive summary of the current progress in targeting the PI3K/AKT/mTOR pathway in BC. It highlights future research directions and therapeutic strategies aimed at enhancing patient outcomes and quality of life.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sravani Ramisetty
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Meera Nair
- William J. Brennan High School, San Antonio, TX 78253, USA
| | - Prakash Kulkarni
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
2
|
Chidambaram K, Rekha A, Goyal A, Rana M. Targeting KRAS-G12C in lung cancer: The emerging role of PROTACs in overcoming resistance. Pathol Res Pract 2025; 270:155954. [PMID: 40233529 DOI: 10.1016/j.prp.2025.155954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/30/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
In lung cancer, KRAS mutations, especially the G12C, favor aggressive tumor growth and resistance to standard therapies. Although first-generation inhibitors of KRAS G12C, such as sotorasib and adagrasib, are highly effective in early-phase studies, resistance invariably develops under selective inhibition pressure and rarely leads to sustained long-term treatment benefits. As a novel approach to targeting KRAS mutations in lung cancer, PROTAC (Proteolysis Targeting Chimera) technology is explored in this review. The PROTACs take advantage of the cell's ubiquitin-proteasome system to selectively degrade KRAS proteins, overcoming the dilemma of a lack of traditional binding sites and the means of resistance. We review recent progress with KRAS-specific PROTACs and their mechanisms, clinical application, and effectiveness at targeting primary KRAS oncogenes and secondary drivers and signaling pathways contributing to therapeutic resistance. Also, the synergies between PROTACs and immunotherapies or chemotherapies are further amplified. This review also underscores PROTAC technology's promise to advance precision medicine by providing durable treatment options for KRAS-driven lung cancers. It addresses future directions for optimizing PROTAC efficacy, bioavailability, and patient-specific applications.
Collapse
Affiliation(s)
- Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - A Rekha
- Dr DY Patil Medical college , Hospital and Research Centre, Pimpri , Pune, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP 281406, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
3
|
Ryspayeva D, Seyhan AA, MacDonald WJ, Purcell C, Roady TJ, Ghandali M, Verovkina N, El-Deiry WS, Taylor MS, Graff SL. Signaling pathway dysregulation in breast cancer. Oncotarget 2025; 16:168-201. [PMID: 40080721 PMCID: PMC11906143 DOI: 10.18632/oncotarget.28701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
This article provides a comprehensive analysis of the signaling pathways implicated in breast cancer (BC), the most prevalent malignancy among women and a leading cause of cancer-related mortality globally. Special emphasis is placed on the structural dynamics of protein complexes that are integral to the regulation of these signaling cascades. Dysregulation of cellular signaling is a fundamental aspect of BC pathophysiology, with both upstream and downstream signaling cascade activation contributing to cellular process aberrations that not only drive tumor growth, but also contribute to resistance against current treatments. The review explores alterations within these pathways across different BC subtypes and highlights potential therapeutic strategies targeting these pathways. Additionally, the influence of specific mutations on therapeutic decision-making is examined, underscoring their relevance to particular BC subtypes. The article also discusses both approved therapeutic modalities and ongoing clinical trials targeting disrupted signaling pathways. However, further investigation is necessary to fully elucidate the underlying mechanisms and optimize personalized treatment approaches.
Collapse
Affiliation(s)
- Dinara Ryspayeva
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - William J. MacDonald
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Connor Purcell
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Tyler J. Roady
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - Maryam Ghandali
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Nataliia Verovkina
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| | - Martin S. Taylor
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Brown Center on the Biology of Aging, Brown University, RI 02903, USA
| | - Stephanie L. Graff
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| |
Collapse
|
4
|
AlDoughaim M, AlSuhebany N, AlZahrani M, AlQahtani T, AlGhamdi S, Badreldin H, Al Alshaykh H. Cancer Biomarkers and Precision Oncology: A Review of Recent Trends and Innovations. Clin Med Insights Oncol 2024; 18:11795549241298541. [PMID: 39559827 PMCID: PMC11571259 DOI: 10.1177/11795549241298541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024] Open
Abstract
The discovery of cancer-specific biomarkers has resulted in major advancements in the field of cancer diagnostics and therapeutics, therefore significantly lowering cancer-related morbidity and mortality. Cancer biomarkers can be generally classified as prognostic biomarkers that predict specific disease outcomes and predictive biomarkers that predict disease response to targeted therapeutic interventions. As research in the area of predictive biomarkers continues to grow, precision medicine becomes far more integrated in cancer treatment. This article presents a general overview on the most recent advancements in the area of cancer biomarkers, immunotherapy, artificial intelligence, and pharmacogenomics of the Middle East.
Collapse
Affiliation(s)
- Maha AlDoughaim
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Nada AlSuhebany
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Mohammed AlZahrani
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Tariq AlQahtani
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Sahar AlGhamdi
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Hisham Badreldin
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Hana Al Alshaykh
- Pharmaceutical Care Devision, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Garg P, Malhotra J, Kulkarni P, Horne D, Salgia R, Singhal SS. Emerging Therapeutic Strategies to Overcome Drug Resistance in Cancer Cells. Cancers (Basel) 2024; 16:2478. [PMID: 39001539 PMCID: PMC11240358 DOI: 10.3390/cancers16132478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
The rise of drug resistance in cancer cells presents a formidable challenge in modern oncology, necessitating the exploration of innovative therapeutic strategies. This review investigates the latest advancements in overcoming drug resistance mechanisms employed by cancer cells, focusing on emerging therapeutic modalities. The intricate molecular insights into drug resistance, including genetic mutations, efflux pumps, altered signaling pathways, and microenvironmental influences, are discussed. Furthermore, the promising avenues offered by targeted therapies, combination treatments, immunotherapies, and precision medicine approaches are highlighted. Specifically, the synergistic effects of combining traditional cytotoxic agents with molecularly targeted inhibitors to circumvent resistance pathways are examined. Additionally, the evolving landscape of immunotherapeutic interventions, including immune checkpoint inhibitors and adoptive cell therapies, is explored in terms of bolstering anti-tumor immune responses and overcoming immune evasion mechanisms. Moreover, the significance of biomarker-driven strategies for predicting and monitoring treatment responses is underscored, thereby optimizing therapeutic outcomes. For insights into the future direction of cancer treatment paradigms, the current review focused on prevailing drug resistance challenges and improving patient outcomes, through an integrative analysis of these emerging therapeutic strategies.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, India
| | - Jyoti Malhotra
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| | - Sharad S. Singhal
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
6
|
Torres-Jiménez J, Espinar JB, de Cabo HB, Berjaga MZ, Esteban-Villarrubia J, Fraile JZ, Paz-Ares L. Targeting KRAS G12C in Non-Small-Cell Lung Cancer: Current Standards and Developments. Drugs 2024; 84:527-548. [PMID: 38625662 DOI: 10.1007/s40265-024-02030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/17/2024]
Abstract
Among the most common molecular alterations detected in non-small-cell lung cancer (NSCLC) are mutations in Kristen Rat Sarcoma viral oncogene homolog (KRAS). KRAS mutant NSCLC is a heterogenous group of diseases, different from other oncogene-driven tumors in terms of biology and response to therapies. Despite efforts to develop drugs aimed at inhibiting KRAS or its signaling pathways, KRAS had remained undruggable for decades. The discovery of a small pocket in the binding switch II region of KRASG12C has revolutionized the treatment of KRASG12C-mutated NSCLC patients. Sotorasib and adagrasib, direct KRASG12C inhibitors, have been approved by the US Food and Drug Administration (FDA) and other regulatory agencies for patients with previously treated KRASG12C-mutated NSCLC, and these advances have become practice changing. However, first-line treatment in KRASG12C-mutated NSCLC does not differ from NSCLC without actionable driver genomic alterations. Treatment with KRASG12C inhibitors is not curative and patients develop progressive disease, so understanding associated mechanisms of drug resistance is key. New KRASG12C inhibitors and several combination therapy strategies, including with immune checkpoint inhibitors, are being studied in clinical trials. The aim of this review is to explore the clinical impact of KRAS, and outline different treatment approaches, focusing on the novel treatment of KRASG12C-mutated NSCLC.
Collapse
Affiliation(s)
- Javier Torres-Jiménez
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain.
| | - Javier Baena Espinar
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain
| | - Helena Bote de Cabo
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain
| | - María Zurera Berjaga
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain
| | - Jorge Esteban-Villarrubia
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain
| | - Jon Zugazagoitia Fraile
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain
- Lung Cancer Group, Clinical Research Program, CNIO (Centro Nacional de Investigaciones Oncológicas) and Instituto de Investigación i+12, Madrid, Spain
| | - Luis Paz-Ares
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain
- Lung Cancer Group, Clinical Research Program, CNIO (Centro Nacional de Investigaciones Oncológicas) and Instituto de Investigación i+12, Madrid, Spain
| |
Collapse
|
7
|
Batool A, Rashid W, Fatima K, Khan SU. Mechanisms of Cancer Resistance to Various Therapies. DRUG RESISTANCE IN CANCER: MECHANISMS AND STRATEGIES 2024:31-75. [DOI: 10.1007/978-981-97-1666-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Cairns LV, Lappin KM, Mutch A, Ali A, Matchett KB, Mills KI. Multiplex Screening for Interacting Compounds in Paediatric Acute Myeloid Leukaemia. Int J Mol Sci 2021; 22:10163. [PMID: 34576326 PMCID: PMC8468645 DOI: 10.3390/ijms221810163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 01/31/2023] Open
Abstract
Paediatric acute myeloid leukaemia (AML) is a heterogeneous disease characterised by the malignant transformation of myeloid precursor cells with impaired differentiation. Standard therapy for paediatric AML has remained largely unchanged for over four decades and, combined with inadequate understanding of the biology of paediatric AML, has limited the progress of targeted therapies in this cohort. In recent years, the search for novel targets for the treatment of paediatric AML has accelerated in parallel with advanced genomic technologies which explore the mutational and transcriptional landscape of this disease. Exploiting the large combinatorial space of existing drugs provides an untapped resource for the identification of potential combination therapies for the treatment of paediatric AML. We have previously designed a multiplex screening strategy known as Multiplex Screening for Interacting Compounds in AML (MuSICAL); using an algorithm designed in-house, we screened all pairings of 384 FDA-approved compounds in less than 4000 wells by pooling drugs into 10 compounds per well. This approach maximised the probability of identifying new compound combinations with therapeutic potential while minimising cost, replication and redundancy. This screening strategy identified the triple combination of glimepiride, a sulfonylurea; pancuronium dibromide, a neuromuscular blocking agent; and vinblastine sulfate, a vinca alkaloid, as a potential therapy for paediatric AML. We envision that this approach can be used for a variety of disease-relevant screens allowing the efficient repurposing of drugs that can be rapidly moved into the clinic.
Collapse
Affiliation(s)
- Lauren V. Cairns
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (K.M.L.); (A.A.); (K.I.M.)
| | - Katrina M. Lappin
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (K.M.L.); (A.A.); (K.I.M.)
| | - Alexander Mutch
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, C-TRIC, Altnagelvin Hospital Campus, Glenshane Road, Derry/Londonderry BT47 6SB, UK; (A.M.); (K.B.M.)
| | - Ahlam Ali
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (K.M.L.); (A.A.); (K.I.M.)
| | - Kyle B. Matchett
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, C-TRIC, Altnagelvin Hospital Campus, Glenshane Road, Derry/Londonderry BT47 6SB, UK; (A.M.); (K.B.M.)
| | - Ken I. Mills
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (K.M.L.); (A.A.); (K.I.M.)
| |
Collapse
|
9
|
Kaur M, Garg S, Malhi DS, Sohal HS. A Review on Synthesis, Reactions and Biological Properties of Seven Membered Heterocyclic Compounds: Azepine, Azepane, Azepinone. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825999210104222338] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Seven membered heterocyclic Azepine and its derivatives have great pharmacological
and therapeutic implications. In this review, the literature of the last fifty years has
been exploited for the synthesis, reaction, and biological properties of these seven-member
heterocyclic compounds. Most of the mechanisms involved the ring expansion of either five
or six-membered compounds using various methods such as thermally, photo-chemically, and
microwave irradiation. The systematically designed schemes involve the synthesis of different
derivatives of azepine, azepinone, azepane, etc., using similar moieties by various researchers.
However, there is much work yet to be done in the biological section, as it is not
explored and reported in the literature; therefore, N-containing seven-membered heterocycles
still have much scope for the researchers.
Collapse
Affiliation(s)
- Manvinder Kaur
- Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Sonali Garg
- Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Dharambeer S. Malhi
- Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Harvinder S. Sohal
- Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| |
Collapse
|