1
|
Jacobs JJL, Beekers I, Verkouter I, Richards LB, Vegelien A, Bloemsma LD, Bongaerts VAMC, Cloos J, Erkens F, Gradowska P, Hort S, Hudecek M, Juan M, Maitland-van der Zee AH, Navarro-Velázquez S, Ngai LL, Rafiq QA, Sanges C, Tettero J, van Os HJA, Vos RC, de Wit Y, van Dijk S. A data management system for precision medicine. PLOS DIGITAL HEALTH 2025; 4:e0000464. [PMID: 39787064 PMCID: PMC11717228 DOI: 10.1371/journal.pdig.0000464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/27/2024] [Indexed: 01/12/2025]
Abstract
Precision, or personalised medicine has advanced requirements for medical data management systems (MedDMSs). MedDMS for precision medicine should be able to process hundreds of parameters from multiple sites, be adaptable while remaining in sync at multiple locations, real-time syncing to analytics and be compliant with international privacy legislation. This paper describes the LogiqSuite software solution, aimed to support a precision medicine solution at the patient care (LogiqCare), research (LogiqScience) and data science (LogiqAnalytics) level. LogiqSuite is certified and compliant with international medical data and privacy legislations. This paper evaluates a MedDMS in five types of use cases for precision medicine, ranging from data collection to algorithm development and from implementation to integration with real-world data. The MedDMS is evaluated in seven precision medicine data science projects in prehospital triage, cardiovascular disease, pulmonology, and oncology. The P4O2 consortium uses the MedDMS as an electronic case report form (eCRF) that allows real-time data management and analytics in long covid and pulmonary diseases. In an acute myeloid leukaemia, study data from different sources were integrated to facilitate easy descriptive analytics for various research questions. In the AIDPATH project, LogiqCare is used to process patient data, while LogiqScience is used for pseudonymous CAR-T cell production for cancer treatment. In both these oncological projects the data in LogiqAnalytics is also used to facilitate machine learning to develop new prediction models for clinical-decision support (CDS). The MedDMS is also evaluated for real-time recording of CDS data from U-Prevent for cardiovascular risk management and from the Stroke Triage App for prehospital triage. The MedDMS is discussed in relation to other solutions for privacy-by-design, integrated data stewardship and real-time data analytics in precision medicine. LogiqSuite is used for multi-centre research study data registrations and monitoring, data analytics in interdisciplinary consortia, design of new machine learning / artificial intelligence (AI) algorithms, development of new or updated prediction models, integration of care with advanced therapy production, and real-world data monitoring in using CDS tools. The integrated MedDMS application supports data management for care and research in precision medicine.
Collapse
Affiliation(s)
| | - Inés Beekers
- Clinical Care & Research, ORTEC B.V., Zoetermeer, The Netherlands
| | - Inge Verkouter
- Clinical Care & Research, ORTEC B.V., Zoetermeer, The Netherlands
| | - Levi B. Richards
- Clinical Care & Research, ORTEC B.V., Zoetermeer, The Netherlands
| | - Alexandra Vegelien
- Clinical Care & Research, ORTEC B.V., Zoetermeer, The Netherlands
- Faculty of Mathematics, VU, Amsterdam, The Netherlands
| | | | - Vera A. M. C. Bongaerts
- Public Health & Primary Care, and Health Campus The Hague, Leiden University Medical Center, The Hague, The Netherlands
| | | | - Frederik Erkens
- Department Production Metrology, Fraunhofer Institute for Production Technology IPT, Aachen, Germany
| | - Patrycja Gradowska
- HOVON Foundation, Rotterdam, The Netherlands; Department of Haematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Simon Hort
- Adaptive Produktionssteuerung, Fraunhofer Institute for Production Technology IPT, Aachen, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, University Clinic Würzburg, Würzburg, Germany
| | - Manel Juan
- Fundació Clínic per a la Recerca Biomèdica—Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Immunology department, Hospital Clinic of Barcelona, Barcelona, Spain
- HSJD-Clinic Immunotherapy platform, Barcelona, Spain
| | | | - Sergio Navarro-Velázquez
- Fundació Clínic per a la Recerca Biomèdica—Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Immunology department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Lok Lam Ngai
- Department of Haematology, Amsterdam UMC, The Netherlands
| | - Qasim A. Rafiq
- Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| | - Carmen Sanges
- Medizinische Klinik und Poliklinik II, University Clinic Würzburg, Würzburg, Germany
| | - Jesse Tettero
- Department of Haematology, Amsterdam UMC, The Netherlands
| | - Hendrikus J. A. van Os
- Public Health & Primary Care, and Health Campus The Hague, Leiden University Medical Center, The Hague, The Netherlands
- National eHealth Living Lab, Leiden, The Netherlands
| | - Rimke C. Vos
- Public Health & Primary Care, and Health Campus The Hague, Leiden University Medical Center, The Hague, The Netherlands
| | - Yolanda de Wit
- Department of Pulmonary Medicine, Amsterdam UMC, The Netherlands
| | - Steven van Dijk
- Clinical Care & Research, ORTEC B.V., Zoetermeer, The Netherlands
| |
Collapse
|
2
|
Characiejus D, Hodzic J, Jacobs JJL. "First do no harm" and the importance of prediction in oncology. EPMA J 2010; 1:369-375. [PMID: 21151487 PMCID: PMC2987560 DOI: 10.1007/s13167-010-0042-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 07/02/2010] [Indexed: 02/03/2023]
Abstract
Present cancer treatment strategies are based on the assumption that a therapy may work (“response”) or not work (“no-response”). However, the existing evidence suggests that current cancer treatment modalities may also have a cancer-promoting effect in part of the patients. In this paper, some relevant data are reviewed suggesting that surgery, irradiation, chemotherapy and immunotherapy can stimulate tumor growth / metastatic spread and decrease survival of patients in certain subgroups. Thus, results of cancer treatment may be improved by detection and use of biomarkers that correlate with positive or negative therapeutic effects. Small trials based on groups with differing biomarkers rather than large phase III trials may aid the development and efficacy testing of new anticancer drugs. Moreover, ignoring biomarkers that correlate with positive or negative therapeutic effect may not be compatible anymore with the ethical principle “First Do No Harm”.
Collapse
Affiliation(s)
- Dainius Characiejus
- Faculty of Medicine, Vilnius University, M.K. Čiurlionio 21, LT-03101 Vilnius, Lithuania
- Center for Innovative Medicine, Žygimantų 9, Vilnius, Lithuania
| | - Jasmina Hodzic
- Department of Medical Oncology, VU University Medical Centre, de Boelelaan 1117, Amsterdam, The Netherlands
| | - John J. L. Jacobs
- Department of Urology, VU University Medical Centre, de Boelelaan 1117, Amsterdam, The Netherlands
| |
Collapse
|