1
|
Shen K, Yuan S, Su N, Tang F, Rehim S, Wang H, Guo H, Zhang Y, Wu Y, Wang H. Monotherapy and combination therapy using antibody‑drug conjugates for platinum‑resistant ovarian cancer. Oncol Rep 2025; 53:68. [PMID: 40242965 PMCID: PMC12046379 DOI: 10.3892/or.2025.8901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Platinum‑resistant ovarian cancer (PROC) is a significant clinical challenge due to the limited number of treatment options and poor outcomes. Moreover, cytotoxic drugs have an unsatisfactory therapeutic efficacy, high toxicity and side effects. An antibody‑drug conjugate (ADC) is a novel cancer therapeutic strategy that combines an antibody, a linker and a payload. ADCs precisely target the tumor cells by binding to the antigen on the surface of tumor cells, thus accurately delivering the cytotoxic drugs and minimizing systemic toxicity. The approval of mirvetuximab soravtansine by the US Food and Drug Administration for treating folate receptor alpha‑positive, platinum‑resistant epithelial ovarian cancer has promoted studies on the use of ADCs in ovarian cancer. A phase III clinical trial showed that mirvetuximab soravtansine achieved an objective remission rate of 42.3% in platinum‑resistant, FRα‑positive ovarian cancer, compared with 15.9% using chemotherapy, demonstrating its immense potential for ADC development. The present review summarizes the research progress on the use of ADCs in PROC as a monotherapy and combination therapy and considers the future development direction of ADCs in PROC.
Collapse
Affiliation(s)
- Ke Shen
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Shuang Yuan
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Ning Su
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, P.R. China
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Furong Tang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Shamsnur Rehim
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Han Wang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Huihui Guo
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Yu Zhang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Yufeng Wu
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Hongjing Wang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
2
|
Rossi V, Turati A, Rosato A, Carpanese D. Sacituzumab govitecan in triple-negative breast cancer: from bench to bedside, and back. Front Immunol 2024; 15:1447280. [PMID: 39211043 PMCID: PMC11357913 DOI: 10.3389/fimmu.2024.1447280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Triple-negative breast cancer (TNBC) represents a major therapeutic challenge due to its heterogeneous and aggressive phenotype, and limited target-specific treatment options. The trophoblast cell surface antigen (Trop-2), a transmembrane glycoprotein overexpressed in various cancers, has emerged as a promising target for TNBC. Sacituzumab govitecan (SG), an antibody-drug conjugate (ADC) that targets Trop-2, has recently entered treatment algorithms for advanced and metastatic TNBC, independently from Trop-2 expression status, with manageable toxicity. Despite the impressive results, questions remain unsolved regarding its efficacy, safety profile, and Trop-2 biological role in cancer. Currently, Trop-2 cannot be designated as a predictive biomarker in SG treatment, albeit its expression correlates with disease outcome, yet its levels are not uniform across all TNBCs. Additionally, data regarding Trop-2 expression variations in primary and metastatic sites, and its interplay with other biomarkers are still ambiguous but mandatory in light of future applications of SG in other indications and settings. This poses the questions of a careful evaluation of the efficacy and toxicity profile of SG in such early stages of disease, and in personalized and combinatorial strategies. Research and clinical data are mandatory to address SG drawbacks and minimize its benefits, to realize its full potential as therapeutic agent in different epithelial tumors.
Collapse
Affiliation(s)
- Valentina Rossi
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology (IOV)-IRCCS, Padova, Italy
| | - Alessandra Turati
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology (IOV)-IRCCS, Padova, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology (IOV)-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Debora Carpanese
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology (IOV)-IRCCS, Padova, Italy
| |
Collapse
|
3
|
Passaro A, Jänne PA, Peters S. Antibody-Drug Conjugates in Lung Cancer: Recent Advances and Implementing Strategies. J Clin Oncol 2023:JCO2300013. [PMID: 37224424 DOI: 10.1200/jco.23.00013] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/17/2023] [Accepted: 04/06/2023] [Indexed: 05/26/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are one of the fastest-growing oncology therapeutics, merging the cytotoxic effect of conjugated payload with the high specific ability and selectivity of monoclonal antibody targeted on a specific cancer cell membrane antigen. The main targets for ADC development are antigens commonly expressed by lung cancer cells, but not in normal tissues. They include human epidermal growth factor receptor 2, human epidermal growth factor receptor 3, trophoblast cell surface antigen 2, c-MET, carcinoembryonic antigen-related cell adhesion molecule 5, and B7-H3, each with one or more specific ADCs that showed encouraging results in the lung cancer field, more in non-small-cell lung cancer than in small-cell lung cancer histology. To date, multiple ADCs are under evaluation, alone or in combination with different molecules (eg, chemotherapy agents or immune checkpoint inhibitors), and the optimal strategy for selecting patients who may benefit from the treatment is evolving, including an improvement of biomarker understanding, involving markers of resistance or response to the payload, besides the antibody target. In this review, we discuss the available evidence and future perspectives on ADCs for lung cancer treatment, including a comprehensive discussion on structure-based drug design, mechanism of action, and resistance concepts. Data were summarized by specific target antigen, biology, efficacy, and safety, differing among ADCs according to the ADC payload and their pharmacokinetics and pharmacodynamics properties.
Collapse
Affiliation(s)
- Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University, Lausanne, Switzerland
| |
Collapse
|
4
|
Sun M, Zhang H, Jiang M, Chai Y, Qi J, Gao GF, Tan S. Structural insights into the cis and trans assembly of human trophoblast cell surface antigen 2. iScience 2021; 24:103190. [PMID: 34693228 PMCID: PMC8517388 DOI: 10.1016/j.isci.2021.103190] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/06/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022] Open
Abstract
Human trophoblast cell surface antigen 2 (TROP-2) is an important target of tumor therapy, and antibody-drug conjugates with sacituzumab targeting TROP-2 have been approved for the treatment of triple-negative breast cancer. Here, we report the crystal structures of TROP-2-ECD, which can be either cis- or trans-dimers depending on which distinct but overlapping interfaces is used to engage with monomers. The cis- or trans-tetrameric forms of TROP-2 can also be assembled with a non-overlapping interface with either cis- or trans-dimerization, suggesting that cis- and trans-dimers cluster on the cell surface. The binding site of sacituzumab on TROP-2 is mapped to be located on a stretched polypeptide in CPD (Q237-Q252), which is not involved in either cis- or trans-interactions. The present findings will improve understanding of the molecular assembly of TROP-2 on tumor cells and shed light on future design of biologics for tumor therapy.
Collapse
Affiliation(s)
- Meng Sun
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Helin Zhang
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Jiang
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - George F. Gao
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuguang Tan
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Deklerck E, Denys H, Kreps EO. Corneal features in trastuzumab emtansine treatment: not a rare occurrence. Breast Cancer Res Treat 2019; 175:525-530. [PMID: 30820718 DOI: 10.1007/s10549-019-05179-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE Ado-trastuzumab emtansine (T-DM1/Kadcyla®;Genentech) is an antibody-drug conjugate used in the treatment of human epidermal growth factor receptor-2-positive metastasized breast cancer. Few studies report a spectrum of corneal changes in patients treated with this drug. Our aim is to specify the nature and prevalence of corneal features of T-DM1 treatment in order to formulate guidelines as to which findings necessitate systemic treatment cessation or dose reduction. METHODS We performed a cross-sectional, prospective study in all patients currently treated with T-DM1 or recently stopped in Ghent University Hospital, Belgium. RESULTS A total of 12 patients completed a full ophthalmic workup. Ten patients were currently using T-DM1, and two patients had recently (< 10 weeks) stopped treatment because of clinical non-response. Twenty eyes of 10 patients currently on T-DM1-treatment all exhibited coarse cystoid lesions to the deep corneal epithelial cells, primarily in the midperipheral area, both biomicroscopically and on confocal microscopy. The two patients who stopped treatment, displayed no corneal epithelial changes. Only three patients reported symptoms which were attributed to other ocular factors, likely not to be related to T-DM1 treatment. CONCLUSIONS This case series shows that asymptomatic, low-grade corneal epithelial changes are hallmark features in T-DM1-treatment and should not alarm clinicians. These findings are relatively stationary, reversible and thus do not require ocular treatment or cessation of systemic treatment.
Collapse
Affiliation(s)
- Els Deklerck
- Department of Ophthalmology, Ghent University Hospital, 10, Corneel Heymanslaan, 9000, Ghent, Belgium.
| | - Hannelore Denys
- Department of Medical Oncology, Ghent University Hospital, 10, Corneel Heymanslaan, 9000, Ghent, Belgium
| | - Elke O Kreps
- Department of Ophthalmology, Ghent University Hospital, 10, Corneel Heymanslaan, 9000, Ghent, Belgium
| |
Collapse
|
6
|
Tray N, Adams S, Esteva FJ. Antibody-drug conjugates in triple negative breast cancer. Future Oncol 2018; 14:2651-2661. [PMID: 30175620 DOI: 10.2217/fon-2018-0131] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a heterogeneous disease that comprises 15-20% of all breast cancers and is more frequently seen in younger women, African-Americans, and BRCA1 expression. Advanced TNBC carries aggressive features and is associated with overall poor outcomes. Unfortunately, there are no targeted therapies available for non-BRCA associated TNBC, which remains a high unmet therapeutic need. One emerging treatment modality includes antibody-drug conjugates which are highly selective monoclonal antibodies conjugated to cytotoxic agents, designed to deliver cytotoxic drugs to antigen-expressing tumor cells. This review will highlight three antibody-drug conjugates currently being evaluated in TNBC (CDX-011, SGN-LIV1a, IMMU-132), including one that has been given Breakthrough Therapy designation from the US FDA.
Collapse
Affiliation(s)
- Nancy Tray
- Perlmutter Cancer Center at New York University Langone Health, New York, NY 10016, USA
| | - Sylvia Adams
- Perlmutter Cancer Center at New York University Langone Health, New York, NY 10016, USA
| | - Francisco J Esteva
- Perlmutter Cancer Center at New York University Langone Health, New York, NY 10016, USA
| |
Collapse
|
7
|
Hasan M, Leak RK, Stratford RE, Zlotos DP, Witt‐Enderby PA. Drug conjugates-an emerging approach to treat breast cancer. Pharmacol Res Perspect 2018; 6:e00417. [PMID: 29983986 PMCID: PMC6032357 DOI: 10.1002/prp2.417] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 12/28/2022] Open
Abstract
Breast cancer treatment using a single drug is associated with a high failure rate due, in part, to the heterogeneity of drug response within individuals, nonspecific target action, drug toxicity, and/or development of resistance. Use of dual-drug therapies, including drug conjugates, may help overcome some of these roadblocks by more selective targeting of the cancer cell and by acting at multiple drug targets rather than one. Drug-conjugate approaches include linking drugs to antibodies (antibody-drug conjugates), radionuclides (radioimmunoconjugates), nanoparticles (nanoparticle-drug conjugates), or to other drugs (drug-drug conjugates). Although all of these conjugates might be designed as effective treatments against breast cancer, the focus of this review will be on drug-drug conjugates because of the increase in versatility of these types of drugs with respect to mode of action at the level of the cancer cell either by creating a novel pharmacophore or by increasing the potency and/or efficacy of the drugs' effects at their respective molecular targets. The development, synthesis, and pharmacological characteristics of drug-drug conjugates will be discussed in the context of breast cancer with the hope of enhancing drug efficacy and reducing toxicities to improve patient quality of life.
Collapse
Affiliation(s)
- Mahmud Hasan
- Division of Pharmaceutical, Administrative, and Social SciencesDuquesne UniversityPittsburghPAUSA
| | - Rehana K. Leak
- Division of Pharmaceutical, Administrative, and Social SciencesDuquesne UniversityPittsburghPAUSA
| | | | - Darius P. Zlotos
- Department of Pharmaceutical ChemistryThe German University in CairoNew Cairo CityCairoEgypt
| | - Paula A. Witt‐Enderby
- Division of Pharmaceutical, Administrative, and Social SciencesDuquesne UniversityPittsburghPAUSA
- University of Pittsburgh Cancer InstituteUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|