1
|
Szigethy E, Merzah M, Sola I, Urrútia G, Bonfill X. Scoping review of anticancer drug utilization in lung cancer patients at the end of life. Clin Transl Oncol 2025; 27:1980-1993. [PMID: 39367901 PMCID: PMC12033183 DOI: 10.1007/s12094-024-03711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/28/2024] [Indexed: 10/07/2024]
Abstract
PURPOSE This scoping review aims to deepen the understanding of end-of-life anticancer drug use in lung cancer patients, a disease marked by high mortality and symptom burden. Insight into unique end-of-life treatment patterns is crucial for improving the appropriateness of cancer care for these patients. METHODS Comprehensive searches were carried out in Medline and Embase to find articles on the utilization of anticancer drugs in the end of life of lung cancer patients. RESULTS We identified 68 publications, highlighting the methodological characteristics of studies including the timing of the research, disease condition, treatment regimen, type of treatment, and features of the treatment. We outlined the frequency of anticancer drug use throughout different end-of-life periods. CONCLUSION This review provides a comprehensive overview of primary studies exploring end-of-life treatments in lung cancer patients. Methodological inconsistencies pose many challenges, revealing a notable proportion of patients experiencing potential overtreatment, warranting more standardized research methods for robust evaluations.
Collapse
Affiliation(s)
- Endre Szigethy
- PhD Programme in Biomedical Research Methodology and Public Health, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Epidy Kft, Csúcs Utca 9, Debrecen, 4034, Hungary.
| | - Mohammed Merzah
- Epidy Kft, Csúcs Utca 9, Debrecen, 4034, Hungary
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Technical Institute of Karbala, Al Furat Al Awsat Technical University, Kufa, Iraq
| | - Ivan Sola
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), CIBER Epidemiología y Salud Pública (CIBERESP), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gerard Urrútia
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), CIBER Epidemiología y Salud Pública (CIBERESP), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Bonfill
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), CIBER Epidemiología y Salud Pública (CIBERESP), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Helal AA, Kamal IH, Osman A, Youssef M, Ibrahim AK. The prevalence and clinical significance of EGFR mutations in non-small cell lung cancer patients in Egypt: a screening study. J Egypt Natl Canc Inst 2024; 36:39. [PMID: 39710832 DOI: 10.1186/s43046-024-00251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 11/16/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Lung cancer is a form of cancer that is responsible for the largest incidence of deaths attributed to cancer worldwide. Non-small cell lung cancer (NSCLC) is the most prevalent of all the subtypes of the disease. Treatment with tyrosine kinase inhibitors (TKI) may help some people who have been diagnosed with non-small cell lung cancer. The presence of actionable mutations in the epidermal growth factor receptor (EGFR) gene is a key predictor of how a patient will respond to a TKI. Thus, the frequency of identification of mutations in EGFR gene in patients with NSCLC can facilitate personalized treatment. OBJECTIVE The objective of this study was to screen for mutations in the EGFR gene and to investigate whether there is a correlation between the screened mutations and various clinical and pathological factors, such as gender, smoking history, and age, in tissue samples from patients with NSCLC. METHODS The study comprised 333 NSCLC tissue samples from 230 males and 103 females with an average age of 50 years. Exons 18-21 of the EGFR gene have been examined using real-time PCR. Using SPSS, correlations between clinical and demographic variables were examined, and EGFR mutation and clinical features associations were studied. RESULTS The study's findings revealed that the incidence rate of EGFR mutation was 24.32% (81/333), with partial deletion of exon 19 (19-Del) and a point mutation of L858R in exon 21 accounting for 66.67% (P < 0.001) and 28.40% (P < 0.001) of the mutant cases, respectively. Patients who had the T790M mutation represent 4.94% (P = 0.004) of total number of patients. Females harbored EGFR mutations (54.32%) with higher frequency than men (45.68%) (P < 0.001), while nonsmokers had EGFR mutations (70.37%) more frequently than current smokers (29.63%) (P < 0.001). CONCLUSION The screening study conducted in Egypt reported that the EGFR mutations prevalence was 24.32% among Egyptians with NSCLC. The study also found a slight gender bias, with females having an incidence rate of these mutations higher than males. Additionally, nonsmokers had higher rates of mutations in EGFR gene compared to smokers. According to the findings, somatic EGFR mutations can be employed as a diagnostic tool for non-small cell lung cancer in Egypt, and they can be implemented in conjunction with clinical criteria to identify which patients are more likely to respond favorably to TKIs.
Collapse
Affiliation(s)
- Asmaa A Helal
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt.
| | - Ibrahim H Kamal
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Ahmed Osman
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
- Biotechnology Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, Alexandria, 21934, Egypt
| | | | - Adel K Ibrahim
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
3
|
Hussain M, Mackrides N, Su S, Seth A. A Case Report of Concurrent Epidermal Growth Factor Receptor (EGFR) Exon 18 (G719A) and Exon 21 (L833_V834delinsFL) Mutations and Treatment Challenges. Cureus 2024; 16:e70896. [PMID: 39497876 PMCID: PMC11534275 DOI: 10.7759/cureus.70896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2024] [Indexed: 11/07/2024] Open
Abstract
Molecular profiling of lung tumors is crucial for guiding targeted therapeutic strategies and identifying potential resistance mechanisms to specific therapies, such as epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). During this profiling, mutations with uncertain treatment implications can be identified. This case study represents a 69-year-old female with a co-occurring EGFR mutation profile that presents a unique therapeutic challenge. Tumor DNA was used for next-generation sequencing (NGS) of a custom 275 cancer-related QIAseq Human Comprehensive Cancer Panel (Qiagen). Next-generation RNA sequencing was performed using the Illumina TruSight panel. FISH analysis and PD-L1 22C3 immunohistochemical testing were also performed. Microscopic analysis revealed an invasive adenocarcinoma with papillary, acinar, and focal micropapillary features with a 6 mm invasive component. The final pathology stage was determined to be pT1aN0M0. NGS for DNA variant detection identified two mutations in EGFR, an EGFR G719A and EGFR L833_V834delinsFL with a variant allele frequency (VAF) of 22.2% and 21.1%, respectively. Targeted NGS RNA fusion analysis was also performed, which came back negative. PD-L1 22C3 immunohistochemical testing showed only 1% of the tumor cells expression. FISH analysis revealed one copy of MET and D7Z1 in 27% of cells, indicating an aneuploid neoplastic clone with monosomy 7. EGFR TKIs are universally accepted as a first-line treatment for advanced non-small cell lung cancer (NSCLC) patients with a sensitizing EGFR mutation. While mutations such as G719A are sensitive to all generations of EGFR-TKI, the effects are unknown for rare compound mutations in EGFR, such as EGFR L833_V834delinsFL. There are no reports in the literature with any mention of an algorithm of treatment for such a case. The patient had two metachronous lung primary cancers resected in 2022 and 2024. Due to the complete surgical resection, the sensitivity of this mutation of TKIs could not be established. This unique mutation profile still remains of paramount importance to understand if the patient relapses or presents with a new tumor with the same genetic profile.
Collapse
Affiliation(s)
- Muhammad Hussain
- Pathology and Laboratory Medicine, Temple University Hospital, Philadelphia, USA
| | | | - Stacey Su
- Thoracic Surgery, Fox Chase Cancer Center, Philadelphia, USA
| | - Anjali Seth
- Pathology and Laboratory Medicine, Temple University Hospital, Philadelphia, USA
| |
Collapse
|
4
|
Kang X, Li R, Li X, Xu X. EGFR mutations and abnormal trafficking in cancers. Mol Biol Rep 2024; 51:924. [PMID: 39167290 DOI: 10.1007/s11033-024-09865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Epidermal growth factor receptor (EGFR) is a transmembrane tyrosine kinase receptor and a member of the ErbB receptor family. As a significant cancer driver, EGFR undergoes mutations such as gene amplification or overexpression in a wide range of malignant tumors and is closely associated with tumorigenesis. This review examines the aberrant expression of EGFR in several common cancers and summarizes the current therapeutic strategies developed for this receptor. Additionally, this review compares the differences in EGFR activation, internalization, endocytosis, and sorting in normal and cancer cells, and highlights some regulatory factors that influence its trafficking process.Kindly check and confirm the edit made in the title.Yes, correctAs per journal instructions structured abstract is mandatory kindly provideThe abstract format does not apply to Review articles.
Collapse
Affiliation(s)
- Xiang Kang
- The First Clinical Medical College, Nanchang University, Nanchang, 30006, China
- The Department of Respiratory and Critical Care Medicine, Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Rendong Li
- The First Clinical Medical College, Nanchang University, Nanchang, 30006, China
- The Department of Respiratory and Critical Care Medicine, Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiaolei Li
- The Department of Respiratory and Critical Care Medicine, Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang, 330052, China
| | - Xinping Xu
- The Department of Respiratory and Critical Care Medicine, Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang, 330052, China.
| |
Collapse
|
5
|
Sorin S, Zhou Y, Thithuan K, Khawkhiaw K, Zeng F, Ruangpratyakul T, Chomphoo S, Seubwai W, Wongkham S, Saengboonmee C. High glucose enhances the aggressiveness of lung adenocarcinoma via activating epidermal growth factor receptor/signal transducer and activator of transcription 3 pathways. J Nutr Biochem 2023; 119:109399. [PMID: 37271322 DOI: 10.1016/j.jnutbio.2023.109399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/04/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Epidemiological studies revealed hyperglycemia as a poor prognostic factor for lung adenocarcinoma with unclear molecular mechanisms. The present study thus aimed to investigate the effects of high glucose on the progression of lung adenocarcinoma and its underlying mechanisms. Lung adenocarcinoma cell lines, A549 and RERF-LC-KJ, were cultured in 5.6 mM glucose (normal glucose; NG) or 25 mM glucose (high glucose; HG) resembling euglycemia and hyperglycemia. Cells were examined for proliferation by the MTT assay, and migration-invasion using Transwell. The expressions of signaling proteins in epidermal growth factor receptor (EGFR) pathways and their downstream targets were investigated using Western blots. The effects of diabetes mellitus (DM) and hyperglycemia on lung adenocarcinoma growth in vivo were studied in streptozotocin-induced diabetic BALB/cAJcl-Nu/Nu mice and their nondiabetic counterparts. High glucose significantly promoted proliferation, migration, and invasion of lung adenocarcinoma cells compared with those in normal glucose (P<.05). Western blot analyses showed the increased ratio of pEGFR/EGFR in cells cultured in high glucose and subsequently activated the signal transducer and activator of transcription 3 (STAT3). Epithelial-mesenchymal (EMT) markers were also altered in lung adenocarcinoma cells in high glucose conditions, corresponding with increased migration and invasion abilities. Erlotinib, an EGFR inhibitor, significantly reversed high glucose-induced aggressive phenotypes confirming high glucose-enhancing lung adenocarcinoma progression via the activation of EGFR. DM and hyperglycemia also promoted the growth of lung adenocarcinoma xenografts in vivo in which erlotinib significantly suppressed the growth of tumors (P<.05) suggesting EGFR inhibitor as an effective therapeutic agent for lung adenocarcinoma with DM.
Collapse
Affiliation(s)
- Supannika Sorin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Yubin Zhou
- Department of Thoracic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China
| | - Kanyarat Thithuan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kullanat Khawkhiaw
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Fuchun Zeng
- Department of Thoracic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China
| | | | - Surang Chomphoo
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wunchana Seubwai
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
6
|
Zhang Q, Feng J, Liu K, Yang X, Huang Y, Tang B. STK11 mutation impacts CD1E expression to regulate the differentiation of macrophages in lung adenocarcinoma. Immun Inflamm Dis 2023; 11:e958. [PMID: 37506141 PMCID: PMC10373563 DOI: 10.1002/iid3.958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The deficiency of serine/threonine protein kinase 11 (STK11), one of the most common tumor suppressor genes in non-small-cell lung cancer, is a crucial player in tumor immune microenvironment regulation. This study attempted to unveil how mutated STK11 impact the differentiation of macrophages in lung adenocarcinoma (LUAD). METHODS STK11 and CD1E expression levels in different cell models were assessed by quantitative reverse transcription polymerase chain reaction. Western blot was utilized to detect the protein expression levels of STK11, CD1E, apoptosis markers, and AMPK signaling pathway markers after transfection treatment. Cell viability and macrophage differentiation were detected by CCK-8 and flow cytometry. Immunohistochemistry and immunofluorescence were employed to detect the expression of related genes and macrophage markers, respectively. RESULTS This study found that STK11 mutations promoted the proliferation of LUAD cells and inhibited the differentiation of M1 macrophages, apoptosis, and the AMPK signaling pathway. Mutated STK11 led to CD1E downregulation, which curbed the differentiation of M1 macrophages and hence promoted LUAD progression. It was further validated by the in vivo experimental results that STK11 mutation significantly decreased the immune infiltration of M1 macrophages and promoted LUAD progression. CONCLUSION It was revealed that STK11 mutation affected CD1E expression to regulate macrophage differentiation in LUAD and then promote tumor progression. In this way, CD1E could be a potential biological target for the therapeutic interventions of STK11-mutant LUAD patients. These findings also threw new light on a new therapeutic strategy for STK11-mutant tumor patients that assisted the macrophage polarization pathway.
Collapse
Affiliation(s)
- Qingfeng Zhang
- Department of Cardio-Thoracic Surgery, Zigong Fourth People's Hospital, Zigong, China
| | - Juan Feng
- Department of Operating Room, Zigong Fourth People's Hospital, Zigong, China
| | - Kui Liu
- Department of Cardio-Thoracic Surgery, Zigong Fourth People's Hospital, Zigong, China
| | - Xiaoyan Yang
- Department of Cardio-Thoracic Surgery, Zigong Fourth People's Hospital, Zigong, China
| | - Yun Huang
- Department of Cardio-Thoracic Surgery, Zigong Fourth People's Hospital, Zigong, China
| | - Bo Tang
- Department of Cardio-Thoracic Surgery, Zigong Fourth People's Hospital, Zigong, China
| |
Collapse
|
7
|
Nilsson MB, Yang Y, Heeke S, Patel SA, Poteete A, Udagawa H, Elamin YY, Moran CA, Kashima Y, Arumugam T, Yu X, Ren X, Diao L, Shen L, Wang Q, Zhang M, Robichaux JP, Shi C, Pfeil AN, Tran H, Gibbons DL, Bock J, Wang J, Minna JD, Kobayashi SS, Le X, Heymach JV. CD70 is a therapeutic target upregulated in EMT-associated EGFR tyrosine kinase inhibitor resistance. Cancer Cell 2023; 41:340-355.e6. [PMID: 36787696 PMCID: PMC10259078 DOI: 10.1016/j.ccell.2023.01.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/26/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023]
Abstract
Effective therapeutic strategies are needed for non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations that acquire resistance to EGFR tyrosine kinase inhibitors (TKIs) mediated by epithelial-to-mesenchymal transition (EMT). We investigate cell surface proteins that could be targeted by antibody-based or adoptive cell therapy approaches and identify CD70 as being highly upregulated in EMT-associated resistance. Moreover, CD70 upregulation is an early event in the evolution of resistance and occurs in drug-tolerant persister cells (DTPCs). CD70 promotes cell survival and invasiveness, and stimulation of CD70 triggers signal transduction pathways known to be re-activated with acquired TKI resistance. Anti-CD70 antibody drug conjugates (ADCs) and CD70-targeting chimeric antigen receptor (CAR) T cell and CAR NK cells show potent activity against EGFR TKI-resistant cells and DTPCs. These results identify CD70 as a therapeutic target for EGFR mutant tumors with acquired EGFR TKI resistance that merits clinical investigation.
Collapse
Affiliation(s)
- Monique B Nilsson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Yang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simon Heeke
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sonia A Patel
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alissa Poteete
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hibiki Udagawa
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Yasir Y Elamin
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cesar A Moran
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yukie Kashima
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Thiruvengadam Arumugam
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoxing Yu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoyang Ren
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Minying Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jacqulyne P Robichaux
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunhua Shi
- Department of Biologics Development, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Allyson N Pfeil
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hai Tran
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jason Bock
- Department of Oncology Research BIT, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, Simmons Comprehensive Cancer Center, Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Susumu S Kobayashi
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Outcome of Patients With Resected Early-Stage Non-small Cell Lung Cancer and EGFR Mutations: Results From the IFCT Biomarkers France Study. Clin Lung Cancer 2023; 24:1-10. [PMID: 36180314 DOI: 10.1016/j.cllc.2022.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Molecular profile of resected stage I-II non-small cell lung cancer (NSCLC) would help refine prognosis and personalize induction or adjuvant strategies. We sought to report the molecular profile of resected stage I-II NSCLC and analyzed the impact of epidermal growth factor receptor (EGFR) mutations on outcomes in a Western population. PATIENTS AND METHODS Surgical cases were identified from Biomarkers France study, a nationwide prospective study including NSCLC patients screened for EGFR, HER2, KRAS, BRAF, PIK3CA, ALK alterations from 2012 to 2013. Among surgical patients, clinical charts of the largest centers were reviewed in order to analyze the prognostic impact of EGFR mutations. RESULTS In the BMF database (n = 17.636), surgical patients (n = 854) were characterized by a higher proportion of EGFR mutations than nonsurgical patients (12.9% vs. 10.2%, P = .025), while the other molecular alterations did not differ. The proportion of EGFR mutations was 27% in women undergoing surgery. In the study group (n = 293; EGFR wild type, n = 235; usual mutation, n = 50; rare mutation, n = 8), after a median follow-up of 67 months, 215 patients (74.4%) had not relapsed. No difference was found between EGFR-mutant and EGFR-wt tumors regarding recurrence site, disease-free survival, and overall survival. The 5-year disease-free survival and overall survival after surgical resection of stage I-II EGFR-mutated tumors were 65% and 75%, respectively. CONCLUSION In resected stage I to II NSCLC, EGFR mutations were found in 12.9% of cases, associated with a 5-year overall survival of 75%, with no impact on recurrence site, disease-free survival, and overall survival.
Collapse
|
9
|
Hilzenrat RA, Yip S, Melosky B, Ho C, Laskin J, Sun S, Choi JJ, McGuire AL. Disparate Time-to-Treatment and Varied Incidence of Actionable Non-Small Cell Lung Cancer Molecular Alterations in British Columbia: A Historical Cohort Study. Curr Oncol 2022; 30:145-156. [PMID: 36661661 PMCID: PMC9858228 DOI: 10.3390/curroncol30010012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background: non-small cell lung cancer (NSCLC) outcomes remain suboptimal for early-stage disease despite emerging advances in systemic therapy for the peri-operative period. Next-generation sequencing (NGS) identifies driver mutations for which targeted therapies have been developed that improve survival. The BC lung cancer screening program, which was initiated in May 2022, is expected to identify people with early and late stages of NSCLC. It is crucial to first understand the molecular epidemiology and patterns of time to initiate treatment across its five health authorities (HA) to optimize the delivery of care for NSCLC in BC. In this way, we may harness the benefits of targeted therapy for more people with NSCLC as novel advances in therapy continue to emerge. Objective: to compare (a) the frequency of actionable NSCLC molecular alterations among HAs and (b) the time to treatment initiation. Methods: a retrospective observational study was conducted with prospectively collected data from the BC CGL Database. Adults with late stage NSCLC who underwent targeted NGS were included for the time period from May 2020 to June 2021. Demographics, actionable molecular alterations, PDL-1 expression, and time to treatment across HAs were examined. Using appropriate statistical tests for comparison among HAs, p>0.05 was deemed significant. Results: 582 patients underwent NGS/IHC and analysis during the study period. The mean age was 71 (10.1), and 326 (56%) patients were female. A significantly higher proportion of all EGFRm+ were identified within Vancouver Coastal Health (VCHA) and Fraser Health Authority (FHA) compared to the other health authorities (p < 0.001). This also holds true for common sensitizing EGFRm+ alone (p < 0.001) and for sensitizing EGFRm+ when adjusted for females and smoker status (OR 0.75; 95% CI 0.62, 0.92; p = 0.005). Patients residing within the Northern, Interior, and Island HAs were less likely to receive treatment at the same rate as those in VCHA and FHA HAs. Conclusion: actionable NSCLC driver mutations are present in all regional HAs, with disparity noted in time to initiate treatment between HAs. This provides evidence for the importance of molecular testing for patients in all BC HAs to guide personalized and timely NSCLC treatment.
Collapse
Affiliation(s)
- Roy Avraham Hilzenrat
- Department of Surgery, Division of Thoracic Surgery, Vancouver Coastal Health, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada
| | - Stephen Yip
- Cancer Genetics & Genomic Laboratory, BC Cancer—Vancouver Centre, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - Barbara Melosky
- Department of Medicine, Division of Medical Oncology, BC Cancer Vancouver Centre, University of British Columbia, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - Cheryl Ho
- Department of Medicine, Division of Medical Oncology, BC Cancer Vancouver Centre, University of British Columbia, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - Janessa Laskin
- Department of Medicine, Division of Medical Oncology, BC Cancer Vancouver Centre, University of British Columbia, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - Sophie Sun
- Department of Medicine, Division of Medical Oncology, BC Cancer Vancouver Centre, University of British Columbia, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - James J. Choi
- Department of Surgery, Division of Thoracic Surgery, Vancouver Coastal Health, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada
| | - Anna L. McGuire
- Department of Surgery, Division of Thoracic Surgery, Vancouver Coastal Health, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada
- Vancouver Coastal Health Research Institute, 2635 Laurel Street, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
10
|
EGFR Mutation in Nasopharyngeal Carcinoma. JOURNAL OF MOLECULAR PATHOLOGY 2022. [DOI: 10.3390/jmp3040017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Nasopharyngeal carcinoma is a malignant tumor of the nasopharynx. However, while radiotherapy is the primary choice of treatment, the treatment may fail due to distant metastasis in most patients at an advanced stage. Treatment agents against some mutations have led to the development of personalized treatment regimens. EGFR is one of the most studied molecules and has played a role in the development of a large number of cancer types. We aimed to demonstrate the EGFR mutation status in nasopharyngeal carcinomas. Twenty-six nasopharyngeal carcinomas were included in the study. EGFR mutation analysis was applied to the cases by the real-time PCR method. The results were evaluated statistically. No EGFR mutation was detected in any of the cases. Although EGFR expression is frequently shown in nasopharyngeal carcinomas immunohistochemically, the same positivity was not shown in genetic analysis. This result shows that the use of anti-EGFR agents in nasopharyngeal carcinoma treatment will not be effective.
Collapse
|
11
|
Rusch VW. Five decades of progress in surgical oncology: Tumors of the lung and esophagus. J Surg Oncol 2022; 126:921-925. [PMID: 36087084 PMCID: PMC9472872 DOI: 10.1002/jso.27033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022]
Abstract
During the past 50 years, there has been a remarkable transformation in the management of lung and esophageal cancers. Improved methods of diagnosis, better staging and patient selection for surgery, the advent of minimally invasive approaches to resection, decreasing operative mortality, greater insights into tumor biology, and the development of effective multimodality therapies and precision medicine have contributed to this transformation. Progress has been most notable in lung cancer.
Collapse
Affiliation(s)
- Valerie W Rusch
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
12
|
Targeting EGFR in melanoma - The sea of possibilities to overcome drug resistance. Biochim Biophys Acta Rev Cancer 2022; 1877:188754. [PMID: 35772580 DOI: 10.1016/j.bbcan.2022.188754] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/15/2022] [Accepted: 06/23/2022] [Indexed: 12/21/2022]
Abstract
Melanoma is considered one of the most aggressive skin cancers. It spreads and metastasizes quickly and is intrinsically resistant to most conventional chemotherapeutics, thereby presenting a challenge to researchers and clinicians searching for effective therapeutic strategies to treat patients with melanoma. The use of inhibitors of mutated serine/threonine-protein kinase B-RAF (BRAF), e.g., vemurafenib and dabrafenib, has revolutionized melanoma chemotherapy. Unfortunately, the response to these drugs lasts a limited time due to the development of acquired resistance. One of the proteins responsible for this process is epidermal growth factor receptor (EGFR). In this review, we summarize the role of EGFR signaling in the multidrug resistance of melanomas and discuss possible applications of EGFR inhibitors to overcome the development of drug resistance in melanoma cells during therapy.
Collapse
|
13
|
Sanad DG, Youssef ASA, El-Mariah FA, Hashem HE. Synthesis, Molecular Docking Study, and ADMET Properties of New Antimicrobial Quinazolinone and Fused Quinazoline Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2061529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Dina G. Sanad
- Department of Chemistry, Faculty of Women, Ain Shams University, Cairo, Egypt
| | - Ahmed S. A. Youssef
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Fatma A. El-Mariah
- Department of Chemistry, Faculty of Women, Ain Shams University, Cairo, Egypt
| | - Heba E. Hashem
- Department of Chemistry, Faculty of Women, Ain Shams University, Cairo, Egypt
| |
Collapse
|
14
|
Carroll R, Bortolini M, Calleja A, Munro R, Kong S, Daumont MJ, Penrod JR, Lakhdari K, Lacoin L, Cheung WY. Trends in treatment patterns and survival outcomes in advanced non-small cell lung cancer: a Canadian population-based real-world analysis. BMC Cancer 2022; 22:255. [PMID: 35264135 PMCID: PMC8908553 DOI: 10.1186/s12885-022-09342-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND As part of the multi-country I-O Optimise research initiative, this population-based study evaluated real-world treatment patterns and overall survival (OS) in patients treated for advanced non-small cell lung cancer (NSCLC) before and after public reimbursement of immuno-oncology (I-O) therapies in Alberta province, Canada. METHODS This study used data from the Oncology Outcomes (O2) database, which holds information for ~ 4.5 million residents of Alberta. Eligible patients were adults newly diagnosed with NSCLC between January 2010 and December 2017 and receiving first-line therapy for advanced NSCLC (stage IIIB or IV) either in January 2010-March 2016 (pre-I-O period) or April 2016-June 2019 (post-I-O period). Time periods were based on the first public reimbursement of I-O therapy in Alberta (April 2017), with a built-in 1-year lag time before this date to allow progression to second-line therapy, for which the I-O therapy was indicated. Kaplan-Meier methods were used to estimate OS. RESULTS Of 2244 analyzed patients, 1501 (66.9%) and 743 (33.1%) received first-line treatment in the pre-I-O and post-I-O periods, respectively. Between the pre-I-O and post-I-O periods, proportions of patients receiving chemotherapy decreased, with parallel increases in proportions receiving I-O therapies in both the first-line (from < 0.5% to 17%) and second-line (from 8% to 47%) settings. Increased use of I-O therapies in the post-I-O period was observed in subgroups with non-squamous (first line, 15%; second line, 39%) and squamous (first line, 25%; second line, 65%) histology. First-line use of tyrosine kinase inhibitors also increased among patients with non-squamous histology (from 26% to 30%). In parallel with these evolving treatment patterns, median OS increased from 10.2 to 12.1 months for all patients (P < 0.001), from 11.8 to 13.7 months for patients with non-squamous histology (P = 0.022) and from 7.8 to 9.4 months for patients with squamous histology (P = 0.215). CONCLUSIONS Following public reimbursement, there was a rapid and profound adoption of I-O therapies for advanced NSCLC in Alberta, Canada. In addition, OS outcomes were significantly improved for patients treated in the post-I-O versus pre-I-O periods. These data lend support to the emerging body of evidence for the potential real-world benefits of I-O therapies for treatment of patients with advanced NSCLC.
Collapse
Affiliation(s)
- Robert Carroll
- Centre for Observational Research & Data Sciences, Bristol Myers Squibb, Uxbridge, UK
| | | | | | | | - Shiying Kong
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Melinda J Daumont
- Worldwide Health Economics & Outcomes Research, Bristol Myers Squibb, Braine-l'Alleud, Belgium
| | - John R Penrod
- Worldwide Health Economics & Outcomes Research, Bristol Myers Squibb, Princeton, NJ, USA
| | - Khalid Lakhdari
- Health Economics and Market Access Oncology, Bristol Myers Squibb, Saint-Laurent, QC, Canada
| | | | - Winson Y Cheung
- Department of Medical Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
15
|
Maharati A, Zanguei AS, Khalili-Tanha G, Moghbeli M. MicroRNAs as the critical regulators of tyrosine kinase inhibitors resistance in lung tumor cells. Cell Commun Signal 2022; 20:27. [PMID: 35264191 PMCID: PMC8905758 DOI: 10.1186/s12964-022-00840-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/05/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the second most common and the leading cause of cancer related deaths globally. Tyrosine Kinase Inhibitors (TKIs) are among the common therapeutic strategies in lung cancer patients, however the treatment process fails in a wide range of patients due to TKIs resistance. Given that the use of anti-cancer drugs can always have side effects on normal tissues, predicting the TKI responses can provide an efficient therapeutic strategy. Therefore, it is required to clarify the molecular mechanisms of TKIs resistance in lung cancer patients. MicroRNAs (miRNAs) are involved in regulation of various pathophysiological cellular processes. In the present review, we discussed the miRNAs that have been associated with TKIs responses in lung cancer. MiRNAs mainly exert their role on TKIs response through regulation of Tyrosine Kinase Receptors (TKRs) and down-stream signaling pathways. This review paves the way for introducing a panel of miRNAs for the prediction of TKIs responses in lung cancer patients. Video Abstract
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zanguei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Désage AL, Léonce C, Swalduz A, Ortiz-Cuaran S. Targeting KRAS Mutant in Non-Small Cell Lung Cancer: Novel Insights Into Therapeutic Strategies. Front Oncol 2022; 12:796832. [PMID: 35251972 PMCID: PMC8889932 DOI: 10.3389/fonc.2022.796832] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022] Open
Abstract
Although KRAS-activating mutations represent the most common oncogenic driver in non-small cell lung cancer (NSCLC), various attempts to inhibit KRAS failed in the past decade. KRAS mutations are associated with a poor prognosis and a poor response to standard therapeutic regimen. The recent development of new therapeutic agents (i.e., adagrasib, sotorasib) that target specifically KRAS G12C in its GDP-bound state has evidenced an unprecedented success in the treatment of this subgroup of patients. Despite providing pre-clinical and clinical efficacy, several mechanisms of acquired resistance to KRAS G12C inhibitors have been reported. In this setting, combined therapeutic strategies including inhibition of either SHP2, SOS1 or downstream effectors of KRAS G12C seem particularly interesting to overcome acquired resistance. In this review, we will discuss the novel therapeutic strategies targeting KRAS G12C and promising approaches of combined therapy to overcome acquired resistance to KRAS G12C inhibitors.
Collapse
Affiliation(s)
- Anne-Laure Désage
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Department of Pulmonology and Thoracic Oncology, North Hospital, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Camille Léonce
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Aurélie Swalduz
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Sandra Ortiz-Cuaran
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| |
Collapse
|
17
|
Huang C, Zhou Y, Yu XX, Wang LS, Wu YD, Wu AX. I 2/CuCl 2-Copromoted Formal [4 + 1 + 1] Cyclization of Methyl Ketones, 2-Aminobenzonitriles, and Ammonium Acetate: Direct Access to 2-Acyl-4-aminoquinazolines. J Org Chem 2021; 86:16916-16925. [PMID: 34753287 DOI: 10.1021/acs.joc.1c02096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We herein report an I2/CuCl2-copromoted diamination of C(sp3)-H bonds for the preparation of 2-acyl-4-aminoquinazolines from methyl ketones, 2-aminobenzonitriles, and ammonium acetate. This reaction features operational simplicity, commercially available substrates, mild reaction conditions, and good functional group compatibility. Mechanistic studies indicate that CuCl2 plays a pivotal role in this transformation. This study uses a methyl group as a novel input to construct 2-acyl-4-aminoquinazoline derivatives for the first time.
Collapse
Affiliation(s)
- Chun Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiao-Xiao Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Li-Sheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
18
|
Wargasetia TL, Ratnawati H, Widodo N, Widyananda MH. Bioinformatics Study of Sea Cucumber Peptides as Antibreast Cancer Through Inhibiting the Activity of Overexpressed Protein (EGFR, PI3K, AKT1, and CDK4). Cancer Inform 2021; 20:11769351211031864. [PMID: 34345161 PMCID: PMC8283226 DOI: 10.1177/11769351211031864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/22/2021] [Indexed: 12/28/2022] Open
Abstract
Breast cancer is the most common type of cancer in women globally. The overexpressed proteins, including EGFR, PI3K, AKT1, and CDK4, have a role in the growth of breast cancer cells. The 3D peptide structure of sea cucumber Cucumaria frondosa was modeled and then docked with EGFR, PI3K, AKT1, and CDK4 proteins using AutoDock Vina software. The docking result, which has the best binding affinity value, is continued with molecular dynamics simulation. The docking results showed that all peptides bind to the active sites of the four proteins. WPPNYQW and YDWRF peptides bind to proteins with lower binding affinity values than positive controls. The four proteins were in a stable state when complexed with the WPPNYQW peptide, which was seen from the RMSD and RMSF value. PI3K-YDWRF and AKT1-YDWRF complexes are stable, characterized by high RMSD values and increased volatility in several amino acids. WPPNYQW peptide has high potential as an antibreast cancer agent because it binds to the active sites of the four proteins with low binding affinity values and stable interactions. Meanwhile, the YDWRF peptide interacts with the four proteins with low binding affinity values, but the interaction is only stable on PI3K and AKT1 proteins.
Collapse
Affiliation(s)
| | - Hana Ratnawati
- Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia
| | - Nashi Widodo
- Biology Department, Faculty of Mathematics and Natural Sciences, The University of Brawijaya, Malang, Indonesia
| | | |
Collapse
|
19
|
Nilsson MB, Sun H, Robichaux J, Pfeifer M, McDermott U, Travers J, Diao L, Xi Y, Tong P, Shen L, Hofstad M, Kawakami M, Le X, Liu X, Fan Y, Poteete A, Hu L, Negrao MV, Tran H, Dmitrovsky E, Peng D, Gibbons DL, Wang J, Heymach JV. A YAP/FOXM1 axis mediates EMT-associated EGFR inhibitor resistance and increased expression of spindle assembly checkpoint components. Sci Transl Med 2021; 12:12/559/eaaz4589. [PMID: 32878980 DOI: 10.1126/scitranslmed.aaz4589] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 05/05/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
Acquired resistance to tyrosine kinase inhibitors (TKIs) of epidermal growth factor receptor (EGFR) remains a clinical challenge. Especially challenging are cases in which resistance emerges through EGFR-independent mechanisms, such as through pathways that promote epithelial-to-mesenchymal transition (EMT). Through an integrated transcriptomic, proteomic, and drug screening approach, we identified activation of the yes-associated protein (YAP) and forkhead box protein M1 (FOXM1) axis as a driver of EMT-associated EGFR TKI resistance. EGFR inhibitor resistance was associated with broad multidrug resistance that extended across multiple chemotherapeutic and targeted agents, consistent with the difficulty of effectively treating resistant disease. EGFR TKI-resistant cells displayed increased abundance of spindle assembly checkpoint (SAC) proteins, including polo-like kinase 1 (PLK1), Aurora kinases, survivin, and kinesin spindle protein (KSP). Moreover, EGFR TKI-resistant cells exhibited vulnerability to SAC inhibitors. Increased activation of the YAP/FOXM1 axis mediated an increase in the abundance of SAC components in resistant cells. The clinical relevance of these finding was indicated by evaluation of specimens from patients with EGFR mutant lung cancer, which showed that high FOXM1 expression correlated with expression of genes encoding SAC proteins and was associated with a worse clinical outcome. These data revealed the YAP/FOXM1 axis as a central regulator of EMT-associated EGFR TKI resistance and that this pathway, along with SAC components, are therapeutic vulnerabilities for targeting this multidrug-resistant phenotype.
Collapse
Affiliation(s)
- Monique B Nilsson
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huiying Sun
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jacqulyne Robichaux
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | - Jon Travers
- Oncology R&D, AstraZeneca, Cambridge, CB2 0RE, UK
| | - Lixia Diao
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuanxin Xi
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pan Tong
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Shen
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mia Hofstad
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Masanori Kawakami
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiuning Le
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xi Liu
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Youhong Fan
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alissa Poteete
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Limei Hu
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marcelo V Negrao
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hai Tran
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ethan Dmitrovsky
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Peng
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Don L Gibbons
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John V Heymach
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Lee J, Chen R, Mohanakumar T, Bremner R, Mittal S, Fleming TP. Identification of Phospho-Tyrosine Targets as a Strategy for the Treatment of Esophageal Adenocarcinoma Cells. Onco Targets Ther 2021; 14:3813-3820. [PMID: 34188489 PMCID: PMC8232872 DOI: 10.2147/ott.s309388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/25/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction Esophageal cancer (EC) is an aggressive cancer type that is increasing at a high rate in the US and worldwide. Extensive sequencing of EC specimens has shown that there are no consistent driver mutations that can impact treatment strategies. The goal of this study was to identify activated tyrosine kinase receptors (TKRs) in EC samples as potential targets in the treatment of EC. Methods Activated tyrosine kinase receptors were detected using a dot-blot array for human TK receptors. Human esophageal cancer cell lines were transplanted into immunocompromised mice, and tumor xenografts were subjected to tyrosine kinase inhibitors based on the dot-blot array data. Results Using the OE33 esophageal cancer cell line, we identified activated EGF receptor (EGFR), as well as ErbB2 and ErbB3. Treatment of this cell line with erlotinib, a specific inhibitor of EGFR, did not impact the growth of this tumor cell line. Treating the OE33 cell line with afatinib, a pan-EGFR family inhibitor resulted in the growth inhibition of OE33, indicating that the ErbB2 and ErbB3 receptors were contributing to tumor cell proliferation. Afatinib treatment of mice growing OE33 tumors inhibited growth of the OE33 tumor cells. Discussion Activated tyrosine kinase receptors were readily detected in both cancer cell lines and human esophageal cancer samples. By identifying the activated receptors and then using the appropriate tyrosine kinase inhibitors, we can block tumor growth in vitro and in animal xenografts. We propose that identifying and targeting activated TKRs can be used as a personalized EC tumor treatment strategy.
Collapse
Affiliation(s)
- John Lee
- Norton Thoracic Institute, St. Joseph Hospital, Phoenix, AZ, USA
| | - Rongbing Chen
- Norton Thoracic Institute, St. Joseph Hospital, Phoenix, AZ, USA
| | - T Mohanakumar
- Norton Thoracic Institute, St. Joseph Hospital, Phoenix, AZ, USA
| | - Ross Bremner
- Norton Thoracic Institute, St. Joseph Hospital, Phoenix, AZ, USA
| | - Sumeet Mittal
- Norton Thoracic Institute, St. Joseph Hospital, Phoenix, AZ, USA
| | | |
Collapse
|
21
|
Eichhorn F, Kriegsmann M, Klotz LV, Kriegsmann K, Muley T, Zgorzelski C, Christopoulos P, Winter H, Eichhorn ME. Prognostic Impact of PD-L1 Expression in pN1 NSCLC: A Retrospective Single-Center Analysis. Cancers (Basel) 2021; 13:cancers13092046. [PMID: 33922610 PMCID: PMC8122862 DOI: 10.3390/cancers13092046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The analysis of prognostic biomarkers (e.g., PD-L1) helps to define treatment for lung cancer patients. To date, these markers have only been examined in metastatic or inoperable situations. We analyzed the PD-L1 expression-levels of tumors from 277 lung cancer patients that underwent curative intent surgery. PD-L1 was identified as a prognostic factor, depending on histologic subtype. Abstract The programmed death-ligand 1 (PD-L1) plays a crucial role in immunomodulatory treatment concepts for end-stage non-small cell lung cancer (NSCLC). To date, its prognostic significance in patients with curative surgical treatment but regional nodal metastases, reflecting tumor spread beyond the primary site, is unclear. We evaluated the prognostic impact of PD-L1 expression in a surgical cohort of 277 consecutive patients with pN1 NSCLC on a tissue microarray. Patients with PD-L1 staining (clone SP263) on >1% of tumor cells were defined as PD-L1 positive. Tumor-specific survival (TSS) of the entire cohort was 64% at five years. Low tumor stage (p < 0.0001) and adjuvant therapy (p = 0.036) were identified as independent positive prognostic factors in multivariate analysis for TSS. PD-L1 negative patients had a significantly better survival following adjuvant chemotherapy than PD-L1 positive patients. The benefit of adjuvant therapy diminished in patients with PD-L1 expression in more than 10% of tumor cells. Stratification towards histologic subtype identified PD-L1 as a significant positive predictive factor for TSS after adjuvant therapy in patients with adenocarcinoma, but not squamous cell carcinoma. Routine PD-L1 assessment in curative intent treatment may help to identify patients with a better prognosis. Further research is needed to elucidate the predictive value of PD-L1 in an adjuvant setting.
Collapse
Affiliation(s)
- Florian Eichhorn
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, 69117 Heidelberg, Germany; (L.V.K.); (H.W.); (M.E.E.)
- Translational Lung Research Center, German Center for Lung Disease (DZL), 69120 Heidelberg, Germany; (M.K.); (T.M.); (P.C.)
- Correspondence:
| | - Mark Kriegsmann
- Translational Lung Research Center, German Center for Lung Disease (DZL), 69120 Heidelberg, Germany; (M.K.); (T.M.); (P.C.)
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Laura V. Klotz
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, 69117 Heidelberg, Germany; (L.V.K.); (H.W.); (M.E.E.)
- Translational Lung Research Center, German Center for Lung Disease (DZL), 69120 Heidelberg, Germany; (M.K.); (T.M.); (P.C.)
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, Heidelberg University, 69117 Heidelberg, Germany;
| | - Thomas Muley
- Translational Lung Research Center, German Center for Lung Disease (DZL), 69120 Heidelberg, Germany; (M.K.); (T.M.); (P.C.)
- Section Translational Research (STF), Thoraxklinik, Heidelberg University, 69117 Heidelberg, Germany
| | | | - Petros Christopoulos
- Translational Lung Research Center, German Center for Lung Disease (DZL), 69120 Heidelberg, Germany; (M.K.); (T.M.); (P.C.)
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Hauke Winter
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, 69117 Heidelberg, Germany; (L.V.K.); (H.W.); (M.E.E.)
- Translational Lung Research Center, German Center for Lung Disease (DZL), 69120 Heidelberg, Germany; (M.K.); (T.M.); (P.C.)
| | - Martin E. Eichhorn
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, 69117 Heidelberg, Germany; (L.V.K.); (H.W.); (M.E.E.)
- Translational Lung Research Center, German Center for Lung Disease (DZL), 69120 Heidelberg, Germany; (M.K.); (T.M.); (P.C.)
| |
Collapse
|
22
|
Han CL, Chen XR, Lan A, Hsu YL, Wu PS, Hung PF, Hung CL, Pan SH. N-glycosylated GPNMB ligand independently activates mutated EGFR signaling and promotes metastasis in NSCLC. Cancer Sci 2021; 112:1911-1923. [PMID: 33706413 PMCID: PMC8088973 DOI: 10.1111/cas.14872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐related death worldwide. As well as the identified role of epidermal growth factor receptor (EGFR), its association with driver mutations has improved the therapeutics for patients with lung cancer harboring EGFR mutations. These patients usually display shorter overall survival and a higher tendency to develop distant metastasis compared with those carrying the wild‐type EGFR. Nevertheless, the way to control mutated EGFR signaling remains unclear. Here, we performed membrane proteomic analysis to determine potential components that may act with EGFR mutations to promote lung cancer malignancy. Expression of transmembrane glycoprotein non‐metastatic melanoma protein B (GPNMB) was positively correlated with the status of mutated EGFR in non‐small‐cell lung cancer (NSCLC). This protein was not only overexpressed but also highly glycosylated in EGFR‐mutated, especially EGFR‐L858R mutated, NSCLC cells. Further examination showed that GPNMB could activate mutated EGFR without ligand stimulation and could bind to the C‐terminus of EGFR, assist phosphorylation at Y845, turn on downstream STAT3 signaling, and promote cancer metastasis. Moreover, we also found that Asn134 (N134) glycosylation of GPNMB played a crucial role in this ligand‐independent regulation. Depleting N134‐glycosylation on GPNMB could dramatically inhibit binding of GPNMB to mutated EGFR, blocking its downstream signaling, and ultimately inhibiting cancer metastasis in NSCLC. Clarifying the role of N‐glycosylated GPNMB in regulating the ligand‐independent activation of mutated EGFR may soon give new insight into the development of novel therapeutics for NSCLC.
Collapse
Affiliation(s)
- Chia-Li Han
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Xuan-Ren Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Albert Lan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yuan-Ling Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Shan Wu
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Pei-Fang Hung
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Lieh Hung
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Szu-Hua Pan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.,Doctoral Degree Program of Translational Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
23
|
Isaka T, Yokose T, Ito H, Nakayama H, Miyagi Y, Saito H, Masuda M. Detection of EGFR mutation of pulmonary adenocarcinoma in sputum using droplet digital PCR. BMC Pulm Med 2021; 21:100. [PMID: 33757469 PMCID: PMC7988937 DOI: 10.1186/s12890-021-01468-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/15/2021] [Indexed: 12/28/2022] Open
Abstract
Background It is still unclear whether epidermal growth factor receptor (EGFR) mutation of primary lung adenocarcinoma can be detected on sputum samples. This study aimed to examine EGFR mutations of primary lung adenocarcinoma in sputum samples using droplet digital polymerase chain reaction (ddPCR) and compare it with an EGFR mutation in surgically resected lung cancer. Methods Sputum was prospectively collected from the patients before complete resection of the primary lung cancer at Kanagawa Cancer Center from September 2014 to May 2016. ddPCR was performed to detect EGFR exon 21 L858R point mutation (Ex21) and EGFR exon 19 deletion mutation (Ex19) in sputum samples from patients with lung adenocarcinoma. The concordance of EGFR mutation status in sputum samples and tumors in surgically resected specimen was evaluated for each positive and negative cytology group. Results One hundred and eighteen patients with primary lung adenocarcinoma provided sputum samples. Sputum cytology was positive in 13 patients (11.0%). ddPCR detected two cases of Ex21 and two cases of Ex19 in sputum cytology positive cases. Compared to surgically resected specimens, the sensitivity, specificity, and positive predictive value of EGFR mutation (Ex19 and Ex21) detection were 80.0%, 100%, and 100%, respectively, in sputum cytology positive cases. In contrast, the sensitivity, specificity, and positive predictive value of EGFR mutation (Ex19 and Ex21) detection were 3.1%, 100%, and 100%, respectively, in sputum cytology negative cases. Conclusions EGFR mutations in primary lung adenocarcinoma can be detected with high sensitivity in sputum samples if sputum cytology is positive.
Collapse
Affiliation(s)
- Tetsuya Isaka
- Department of Thoracic Surgery, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi, Yokohama, Kanagawa, 241-8515, Japan. .,Department of Surgery, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan.
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi, Yokohama, Kanagawa, 241-8515, Japan
| | - Hiroyuki Ito
- Department of Thoracic Surgery, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi, Yokohama, Kanagawa, 241-8515, Japan
| | - Haruhiko Nakayama
- Department of Thoracic Surgery, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi, Yokohama, Kanagawa, 241-8515, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi, Yokohama, Kanagawa, 241-8515, Japan
| | - Haruhiro Saito
- Department of Thoracic Oncology, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi, Yokohama, Kanagawa, 241-8515, Japan
| | - Munetaka Masuda
- Department of Surgery, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| |
Collapse
|
24
|
Arancillo M, Taechalertpaisarn J, Liang X, Burgess K. Piptides: New, Easily Accessible Chemotypes For Interactions With Biomolecules. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Maritess Arancillo
- Department of Chemistry Texas A & M University Box 30012 College Station TX 77842 USA
| | | | - Xiaowen Liang
- Center for Infectious and Inflammatory Diseases Institute of Biosciences and Technology Texas A&M Health Science Center Houston TX 77030 USA
| | - Kevin Burgess
- Department of Chemistry Texas A & M University Box 30012 College Station TX 77842 USA
| |
Collapse
|
25
|
Arancillo M, Taechalertpaisarn J, Liang X, Burgess K. Piptides: New, Easily Accessible Chemotypes For Interactions With Biomolecules. Angew Chem Int Ed Engl 2021; 60:6653-6659. [PMID: 33319463 PMCID: PMC7940574 DOI: 10.1002/anie.202015203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Indexed: 12/22/2022]
Abstract
Small molecule probe development is pivotal in biomolecular science. Research described here was undertaken to develop a non-peptidic chemotype, piptides, that is amenable to convenient, iterative solid-phase syntheses, and useful in biomolecular probe discovery. Piptides can be made from readily accessible pip acid building blocks and have good proteolytic and pH stabilities. An illustrative application of piptides against a protein-protein interaction (PPI) target was explored. The Exploring Key Orientations (EKO) strategy was used to evaluate piptide candidates for this. A library of only 14 piptides contained five members that disrupted epidermal growth factor (EGF) and its receptor, EGFR, at low micromolar concentrations. These piptides also caused apoptotic cell death, and antagonized EGF-induced phosphorylation of intracellular tyrosine residues in EGFR.
Collapse
Affiliation(s)
- Maritess Arancillo
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX, 77842, USA
| | - Jaru Taechalertpaisarn
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX, 77842, USA
| | - Xiaowen Liang
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, 77030, USA
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX, 77842, USA
| |
Collapse
|
26
|
Clinicopathologic Significance of EGFR Mutation and HPV Infection in Sinonasal Squamous Cell Carcinoma. Am J Surg Pathol 2021; 45:108-118. [PMID: 32868526 DOI: 10.1097/pas.0000000000001566] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sinonasal squamous cell carcinoma (SNSCC) is sometimes associated with high-risk human papillomavirus (HR-HPV) infection and inverted sinonasal papilloma or oncocytic sinonasal papilloma. Frequent mutations of EGFR and KRAS are reported in inverted sinonasal papilloma-related sinonasal squamous cell carcinoma (ISP-SCC) and oncocytic sinonasal papilloma-related SNSCC, respectively. Here, we attempted to determine the prevalence and the prognostic significances of these alterations in SNSCC. We retrospectively collected 146 SNSCCs, including 14 ISP-SCCs, and comprehensively analyzed the HR-HPV infection by human papillomavirus (HPV)-RNA in situ hybridization, EGFR gene copy number gain (CNG) by chromogenic in situ hybridization, and gene mutations in EGFR and KRAS by Sanger sequencing. HR-HPV was detected in 11 cases (7.5%), whereas all 14 ISP-SCCs were negative. EGFR mutations were present in 21 (14.7%) of 143 SNSCCs, including 13/14 (92.9%) ISP-SCCs and 8/129 (6.2%) non-ISP-SCCs (P<0.0001). The majority of EGFR mutations were exon 20 insertions, with the remainder composed of deletions and single-nucleotide substitutions in exons 19 and 20. All of 142 SNSCCs harbored no KRAS mutation. EGFR CNG was detected in 41 (28.1%) of 146 SNSCCs; all of them were HPV negative and 3 had EGFR mutations. Collectively, EGFR mutation, EGFR CNG, and HR-HPV were essentially mutually exclusive, and each subgroup had distinct clinicopathologic features. The HPV-negative/EGFR-mutant group, the HPV-negative/EGFR CNG-positive group, and the triple-negative group had significantly worse prognoses than the HPV-positive group (P=0.0265, 0.0264, and 0.0394, respectively). In conclusion, EGFR mutation may play a pathogenetically important role in some populations of SNSCCs, especially ISP-SCCs. The molecular subclassification of SNSCCs may contribute to prognostic prediction and molecular-targeted precision medicine.
Collapse
|
27
|
Kumar M, Joshi G, Chatterjee J, Kumar R. Epidermal Growth Factor Receptor and its Trafficking Regulation by Acetylation: Implication in Resistance and Exploring the Newer Therapeutic Avenues in Cancer. Curr Top Med Chem 2021; 20:1105-1123. [PMID: 32031073 DOI: 10.2174/1568026620666200207100227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The EGFR is overexpressed in numerous cancers. So, it becomes one of the most favorable drug targets. Single-acting EGFR inhibitors on prolong use induce resistance and side effects. Inhibition of EGFR and/or its interacting proteins by dual/combined/multitargeted therapies can deliver more efficacious drugs with less or no resistance. OBJECTIVE The review delves deeper to cover the aspects of EGFR mediated endocytosis, leading to its trafficking, internalization, and crosstalk(s) with HDACs. METHODS AND RESULTS This review is put forth to congregate relevant literature evidenced on EGFR, its impact on cancer prognosis, inhibitors, and its trafficking regulation by acetylation along with the current strategies involved in targeting these proteins (EGFR and HDACs) successfully by involving dual/hybrid/combination chemotherapy. CONCLUSION The current information on cross-talk of EGFR and HDACs would likely assist researchers in designing and developing dual or multitargeted inhibitors through combining the required pharmacophores.
Collapse
Affiliation(s)
- Manvendra Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Joydeep Chatterjee
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| |
Collapse
|
28
|
Kim B, Park YS, Sung JS, Lee JW, Lee SB, Kim YH. Clathrin-mediated EGFR endocytosis as a potential therapeutic strategy for overcoming primary resistance of EGFR TKI in wild-type EGFR non-small cell lung cancer. Cancer Med 2021; 10:372-385. [PMID: 33314735 PMCID: PMC7826488 DOI: 10.1002/cam4.3635] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/04/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Oncogenic alterations of epidermal growth factor receptor (EGFR) signaling are frequently noted in non-small cell lung cancer (NSCLC). In recent decades, EGFR tyrosine kinase inhibitors (TKIs) have been developed, although the therapeutic efficacy of these inhibitor is restricted to EGFR-mutant patients. In this study, we investigated that clathrin-mediated EGFR endocytosis hampers the effects of gefitinib and sustains NSCLC cells with wild-type EGFR. MATERIALS AND METHODS NSCLC cell lines (H358, Calu-3, SNU-1327, and H1703) were stimulated with the EGF and treated with gefitinib and endocytosis inhibitors (phenylarsine oxide (PAO) and Filipin III). Growth inhibition and apoptosis were evaluated. Immunofluorescence, immunoprecipitation, and western blot assay were performed to investigate EGFR endocytosis and determine the signaling pathway. Xenograft mouse models were used to verify the combination effect of gefitinib and PAO in vivo. RESULTS We confirmed the differences in EGFR endocytosis according to gefitinib response in wild-type EGFR NSCLC cell lines. EGFR in gefitinib-sensitive and -refractory cell lines tended to internalize through distinct routes, caveolin-mediated endocytosis (CVE), and clathrin-mediated endocytosis (CME). Interestingly, while suppressing CME and CVE did not affect cell survival in sensitive cell lines significantly, CME inhibition combined with gefitinib treatment decreased cell survival and induced apoptosis in gefitinib-refractory cell lines. In addition, blocking CME in the refractory cell lines led to downregulate of p-STAT3 and inhibit nuclear localization of STAT3 in vivo, combination treatment with gefitinib and a CME inhibitor resulted in tumor regression accompanying apoptosis in xenograft mouse models. CONCLUSION Clathrin-mediated EGFR endocytosis contribute primary resistance of gefitinib treatment and CME inhibition combined with gefitinib could be an option in treatment of wild-type EGFR NSCLC.
Collapse
Affiliation(s)
- Boyeon Kim
- Cancer Research InstituteKorea University College of MedicineSeoulRepublic of Korea
- BK21 Plus programKorea University College of MedicineSeoulRepublic of Korea
| | - Young Soo Park
- Cancer Research InstituteKorea University College of MedicineSeoulRepublic of Korea
| | - Jae Sook Sung
- Cancer Research InstituteKorea University College of MedicineSeoulRepublic of Korea
| | - Jong Won Lee
- Cancer Research InstituteKorea University College of MedicineSeoulRepublic of Korea
- BK21 Plus programKorea University College of MedicineSeoulRepublic of Korea
| | - Saet Byeol Lee
- Cancer Research InstituteKorea University College of MedicineSeoulRepublic of Korea
- BK21 Plus programKorea University College of MedicineSeoulRepublic of Korea
| | - Yeul Hong Kim
- Cancer Research InstituteKorea University College of MedicineSeoulRepublic of Korea
- BK21 Plus programKorea University College of MedicineSeoulRepublic of Korea
- Department of Oncology/HematologyKorea University Anam HospitalSeoulRepublic of Korea
| |
Collapse
|
29
|
Geng Y, Mei Y, Xi Y, Yu J, Meng K, Zhang T, Ma W. Bilirubin Can Be Used as a Prognostic Factor for Lung Adenocarcinoma Patients with EGFR Mutations. Onco Targets Ther 2020; 13:11089-11095. [PMID: 33149620 PMCID: PMC7605630 DOI: 10.2147/ott.s266477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/07/2020] [Indexed: 01/04/2023] Open
Abstract
Background and Objectives Non-small cell lung cancer (NSCLC) patients with an epidermal growth factor receptor (EGFR) mutation demonstrate only a median progression-free survival (PFS) of 8 to 10 months and undergo EGFR tyrosine kinase inhibitors (EGFR-TKIs) therapy. For decades, bilirubin has been reported to be associated with the onset and prognosis of lung cancer as a prooxidant. This study aimed to investigate the prediction of pretreatment circulating bilirubin for PFS in lung adenocarcinoma (LAC) patients who underwent EGFR-TKIs targeted therapy. Patients and Methods LAC cases diagnosed and undergone EGFR-TKIs targeted therapy at The First Affiliated Hospital of Zhengzhou University between 2013 and 2015 were retrospectively reviewed. A total of 180 patients were studied according to inclusion and exclusion criteria. Follow-up data were collected for all patients until the disease progressed. Results Univariate analysis showed that the levels of pretreatment total bilirubin (TBIL), indirect bilirubin (IBIL) and direct bilirubin (DBIL) were related to PFS (all p<0.05). Considering the close relationship among the three factors, we combined TBIL, IBIL and DBIL into one total factor, which is called bilirubin. Kaplan–Meier survival curves and Log rank tests indicated that patients with lower bilirubin levels had a shorter median PFS than those with higher bilirubin levels (8 vs. 15 months; p=0.002). Multivariate analysis demonstrated that pretreatment bilirubin is an independent prognostic factor (HR=0.454, CI: 0.267–0.773, p=0.004). Conclusion This study confirms that bilirubin can predict the prognosis of LAC patients who had undergone EGFR-TKIs targeted therapy.
Collapse
Affiliation(s)
- Yimeng Geng
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yeling Mei
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Ying Xi
- Department of Radiotherapy, Puyang Oilfield General Hospital, Puyang, Henan, People's Republic of China
| | - Junlin Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Ke Meng
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Tengfei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
30
|
Wu Y, He Z, Li S, Tang H, Wang L, Yang S, Dong B, Qin J, Sun Y, Yu H, Zhang Y, Zhang Y, Guo Y, Wang Q. Gefitinib Represses JAK-STAT Signaling Activated by CRTC1-MAML2 Fusion in Mucoepidermoid Carcinoma Cells. Curr Cancer Drug Targets 2020; 19:796-806. [PMID: 30605061 DOI: 10.2174/1568009619666190103122735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Gefitinib is well-known as a tyrosine kinase inhibitor targeting non-smalllung- cancer (NSCLC) containing EGFR mutations. However, its effectiveness in treating mucoepidermoid carcinoma (MEC) without such EGFR mutations suggests additional targets. OBJECTIVE The CRTC1-MAML2 (C1-M2) fusion typical for MEC has been proposed to be a gefitinib target. METHODS To test this hypothesis, we developed a set of siRNAs to down-regulate C1-M2 expression. RNA-seq and Western blot techniques were applied to analyze the effects of gefitinib and siC1-M2 on the transcriptome of and the phosphorylation of tyrosine kinases in a MEC cell line H292. RESULTS Deep-sequencing transcriptome analysis revealed that gefitinib extensively inhibited transcription of genes in JAK-STAT and MAPK/ERK pathways. Both siC1-M2 and gefitinib inhibited the phosphorylation of multiple signaling kinases in these signaling pathways, indicating that gefitinib inhibited JAK-STAT and MAPK/ERK pathways activated by C1-M2 fusion. Moreover, gefitinib inhibition of EGFR and MAPK/ERK was more effective than that of AKT, JAK2 and STATs, and their dependence on C1-M2 could be uncoupled. Taken together, our results suggest that gefitinib simultaneously represses phosphorylation of multiple key signaling proteins which are activated in MEC, in part by C1-M2 fusion. Gefitinib-repressed kinase phosphorylation explains the transcriptional repression of genes in JAK-STAT and MAPK/ERK pathways. CONCLUSION These findings provide new insights into the efficacy of gefitinib in treating mucoepidermoid carcinoma, and suggest that a combination of gefitinib and other inhibitors specifically against C1-M2 fusion could be more effective.
Collapse
Affiliation(s)
- Yufeng Wu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450008, China
| | - Zhen He
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450008, China
| | - Shaomei Li
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450008, China
| | - Hong Tang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450008, China
| | - Lili Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450008, China
| | - Sen Yang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450008, China
| | - Bing Dong
- Department of Molecular Pathology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450008, China
| | - Jianjun Qin
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450008, China
| | - Yue Sun
- Laboratory of Human Health and Genome Regulation, and Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China
| | - Han Yu
- Laboratory of Human Health and Genome Regulation, and Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China
| | - Yu Zhang
- Laboratory of Human Health and Genome Regulation, and Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China
| | - Yi Zhang
- Laboratory of Human Health and Genome Regulation, and Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China
| | - Yongjun Guo
- Department of Molecular Pathology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450008, China
| | - Qiming Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450008, China
| |
Collapse
|
31
|
Freitas HC, Torrezan GT, da Cunha IW, Macedo MP, Karen de Sá V, Corassa M, Ferreira ENE, Saito AO, Dal Molin GZ, Cordeiro de Lima VC, Carraro DM. Mutational Portrait of Lung Adenocarcinoma in Brazilian Patients: Past, Present, and Future of Molecular Profiling in the Clinic. Front Oncol 2020; 10:1068. [PMID: 32714871 PMCID: PMC7343968 DOI: 10.3389/fonc.2020.01068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/28/2020] [Indexed: 12/23/2022] Open
Abstract
Objectives: Approximately 60% of lung adenocarcinomas (LAs) carry mutations that can guide treatment with tyrosine-kinase inhibitors (TKI) and other targeted therapies. Data on activating mutations in EGFR and other tyrosine-kinase receptor (TKR) genes in highly admixed populations, such as that of Brazil, are scarce. In this study, we comprehensively analyzed the actionable alteration profile of LA in Brazilian patients. Materials and Methods:EGFR driver mutation data were collected from a large Brazilian LA cohort covering an 8-year period of molecular testing in a single institution. Tests were performed using three distinct methods, and demographic and histopathological data were analyzed. For a subset of patients, driver mutations in KRAS, NRAS, and BRAF and gene fusions involving TKR genes (before TKI treatment) and EGFR T790M (after TKI treatment) were assessed. Results:EGFR mutations were detected in 25% of 1,316 LAs evaluated, with exon 19 deletions and exon 21 L858R TKI sensitizing mutations representing 72.5% of all mutations. Mutation rates were higher in women and non-smokers (p < 0.001). Next-generation sequencing was very sensitive, with a lower rate of inconclusive results compared with Sanger sequencing and pyrosequencing. EGFR/RAS/BRAF hotspot gene panels were applied in 495 LA cases and detected oncogenic mutations in 51.3% of samples, most frequently in EGFR (22.4%) and KRAS (26.9%). In subgroups of 36 and 35 patients, gene fusions were detected in 11.1% of tumors and EGFR T790M resistance mutations were detected in 59% of plasma samples from patients previously treated with TKI, respectively. Conclusion: This report provides the first comprehensive actionable alteration portrait of LA in Brazil. The high rate of actionable alterations in EGFR and other driver genes in LA reinforces the need to incorporate TKI guided by molecular diagnostics into clinical routines for patients in both public and private healthcare systems.
Collapse
Affiliation(s)
- Helano C Freitas
- Medical Oncology Department, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Giovana Tardin Torrezan
- Genomics and Molecular Biology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil.,Genomic Diagnostic Laboratory, Anatomic Pathology Department, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Isabela Werneck da Cunha
- Anatomic Pathology Department, A.C. Camargo Cancer Center, São Paulo, Brazil.,Pathology Department, Rede D'OR-São Luiz, São Paulo, Brazil
| | | | | | - Marcelo Corassa
- Medical Oncology Department, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Elisa Napolitano E Ferreira
- Genomics and Molecular Biology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil.,Research and Development, Fleury Group, São Paulo, Brazil
| | | | - Graziela Zibetti Dal Molin
- Medical Oncology Department, A.C. Camargo Cancer Center, São Paulo, Brazil.,Hospital Beneficencia Portuguesa, São Paulo, Brazil
| | - Vladmir C Cordeiro de Lima
- Medical Oncology Department, A.C. Camargo Cancer Center, São Paulo, Brazil.,Translational Immuno-oncology Laboratory, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Dirce Maria Carraro
- Genomics and Molecular Biology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil.,Genomic Diagnostic Laboratory, Anatomic Pathology Department, A.C. Camargo Cancer Center, São Paulo, Brazil
| |
Collapse
|
32
|
Efficacy of Platinum-Based Adjuvant Chemotherapy on Prognosis of Pathological Stage II/III Lung Adenocarcinoma based on EGFR Mutation Status: A Propensity Score Matching Analysis. Mol Diagn Ther 2020; 23:657-665. [PMID: 31347029 DOI: 10.1007/s40291-019-00419-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study aimed to retrospectively evaluate the efficacy of platinum-based adjuvant chemotherapy (PBAC) for patients with pathological II/III pulmonary adenocarcinoma after curative resection based on epidermal growth factor receptor (EGFR) mutation status using propensity score matching (PSM) analysis. METHODS Among the 304 patients who underwent curative resection of the lung for pathological II/III pulmonary adenocarcinoma from 2002 to 2016 at the Kanagawa Cancer Center, 176 and 128 patients were wild-type EGFR (Wt) and mutant EGFR (Mt), respectively. Seventy-one Wt patients (40.3%) and 60 Mt patients (46.9%) received PBAC. The prognoses of Wt and Mt patients who did and did not receive PBAC were compared using PSM analysis to reduce bias. RESULTS The overall survival (OS) of both Wt and Mt patients who received PBAC was significantly better than that of patients who did not receive PBAC before PSM. By multivariate analysis, PBAC was an independent prognostic factor for OS among Wt patients, as were age, carcinoembryonic antigen (CEA) level, pleural invasion, and lymph node metastasis. Although age and CEA level were independent factors for OS among Mt patients, PBAC was not a prognostic factor. After PSM, Wt patients who received PBAC had better OS than those who did not, although Mt patients who did and did not receive PBAC had no difference in OS. CONCLUSIONS PBAC was associated with favorable prognosis after curative resection among Wt patients, but not among Mt patients. PBAC might not be necessary for Mt patients with pathological stage II/III pulmonary adenocarcinoma.
Collapse
|
33
|
Zhang C, Zhang C, Wang Q, Li Z, Lin J, Wang H. Differences in Stage of Cancer at Diagnosis, Treatment, and Survival by Race and Ethnicity Among Leading Cancer Types. JAMA Netw Open 2020; 3:e202950. [PMID: 32267515 PMCID: PMC7142383 DOI: 10.1001/jamanetworkopen.2020.2950] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
IMPORTANCE Information about stage of cancer at diagnosis, use of therapy, and survival among patients from different racial/ethnic groups with 1 of the most common cancers is lacking. OBJECTIVE To assess stage of cancer at diagnosis, use of therapy, overall survival (OS), and cancer-specific survival (CSS) in patients with cancer from different racial/ethnic groups. DESIGN, SETTING, AND PARTICIPANTS This cohort study included 950 377 Asian, black, white, and Hispanic patients who were diagnosed with prostate, ovarian, breast, stomach, pancreatic, lung, liver, esophageal, or colorectal cancers from January 2004 to December 2010. Data were collected using the Surveillance, Epidemiology, and End Results (SEER) database, and patients were observed for more than 5 years. Data analysis was conducted in July 2018. MAIN OUTCOMES AND MEASURES Multivariable logistic and Cox regression were used to evaluate the differences in stage of cancer at diagnosis, treatment, and survival among patients from different racial/ethnic groups. RESULTS A total of 950 377 patients (499 070 [52.5%] men) were included in the study, with 681 251 white patients (71.7%; mean [SD] age, 65 [12] years), 116 015 black patients (12.2%; mean [SD] age, 62 [12] years), 65 718 Asian patients (6.9%; mean [SD] age, 63 [13] years), and 87 393 Hispanic patients (9.2%; mean [SD] age, 61 [13] years). Compared with Asian patients, black patients were more likely to have metastatic disease at diagnosis (odds ratio [OR], 1.144; 95% CI, 1.109-1.180; P < .001). Black and Hispanic patients were less likely to receive definitive treatment than Asian patients (black: adjusted OR, 0.630; 95% CI, 0.609-0.653; P < .001; Hispanic: adjusted OR, 0.751; 95% CI, 0.724-0.780; P < .001). White, black, and Hispanic patients were more likely to have poorer CSS and OS than Asian patients (CSS, white: adjusted HR, 1.310; 95% CI, 1.283-1.338; P < .001; black: adjusted HR, 1.645; 95% CI, 1.605-1.685; P < .001; Hispanic: adjusted HR, 1.300; 95% CI, 1.266-1.334; P < .001; OS, white: adjusted HR, 1.333; 95% CI, 1.310-1.357; P < .001; black: adjusted HR, 1.754; 95% CI, 1.719-1.789; P < .001; Hispanic: adjusted HR, 1.279; 95% CI, 1.269-1.326; P < .001). CONCLUSIONS AND RELEVANCE In this study of patients with 1 of 9 leading cancers, stage at diagnosis, treatment, and survival were different by race and ethnicity. These findings may help to optimize treatment and improve outcomes.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Chenxing Zhang
- Department of Nephrology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingliang Wang
- Department of Medical Affairs, Qilu Hospital of Shandong University, Jinan, China
| | - Zhenxiang Li
- Department of Internal Medicine–Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiamao Lin
- Department of Internal Medicine–Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Haiyong Wang
- Department of Internal Medicine–Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
34
|
Gao F, Yu X, Li M, Zhou L, Liu W, Li W, Liu H. Deguelin suppresses non-small cell lung cancer by inhibiting EGFR signaling and promoting GSK3β/FBW7-mediated Mcl-1 destabilization. Cell Death Dis 2020; 11:143. [PMID: 32081857 PMCID: PMC7035355 DOI: 10.1038/s41419-020-2344-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Activating mutations of epidermal growth factor receptor (EGFR) play crucial roles in the oncogenesis of human non-small cell lung cancer (NSCLC). By screening 79 commercially available natural products, we found that the natural compound deguelin exhibited a profound anti-tumor effect on NSCLC via directly down-regulating of EGFR-signaling pathway. Deguelin potently inhibited in vitro EGFR kinase activity of wild type (WT), exon 19 deletion, and L858R/T790M-mutated EGFR. The in silico docking study indicated that deguelin was docked into the ATP-binding pocket of EGFRs. By suppression of EGFR signaling, deguelin inhibited anchorage-dependent, and independent growth of NSCLC cell lines, and significantly delayed tumorigenesis in vivo. Further study showed that deguelin inhibited EGFR and downstream kinase Akt, which resulted in the activation of GSK3β and eventually enhanced Mcl-1 phosphorylation at S159. Moreover, deguelin promoted the interaction between Mcl-1 and E3 ligase SCFFBW7, which enhanced FBW7-mediated Mcl-1 ubiquitination and degradation. Additionally, phosphorylation of Mcl-1 by GSK3β is a prerequisite for FBW7-mediated Mcl-1 destruction. Depletion or pharmacological inactivation of GSK3β compromised deguelin-induced Mcl-1 ubiquitination and reduction. Taken together, our data indicate that enhancement of ubiquitination-dependent Mcl-1 turnover might be a promising approach for cancer treatment.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, P.R. China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, P.R. China.,Department of Ultrasonography, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, P.R. China
| | - Xinfang Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Ming Li
- Changsha Stomatological Hospital, 410004, Changsha, Hunan, P.R. China.,School of Stomatology, Hunan University of Chinese Medicine, 410208, Changsha, Hunan, P.R. China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, P.R. China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, 410013, Changsha, Hunan, P.R. China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, P.R. China.
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, P.R. China. .,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, P.R. China.
| |
Collapse
|
35
|
Li F, Huang Q, Luster TA, Hu H, Zhang H, Ng WL, Khodadadi-Jamayran A, Wang W, Chen T, Deng J, Ranieri M, Fang Z, Pyon V, Dowling CM, Bagdatlioglu E, Almonte C, Labbe K, Silver H, Rabin AR, Jani K, Tsirigos A, Papagiannakopoulos T, Hammerman PS, Velcheti V, Freeman GJ, Qi J, Miller G, Wong KK. In Vivo Epigenetic CRISPR Screen Identifies Asf1a as an Immunotherapeutic Target in Kras-Mutant Lung Adenocarcinoma. Cancer Discov 2020; 10:270-287. [PMID: 31744829 PMCID: PMC7007372 DOI: 10.1158/2159-8290.cd-19-0780] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/11/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022]
Abstract
Despite substantial progress in lung cancer immunotherapy, the overall response rate in patients with KRAS-mutant lung adenocarcinoma (LUAD) remains low. Combining standard immunotherapy with adjuvant approaches that enhance adaptive immune responses-such as epigenetic modulation of antitumor immunity-is therefore an attractive strategy. To identify epigenetic regulators of tumor immunity, we constructed an epigenetic-focused single guide RNA library and performed an in vivo CRISPR screen in a Kras G12D/Trp53 -/- LUAD model. Our data showed that loss of the histone chaperone Asf1a in tumor cells sensitizes tumors to anti-PD-1 treatment. Mechanistic studies revealed that tumor cell-intrinsic Asf1a deficiency induced immunogenic macrophage differentiation in the tumor microenvironment by upregulating GM-CSF expression and potentiated T-cell activation in combination with anti-PD-1. Our results provide a rationale for a novel combination therapy consisting of ASF1A inhibition and anti-PD-1 immunotherapy. SIGNIFICANCE: Using an in vivo epigenetic CRISPR screen, we identified Asf1a as a critical regulator of LUAD sensitivity to anti-PD-1 therapy. Asf1a deficiency synergized with anti-PD-1 immunotherapy by promoting M1-like macrophage polarization and T-cell activation. Thus, we provide a new immunotherapeutic strategy for this subtype of patients with LUAD.See related commentary by Menzel and Black, p. 179.This article is highlighted in the In This Issue feature, p. 161.
Collapse
Affiliation(s)
- Fei Li
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Qingyuan Huang
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Troy A Luster
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hai Hu
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Hua Zhang
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Wai-Lung Ng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR
| | - Alireza Khodadadi-Jamayran
- Applied Bioinformatics Laboratories and Genome Technology Center, Division of Advanced Research Technologies, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Wei Wang
- S. Arthur Localio Laboratory, Department of Surgery, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Ting Chen
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Jiehui Deng
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Michela Ranieri
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Zhaoyuan Fang
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Val Pyon
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Catríona M Dowling
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Ece Bagdatlioglu
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Christina Almonte
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Kristen Labbe
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Heather Silver
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Alexandra R Rabin
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Kandarp Jani
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories and Genome Technology Center, Division of Advanced Research Technologies, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
- Department of Pathology, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Peter S Hammerman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Vamsidhar Velcheti
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - George Miller
- S. Arthur Localio Laboratory, Department of Surgery, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York.
| |
Collapse
|
36
|
Gotfrit J, Shin JJ, Mallick R, Stewart DJ, Wheatley‐Price P. Potential Life-Years Lost: The Impact of the Cancer Drug Regulatory and Funding Process in Canada. Oncologist 2020; 25:e130-e137. [PMID: 31506392 PMCID: PMC6964142 DOI: 10.1634/theoncologist.2019-0314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/06/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Canada has an established publicly funded health care system with a complex drug approval and funding process. After proof of efficacy (POE; key publication/presentation) and before becoming publicly accessible, each drug undergoes a Health Canada approval process, a health technology assessment (HTA), a pricing negotiation, and finally individual provincial funding agreements. We quantified potential life-years lost during this process. METHODS We analyzed drugs for advanced lung, breast, and colorectal cancer that underwent the HTA process between 2011 and 2016. Life-years lost were calculated by multiplying documented improvement in progression-free and overall survival, number of eligible patients, and time from POE to first public funding. For conservative calculation, we assumed all eligible patients in Canada had access at the time of first public funding, whereas in reality provinces fund at different time points. RESULTS We analyzed 21 drugs. Of these, 15 have been funded publicly. The time from POE to first public funding ranged from 14.0 to 99.2 months (median 26.6 months). Total overall life-years lost from POE to first public funding were 39,067 (lung 32,367; breast 6,691). Progression-free life-years lost from POE to first public funding were 48,037 (lung 9,139, breast 15,827, colorectal 23,071). CONCLUSION The number of potential life-years lost during the drug regulatory and funding process in Canada is substantial, largely driven by delays to funding of colorectal cancer drugs. Recognizing that interprovincial differences exist and that eligible patients may not all receive a given drug, if even a fraction does so, the impact of delays remains substantive. Collaborative national initiatives are required to address this major barrier to treatment access. IMPLICATIONS FOR PRACTICE Patients may spend lengthy periods of time awaiting access to new and effective cancer drugs. Patients with private drug insurance or personal funds or who reside in certain Canadian provinces may obtain some drugs sooner than others, potentially creating a two-tiered access system. The cancer drug access and public funding system must be expedited to improve equity.
Collapse
Affiliation(s)
- Joanna Gotfrit
- Division of Medical Oncology, Department of Medicine, The Ottawa Hospital Cancer Centre and the University of OttawaOttawaOntarioCanada
| | | | | | - David J. Stewart
- Division of Medical Oncology, Department of Medicine, The Ottawa Hospital Cancer Centre and the University of OttawaOttawaOntarioCanada
- The Ottawa Hospital Research InstituteOttawaOntarioCanada
| | - Paul Wheatley‐Price
- Division of Medical Oncology, Department of Medicine, The Ottawa Hospital Cancer Centre and the University of OttawaOttawaOntarioCanada
- The Ottawa Hospital Research InstituteOttawaOntarioCanada
| |
Collapse
|
37
|
Chan CK, Lai CY, Wang CC. TMSOTf-catalyzed synthesis of substituted quinazolines using hexamethyldisilazane as a nitrogen source under neat and microwave irradiation conditions. Org Biomol Chem 2020; 18:7201-7212. [DOI: 10.1039/d0ob01507e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An efficient synthetic route for the synthesis of substituted quinazolines under neat, metal-free and microwave irradiation conditions has been developed by using TMSOTf as an acid catalyst and HMDS as a nitrogen source.
Collapse
Affiliation(s)
| | - Chien-Yu Lai
- Institute of Chemistry
- Academia Sinica
- Taipei 115
- Taiwan
| | | |
Collapse
|
38
|
Petrek H, Yu A. MicroRNAs in non-small cell lung cancer: Gene regulation, impact on cancer cellular processes, and therapeutic potential. Pharmacol Res Perspect 2019; 7:e00528. [PMID: 31859460 PMCID: PMC6923806 DOI: 10.1002/prp2.528] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/29/2022] Open
Abstract
Lung cancer remains the most lethal cancer among men and women in the United States and worldwide. The majority of lung cancer cases are classified as non-small cell lung cancer (NSCLC). Developing new therapeutics on the basis of better understanding of NSCLC biology is critical to improve the treatment of NSCLC. MicroRNAs (miRNAs or miRs) are a superfamily of genome-derived, small noncoding RNAs that govern posttranscriptional gene expression in cells. Functional miRNAs are commonly dysregulated in NSCLC, caused by genomic deletion, methylation, or altered processing, which may lead to the changes of many cancer-related pathways and processes, such as growth and death signaling, metabolism, angiogenesis, cell cycle, and epithelial to mesenchymal transition, as well as sensitivity to current therapies. With the understanding of miRNA biology in NSCLC, there are growing interests in developing new therapeutic strategies, namely restoration of tumor suppressive miRNAs and inhibition of tumor promotive miRNAs, to combat against NSCLC. In this article, we provide an overview on the molecular features of NSCLC and current treatment options with a focus on pharmacotherapy and personalized medicine. By illustrating the roles of miRNAs in the control of NSCLC tumorigenesis and progression, we highlight the latest efforts in assessing miRNA-based therapies in animal models and discuss some critical challenges in developing RNA therapeutics.
Collapse
Affiliation(s)
- Hannah Petrek
- Department of Biochemistry & Molecular MedicineUC Davis School of MedicineSacramentoCAUSA
| | - Ai‐Ming Yu
- Department of Biochemistry & Molecular MedicineUC Davis School of MedicineSacramentoCAUSA
| |
Collapse
|
39
|
Varvaresou A, Iakovou K, Mellou F, Myrogiannis D, Papageorgiou S. Targeted therapy in oncology patients and skin: Pharmaceutical and dermocosmetic management. J Cosmet Dermatol 2019; 19:782-788. [PMID: 31769600 DOI: 10.1111/jocd.13211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 09/23/2019] [Accepted: 10/15/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Numerous oncology patients who receive targeted therapy suffer from the skin adverse effects induced. Novel agents, that is tyrosine kinase inhibitors and RAS-RAF-MEK-ERK pathway, have given good results in patient survival while decreasing the systemic toxicities in comparison to conventional cytotoxic chemotherapy, but are also related to skin adverse effects. AIMS In this article, we highlighted the importance of specific pharmaceutical and dermocosmetic management of the untoward events of targeted therapy. CONCLUSION The combination of Oncodermatology, Psychodermatology, Cosmetic Dermatology, Cosmetic Science, Dermatopharmacology and Aesthetic Science can offer a lot for the prevention or early relief of the cutaneous adverse effects in oncology patients receiving targeted therapy.
Collapse
Affiliation(s)
- Athanasia Varvaresou
- Research Laboratory of Chemisty, Biochemistry and Cosmetic Science, Department of Biomedical Sciences, University of West Attica, Egaleo, Greece
| | | | - Fotini Mellou
- Research Laboratory of Chemisty, Biochemistry and Cosmetic Science, Department of Biomedical Sciences, University of West Attica, Egaleo, Greece
| | | | - Spyros Papageorgiou
- Research Laboratory of Chemisty, Biochemistry and Cosmetic Science, Department of Biomedical Sciences, University of West Attica, Egaleo, Greece
| |
Collapse
|
40
|
Young RM, Phelan JD, Wilson WH, Staudt LM. Pathogenic B-cell receptor signaling in lymphoid malignancies: New insights to improve treatment. Immunol Rev 2019; 291:190-213. [PMID: 31402495 PMCID: PMC6693651 DOI: 10.1111/imr.12792] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022]
Abstract
Signals emanating from the B-cell receptor (BCR) promote proliferation and survival in diverse forms of B-cell lymphoma. Precision medicine strategies targeting the BCR pathway have been generally effective in treating lymphoma, but often fail to produce durable responses in diffuse large B-cell lymphoma (DLBCL), a common and aggressive cancer. New insights into DLBCL biology garnered from genomic analyses and functional proteogenomic studies have identified novel modes of BCR signaling in this disease. Herein, we describe the distinct roles of antigen-dependent and antigen-independent BCR signaling in different subtypes of DLBCL. We highlight mechanisms by which the BCR cooperates with TLR9 and mutant isoforms of MYD88 to drive sustained NF-κB activity in the activated B-cell-like (ABC) subtype of DLBCL. Finally, we discuss progress in detecting and targeting oncogenic BCR signaling to improve the survival of patients with lymphoma.
Collapse
MESH Headings
- Animals
- Autoantigens/immunology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Germinal Center/immunology
- Germinal Center/metabolism
- Germinal Center/pathology
- Humans
- Leukemia, Lymphoid/diagnosis
- Leukemia, Lymphoid/etiology
- Leukemia, Lymphoid/metabolism
- Leukemia, Lymphoid/therapy
- Lymphoma/diagnosis
- Lymphoma/etiology
- Lymphoma/metabolism
- Lymphoma/therapy
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Ryan M. Young
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD. 20892
| | - James D. Phelan
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD. 20892
| | - Wyndham H. Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD. 20892
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD. 20892
| |
Collapse
|
41
|
Thomas R, Weihua Z. Rethink of EGFR in Cancer With Its Kinase Independent Function on Board. Front Oncol 2019; 9:800. [PMID: 31508364 PMCID: PMC6716122 DOI: 10.3389/fonc.2019.00800] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/06/2019] [Indexed: 12/23/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is one of most potent oncogenes that are commonly altered in cancers. As a receptor tyrosine kinase, EGFR's kinase activity has been serving as the primary target for developing cancer therapeutics, namely the EGFR inhibitors including small molecules targeting its ATP binding pocket and monoclonal antibodies targeting its ligand binding domains. EGFR inhibitors have produced impressive therapeutic benefits to responsive types of cancers. However, acquired and innate resistances have precluded current anti-EGFR agents from offering sustainable benefits to initially responsive cancers and benefits to EGFR-positive cancers that are innately resistant. Recent years have witnessed a realization that EGFR possesses kinase-independent (KID) pro-survival functions in cancer cells. This new knowledge has offered a different angle of understanding of EGFR in cancer and opened a new avenue of targeting EGFR for cancer therapy. There are already many excellent reviews on the role of EGFR with a focus on its kinase-dependent functions and mechanisms of resistance to EGFR targeted therapies. The present opinion aims to initiate a fresh discussion about the function of EGFR in cancer cells by laying out some unanswered questions pertaining to EGFR in cancer cells, by rethinking the unmet therapeutic challenges from a view of EGFR's KID function, and by proposing novel approaches to target the KID functions of EGFR for cancer treatment.
Collapse
Affiliation(s)
- Rintu Thomas
- Department of Biology and Biochemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX, United States
| | - Zhang Weihua
- Department of Biology and Biochemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX, United States
| |
Collapse
|
42
|
|
43
|
Yang B, Wang QG, Lu M, Ge Y, Zheng YJ, Zhu H, Lu G. Correlations Study Between 18F-FDG PET/CT Metabolic Parameters Predicting Epidermal Growth Factor Receptor Mutation Status and Prognosis in Lung Adenocarcinoma. Front Oncol 2019; 9:589. [PMID: 31380265 PMCID: PMC6657738 DOI: 10.3389/fonc.2019.00589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose: This study assessed the ability of metabolic parameters from 18Fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and clinicopathological data to predict epidermal growth factor receptor (EGFR) expression/mutation status in patients with lung adenocarcinoma and to develop a prognostic model based on differences in EGFR expression status, to enable individualized targeted molecular therapy. Patients and Methods: Metabolic parameters and clinicopathological data from 200 patients diagnosed with lung adenocarcinoma between July 2009 and November 2016, who underwent 18F-FDG PET/CT and EGFR mutation testing, were retrospectively evaluated. Multivariate logistic regression was applied to significant variables to establish a prediction model for EGFR mutation status. Overall survival for both mutant and wild-type EGFR was analyzed to establish a multifactor Cox regression model. Results: Of the 200 patients, 115 (58%) exhibited EGFR mutations and 85 (42%) were wild-type. Among selected metabolic parameters, metabolic tumor volume (MTV) demonstrated a significant difference between wild-type and mutant EGFR mutation status, with an area under the receiver operating characteristic curve (AUC) of 0.60, which increased to 0.70 after clinical data (smoking status) were combined. Survival analysis of wild-type and mutant EGFR yielded mean survival times of 34.451 (95% CI 28.654-40.249) and 53.714 (95% CI 44.331-63.098) months, respectively. Multivariate Cox regression revealed that mutation type, tumor stage, and thyroid transcription factor-1 (TTF-1) expression status were the main factors influencing patient prognosis. The hazard ratio for mutant EGFR was 0.511 (95% CI 0.303-0.862) times that of wild-type, and the risk of death was lower for mutant EGFR than for wild-type. The risk of death was lower in TTF-1-positive than in TTF-1-negative patients. Conclusion: 18F-FDG PET/CT metabolic parameters combined with clinicopathological data demonstrated moderate diagnostic efficacy in predicting EGFR mutation status and were associated with prognosis in mutant and wild-type EGFR non-small-cell lung cancer (NSCLC), thus providing a reference for individualized targeted molecular therapy.
Collapse
Affiliation(s)
- Bin Yang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qing Gen Wang
- Department of Medical Imaging, Jinling Hospital, Clinical School of Southern Medical University, Nanjing, China
| | - Mengjie Lu
- Department of Medical Imaging, Jinling Hospital, Nanjing, China
| | | | - Yu Jun Zheng
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hong Zhu
- Department of Nuclear Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
44
|
Abstract
KDM5 family members (A, B, C and D) that demethylate H3K4me3 have been shown to be involved in human cancers. Here we performed screening for KDM5A inhibitors from chemical libraries using the AlphaScreen method and identified a battery of screening hits that inhibited recombinant KDM5A. These compounds were further subjected to cell-based screening using a reporter gene that responded to KDM5A inhibition and 6 compounds were obtained as candidate inhibitors. When further confirmation of their inhibition activity on cellular KDM5A was made by immunostaining H3K4me3 in KDM5A-overexpressing cells, ryuvidine clearly repressed H3K4me3 demethylation. Ryuvidine prevented generation of gefitinib-tolerant human small-cell lung cancer PC9 cells and also inhibited the growth of the drug-tolerant cells at concentrations that did not affect the growth of parental PC9 cells. Ryuvidine inhibited not only KDM5A but also recombinant KDM5B and C; KDM5B was the most sensitive to the inhibitor. These results warrant that ryuvidine may serve as a lead compound for KDM5 targeted therapeutics.
Collapse
|
45
|
Kirinde Arachchige PT, Yi CS. Synthesis of Quinazoline and Quinazolinone Derivatives via Ligand-Promoted Ruthenium-Catalyzed Dehydrogenative and Deaminative Coupling Reaction of 2-Aminophenyl Ketones and 2-Aminobenzamides with Amines. Org Lett 2019; 21:3337-3341. [DOI: 10.1021/acs.orglett.9b01082] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | - Chae S. Yi
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881 United States
| |
Collapse
|
46
|
He Q, Xin P, Zhang M, Jiang S, Zhang J, Zhong S, Liu Y, Guo M, Chen X, Xia X, Pan Z, Guo C, Cai X, Liang W, He J. The impact of epidermal growth factor receptor mutations on the prognosis of resected non-small cell lung cancer: a meta-analysis of literatures. Transl Lung Cancer Res 2019; 8:124-134. [PMID: 31106123 PMCID: PMC6504652 DOI: 10.21037/tlcr.2019.03.14] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 03/20/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) mutation represents a good response to EGFR-tyrosine kinase inhibitor and an advantageous prognostic factor in advanced-stage non-small cell lung cancer (NSCLC). However, the predictive value of EGFR mutation for prognosis in NSCLC patients after complete surgery, which more reflective of natural process, remains controversial. We sought to examine the predictive value of EGFR mutation in NSCLC. Several studies with small sample sizes have been reported but small studies bring bias especially in a postoperative setting. Therefore, we sought to pool all current evidence to show the true effects. METHODS Electronic databases were used to search the relevant articles. Disease-free survival (DFS), which will be less effected by subsequent treatments after recurrence, was the primary endpoint. The DFS between EGFR mutated and wild-type patients were compared focus on stage I patients who are rarely received adjuvant therapy. Besides, the DFS of patients with 19 exon deletion (19del) and 21 exon L858R mutation (L858R) were compared. A random effects model was used. RESULTS A total of 19 relevant studies which involved 4,872 cases were enrolled and 2,086 patients were EGFR-mutated. The majority of studies used PCR-based methods to detect EGFR mutations. Through meta-analysis, we observed the DFS of EGFR-mutated patients were similar to wild type patients in overall population (HR 0.93, 95% CI: 0.74 to 1.17). Similar results were observed in stage I subgroup (HR 0.82, 95% CI: 0.50 to 1.33). DFS of 19 del patients were potentially inferior to L858R patients but the difference was not significant (HR 1.38, 95% CI: 0.76 to 2.52). CONCLUSIONS There was no significant difference in postoperative DFS between EGFR-mutant patients and wild-type with resected NSCLC. In addition, there is still insufficient evidence to support different postoperative treatment strategies (especially for stage I) for both mutated and wild-type patients. However, 19 del may be a negative factor, which may require more strict management. Thus, we strongly encourage reporting specific prognostic impacts of different mutation types.
Collapse
Affiliation(s)
- Qihua He
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
- Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Peiling Xin
- Department of Radiation Oncology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Mingzhe Zhang
- Department of Cardiology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Si Jiang
- Department of Ultrasound, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Jianrong Zhang
- George Warren Brown School, Washington University in St. Louis, St. Louis, USA
| | - Shengyi Zhong
- Department of Cardiothoracic Surgery, Xianning Central Hospital, Xianning 437000, China
| | - Yang Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
- Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Minzhang Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
- Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Xuewei Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
- Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Xiaojun Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
- Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Zhenkui Pan
- Department of Oncology, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Chenye Guo
- Department of Oncology, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Xiuyu Cai
- Department of General Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Wenhua Liang
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
- Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Jianxing He
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
- Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| |
Collapse
|
47
|
Jiang L, Mino-Kenudson M, Roden AC, Rosell R, Molina MÁ, Flores RM, Pilz LR, Brunelli A, Venuta F, He J. Association between the novel classification of lung adenocarcinoma subtypes and EGFR/KRAS mutation status: A systematic literature review and pooled-data analysis. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2019; 45:870-876. [PMID: 30833014 DOI: 10.1016/j.ejso.2019.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/06/2019] [Accepted: 02/05/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVES This study aims to determine the association of EGFR/KRAS mutation status with histological subtypes of lung adenocarcinoma (LAC) based on the IASLC/ATS/ERS classification. METHODS Pubmed and Cochrane databases were searched from January 2011 to June 2018 for studies that included patients with LAC who underwent surgical resection were classified according to the new IASLC/ATS/ERS classification. EGFR/KRAS status assessment was requireded. The primary outcome was determined by the odds ratio (OR) of the incidence of mutation status of certain of each histological subtype. The reference group consisted of EGFR/KRAS mutation negative patients. RESULTS Twenty-seven eligible studies involving 9022 patients with mutation gene detection were included for analysis. Among them, 6717 (74.5%) patients were from the Asian region and, 2305 (25.5%) patients were from Non-Asian regions. The most prevalent subtype was acinar (34.7%), followed by papillary (22.9%), lepidic (18.9%), solid (13.6%), micropapillary (6.3%), and invasive mucinous adenocarcinoma (3.5%). EGFR mutations were more common in patients with resected lepidic predominant adenocarcinoma (OR,1.76; 95%CI, 1.38-2.24;p < 0.01) and were rarely found in solid predominant adenocarcinoma (OR,0.28; 95%CI, 0.23-0.34;p < 0.01) or IMA (OR,0.10; 95%CI, 0.06-0.14;p < 0.01). Conversely, KRAS mutations were characterized by IMA (OR,7.01; 95%CI, 5.11-9.62;p < 0.01), and were less frequently identified in lepidic (OR,0.58; 95%CI, 0.45-0.75;p < 0.01) and acinar (OR,0.65; 95%CI, 0.55-0.78;p < 0.01) predominant subtypes. Further analyses were performed in Asian and Non-Asian groups and the results were consistent. CONCLUSIONS The current study confirms that the IASLC/ATS/ERS classification is associated with driver gene alterations in resected LAC.
Collapse
Affiliation(s)
- Long Jiang
- Department of Thoracic Surgery/Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease, China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, PR China.
| | | | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, MN, USA
| | - Rafael Rosell
- Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Hospital Germans Trias I Pujol, Ctra Canyet, Badalona, Barcelona, Spain
| | - Miguel Ángel Molina
- Pangaea Biotech, S.L., Hospital Universitario Quirón Dexeus, Barcelona, Spain
| | - Raja M Flores
- Department of Thoracic Surgery, Mount Sinai School of Medicine, New York, NY, USA
| | - Lothar R Pilz
- Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1, 68167, Mannheim, Germany
| | | | - Federico Venuta
- Department of Surgery "Paride Stefanini"-Thoracic Surgery Unit, Policlinico Umberto I, University of Rome, Italy
| | - Jianxing He
- Department of Thoracic Surgery/Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease, China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, PR China.
| | | |
Collapse
|
48
|
The diagnosis of non-small cell lung cancer in the molecular era. Mod Pathol 2019; 32:16-26. [PMID: 30600321 DOI: 10.1038/s41379-018-0156-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 12/17/2022]
Abstract
Lung carcinoma is the leading cause of cancer mortality for both genders in the United States and throughout the world. Many of these tumors are being diagnosed with minimally invasive means resulting in small samples. There is a need to extract an increasing amount of therapeutic and prognostic information from progressively smaller samples. Collaboration among clinicians and pathologists is needed to produce a comprehensive final diagnosis in patients with lung cancer. This collaboration facilitates triage of small samples for ancillary studies including molecular testing. What follows represents a review of the current required testing for lung cancer specimens, an example of an algorithm currently employed at the Cleveland Clinic so that all required tests can be performed even on the smallest of specimens and suggestions on how pathologists may approach this new era of "doing more with less".
Collapse
|
49
|
Li M, Li C, Ke L, Zhan M, Cheng M. Significance of the epidermal growth factor receptor mutation status and differences among molecular subgroups in surgically resected lung microinvasive adenocarcinoma. Oncol Lett 2018; 16:7057-7067. [PMID: 30546439 DOI: 10.3892/ol.2018.9539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 08/24/2018] [Indexed: 11/05/2022] Open
Abstract
Lung microinvasive adenocarcinoma (MIA) is a newly-defined subtype of early stage non-small cell lung cancer (NSCLC). However, its epidermal growth factor receptor (EGFR) mutation status and clinical significance remain unclear. The present study aimed to determine EGFR mutation characteristics and identify their significance in patients with resected lung MIA. The present study also analyzed clinicopathological differences between EGFR molecular subgroups defined as 19Del and L858R. The present study examined EGFR mutations in 79 consecutive lung MIA resection specimens and compared the differences in clinicopathological features between the EGFR wild-type and mutation groups, as well as between the 19Del and L858R subgroups. EGFR mutations were detected in 60 (75.95%) tumors. The most common mutations were 19Del (28 cases; 35.44%) and L858R (30 cases; 37.97%). Two patients harbored rare mutations and one of them had a concomitant double mutation. EGFR mutations were significantly associated with microinvasion component, thyroid transcription factor 1 (TTF-1) expression, intratumoral fibrosis and inflammatory cell infiltration. Subgroup evaluation indicated that there was a significant association between 19Del and tumor size, maximum diameter of microinvasion, presence of intratumoral fibrosis and inflammatory cell infiltration. Similar associations were observed for the L858R subgroup, and L858R was associated with TTF-1 expression. In particular, 19Del occurred more frequently in MIA with a smaller size, with a smaller microinvasive area, without TTF-1 expression, and lacking intratumoral fibrosis and inflammatory cell infiltration. By contrast, L858R was detected more frequently in MIA with entirely different tumor features. In conclusion, the results of the present study indicated that surgically resected MIA cases harboring different EGFR gene statuses exhibit distinct clinicopathological features. Significant differences in pathological features associated with the tumor microenvironment were identified in MIA with 19Del or L858R mutations. Therefore, the present study proposed that MIA should be classified into molecular subgroups based on EGFR mutation subtypes. The molecular sub-classification should be taken into account for prognostic evaluation and clinical management of MIA.
Collapse
Affiliation(s)
- Ming Li
- Department of Pathology, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Chuanying Li
- Department of Pathology, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Li Ke
- Department of Thoracic Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Mali Zhan
- Department of Pathology, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Min Cheng
- The Gerontology Institute of Anhui Province, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
50
|
Dudnik E, Twito T, Faull I, Dvir A, Soussan-Gutman L, Purim O, Lanman RB. Circulating Cell-Free Tumor DNA in the Management of Double Primary Tumors. JCO Precis Oncol 2018; 2:1-6. [DOI: 10.1200/po.17.00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Elizabeth Dudnik
- Elizabeth Dudnik and Ofer Purim, Davidoff Cancer Center, Rabin Medical Center, Petach Tikva; Tal Twito, Addie Dvir, and Lior Soussan-Gutman, TEVA Pharmaceuticals Industries, Shoam, Israel; and Iris Faull and Richard B. Lanman, Guardant Health, Redwood City, CA
| | - Tal Twito
- Elizabeth Dudnik and Ofer Purim, Davidoff Cancer Center, Rabin Medical Center, Petach Tikva; Tal Twito, Addie Dvir, and Lior Soussan-Gutman, TEVA Pharmaceuticals Industries, Shoam, Israel; and Iris Faull and Richard B. Lanman, Guardant Health, Redwood City, CA
| | - Iris Faull
- Elizabeth Dudnik and Ofer Purim, Davidoff Cancer Center, Rabin Medical Center, Petach Tikva; Tal Twito, Addie Dvir, and Lior Soussan-Gutman, TEVA Pharmaceuticals Industries, Shoam, Israel; and Iris Faull and Richard B. Lanman, Guardant Health, Redwood City, CA
| | - Addie Dvir
- Elizabeth Dudnik and Ofer Purim, Davidoff Cancer Center, Rabin Medical Center, Petach Tikva; Tal Twito, Addie Dvir, and Lior Soussan-Gutman, TEVA Pharmaceuticals Industries, Shoam, Israel; and Iris Faull and Richard B. Lanman, Guardant Health, Redwood City, CA
| | - Lior Soussan-Gutman
- Elizabeth Dudnik and Ofer Purim, Davidoff Cancer Center, Rabin Medical Center, Petach Tikva; Tal Twito, Addie Dvir, and Lior Soussan-Gutman, TEVA Pharmaceuticals Industries, Shoam, Israel; and Iris Faull and Richard B. Lanman, Guardant Health, Redwood City, CA
| | - Ofer Purim
- Elizabeth Dudnik and Ofer Purim, Davidoff Cancer Center, Rabin Medical Center, Petach Tikva; Tal Twito, Addie Dvir, and Lior Soussan-Gutman, TEVA Pharmaceuticals Industries, Shoam, Israel; and Iris Faull and Richard B. Lanman, Guardant Health, Redwood City, CA
| | - Richard B. Lanman
- Elizabeth Dudnik and Ofer Purim, Davidoff Cancer Center, Rabin Medical Center, Petach Tikva; Tal Twito, Addie Dvir, and Lior Soussan-Gutman, TEVA Pharmaceuticals Industries, Shoam, Israel; and Iris Faull and Richard B. Lanman, Guardant Health, Redwood City, CA
| |
Collapse
|