1
|
Li Y, Ge X, Li Z, Zhou Z, Wu K, Li Y, Ji T, Wang C, Guo K, Ren J, Han X, Ren K. Application of temperature-sensitive liquid embolic agent loaded with oxaliplatin in the TACE procedure for rabbit VX2 gastric cancer. Drug Deliv Transl Res 2024; 14:705-717. [PMID: 37668861 DOI: 10.1007/s13346-023-01425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
As a promising drug delivery system, the temperature-sensitive liquid embolic agent (TempSLE) has yet to be reported in animal experiments in treating gastric cancer. We observed and compared computed tomography (CT) imaging changes, tumor volume, HE staining, and immunohistochemistry after transcatheter arterial chemoembolization (TACE) treatment in rabbit VX2 gastric cancer models to clarify the effectiveness of TempSLE loaded with oxaliplatin (TempSLE/Oxa) in treating gastric cancer. One milliliter TempSLE can be loaded with 20 mg oxaliplatin. The accumulative drug release rate at 30 min was 38.76%, and after 24 h, it reached more than 90%. CT examination 1 week after TACE revealed that the TempSLE/Oxa group presents unenhanced hypodense necrotic foci, the iodinated oil loaded with oxaliplatin (Ioil/Oxa) group presents shrinking tumors but still visible speckled foci of enhancement, and the normal saline (NS) group presents heterogeneous enhancement with larger tumors than before. In the postoperative autopsy of TACE, the tumor volumes of TempSLE/Oxa, Ioil/Oxa, and NS groups were 0.15 ± 0.06 cm3, 0.37 ± 0.11 cm3, and 1.19 ± 0.16 cm3, respectively, all of which were statistically different. The positive vascular endothelial growth factor (VEGF) and proliferating cell nuclear antigen (PCNA) expression percentages in the TempSLE/Oxa, Ioil/Oxa, and NS groups were statistically different and lowest in the TempSLE/Oxa group. In conclusion, the TempSLE can load a high dose of oxaliplatin to meet the demand of clinical applications. TempSLE/Oxa could effectively inhibit tumor cell proliferation and angiogenesis. This study provides experimental evidence for the further clinical application of the TempSLE/Oxa.
Collapse
Affiliation(s)
- Yahua Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Xiaoyong Ge
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zongming Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zihe Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Kunpeng Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Yifan Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Tengfei Ji
- Department of Peripheral Vascular, Zhoukou Chinese Medicine Hospital, Zhoukou, 466000, People's Republic of China
| | - Changran Wang
- Department of Peripheral Vascular, Zhoukou Chinese Medicine Hospital, Zhoukou, 466000, People's Republic of China
| | - Kefeng Guo
- Department of Oncology, Yellow River Sanmenxia Hospital, Sanmenxia, 472000, People's Republic of China
| | - Jianzhuang Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, People's Republic of China.
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
| | - Kewei Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Engineering Technology Research Center for Minimally Invasive, Interventional Tumors of Henan Province, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
2
|
Liao W, Li Y, Wang J, Zhao M, Chen N, Zheng Q, Wan L, Mou Y, Tang J, Wang Z. Natural Products-Based Nanoformulations: A New Approach Targeting CSCs to Cancer Therapy. Int J Nanomedicine 2022; 17:4163-4193. [PMID: 36134202 PMCID: PMC9482958 DOI: 10.2147/ijn.s380697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer stem cells (CSCs) lead to the occurrence and progression of cancer due to their strong tumorigenic, self-renewal, and multidirectional differentiation abilities. Existing cancer treatment methods cannot effectively kill or inhibit CSCs but instead enrich them and produce stronger proliferation, invasion, and metastasis capabilities, resulting in cancer recurrence and treatment resistance, which has become a difficult problem in clinical treatment. Therefore, targeting CSCs may be the most promising approach for comprehensive cancer therapy in the future. A variety of natural products (NP) have significant antitumor effects and have been identified to target and inhibit CSCs. However, pharmacokinetic defects and off-target effects have greatly hindered their clinical translation. NP-based nanoformulations (NPNs) have tremendous potential to overcome the disadvantages of NP against CSCs through site-specific delivery and by improving their pharmacokinetic parameters. In this review, we summarize the recent progress of NPNs targeting CSCs in cancer therapy, looking forward to transforming preclinical research results into clinical applications and bringing new prospects for cancer treatment.
Collapse
Affiliation(s)
- Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yuchen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Bishan Hospital of Traditional Chinese Medicine, Chongqing, People's Republic of China
| | - Maoyuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Nianzhi Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiao Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Lina Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yu Mou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Zhilei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
3
|
Abstract
Donafenib (Zepsun®, ®), a deuterium derivative of sorafenib, is an oral small molecule multikinase inhibitor of multiple receptor kinases, including vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR) and Raf kinases. Donafenib is being developed by Suzhou Zelgen Biopharmaceuticals Co., Ltd. (Zelgen) for the treatment of various cancers, including hepatocellular carcinoma, colorectal cancer and thyroid cancer. In June 2021, donafenib received its first approval in China for the treatment of patients with unresectable hepatocellular carcinoma who have not previously received systemic treatment. This article summarizes the milestones in the development of donafenib leading to this first approval for use in unresectable hepatocellular carcinoma.
Collapse
Affiliation(s)
- Susan J Keam
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| | - Sean Duggan
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand
| |
Collapse
|