1
|
Wang C, Xiong X, Li C, Lu Y, Zhang Y, Tian H, Xu C, Ma T, Wang J, Zhang J, Wang L. Sophoricoside Inhibited Glioblastoma Cell Progression Through Activated AMP-Activated Protein Kinase (AMPK). Mol Carcinog 2025; 64:816-828. [PMID: 39878044 DOI: 10.1002/mc.23889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/06/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor, with a mean survival of less than 2 years. Unique brain structures and the microenvironment, including blood-brain barriers, put great challenges on clinical drug development. Sophoricoside (Sop), an isoflavone glycoside isolated from seeds of Sophora japonica L., is one of the active constituents of traditional Chinese medicine and found to inhibit the bioactivity of cytokines (e.g., interleukin-5) and inflammatory responses, as well as to attenuate glucose and lipid metabolism in related diseases. However, the effects of Sop on cancer progression have not been systemically investigated. In this study, we performed a comprehensive investigation of Sop's function in GBM using colony formation and Transwell assays in vitro, along with subcutaneous xenograft tumor analysis in vivo. We employed RNA sequencing and bioinformatics analysis in conjunction with Western blotting (WB) and reverse transcription-quantitative polymerase chain reaction (RT-PCR) to explore the underlying mechanism. Our results demonstrated that Sop suppressed U251 cell proliferation and metastasis in vitro and inhibited the tumorigenic behavior of U251 cells in vivo. Further investigations revealed a positive correlation between the levels of activated AMP-activated protein kinase (AMPK) and Sop treatment; notably the application of the AMPK inhibitor, compound C (CC), abolished inhibitory effects of Sop on the malignant phenotype of U251 cells. These findings suggest the potential application of Sop in GBM treatment and highlight opportunities for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Changquan Wang
- Department of Neurology, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Xuehui Xiong
- Department of Neurosurgery, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Chang Li
- Department of Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan Lu
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Yan Zhang
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Han Tian
- Department of Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunlin Xu
- Department of Neurology, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Tengfei Ma
- Huanggang Institute of Translational Medicine, Huanggang, China
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Jinhua Wang
- Department of Neurology, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Jianqing Zhang
- Department of Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Wang
- Department of Neurosurgery, Huanggang Central Hospital of Yangtze University, Huanggang, China
| |
Collapse
|
2
|
Pei D, Zhang D, Guo Y, Chang H, Cui H. Long Non-Coding RNAs in Malignant Human Brain Tumors: Driving Forces Behind Progression and Therapy. Int J Mol Sci 2025; 26:694. [PMID: 39859408 PMCID: PMC11766336 DOI: 10.3390/ijms26020694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) play a pivotal role in regulating gene expression and are critically involved in the progression of malignant brain tumors, including glioblastoma, medulloblastoma, and meningioma. These lncRNAs interact with microRNAs (miRNAs), proteins, and DNA, influencing key processes such as cell proliferation, migration, and invasion. This review highlights the multifaceted impact of lncRNA dysregulation on tumor progression and underscores their potential as therapeutic targets to enhance the efficacy of chemotherapy, radiotherapy, and immunotherapy. The insights provided offer new directions for advancing basic research and clinical applications in malignant brain tumors.
Collapse
Affiliation(s)
| | | | | | | | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China; (D.P.); (D.Z.); (Y.G.); (H.C.)
| |
Collapse
|
3
|
Niu Z, Yang Z, Sun S, Zeng Z, Han Q, Wu L, Bai J, Li H, Xia H. Clinical analysis of the efficacy of radiation therapy for primary high-grade gliomas guided by biological rhythms. Transl Oncol 2024; 45:101973. [PMID: 38705052 PMCID: PMC11089398 DOI: 10.1016/j.tranon.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/05/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024] Open
Abstract
OBJECTIVE High-grade glioma (HGG) patients frequently encounter treatment resistance and relapse, despite numerous interventions seeking enhanced survival outcomes yielding limited success. Consequently, this study, rooted in our prior research, aimed to ascertain whether leveraging circadian rhythm phase attributes could optimize radiotherapy results. METHODS In this retrospective analysis, we meticulously selected 121 HGG cases with synchronized rhythms through Cosinor analysis. Post-surgery, all subjects underwent standard radiotherapy alongside Temozolomide chemotherapy. Random allocation ensued, dividing patients into morning (N = 69) and afternoon (N = 52) radiotherapy cohorts, enabling a comparison of survival and toxicity disparities. RESULTS The afternoon radiotherapy group exhibited improved overall survival (OS) and progression-free survival (PFS) relative to the morning cohort. Notably, median OS extended to 25.6 months versus 18.5 months, with P = 0.014, with median PFS at 20.6 months versus 13.3 months, with P = 0.022, post-standardized radiotherapy. Additionally, lymphocyte expression levels in the afternoon radiation group 32.90(26.10, 39.10) significantly exceeded those in the morning group 31.30(26.50, 39.20), with P = 0.032. CONCLUSIONS This study underscores the markedly prolonged average survival within the afternoon radiotherapy group. Moreover, lymphocyte proportion demonstrated a notable elevation in the afternoon group. Timely and strategic adjustments of therapeutic interventions show the potential to improve therapeutic efficacy, while maintaining vigilant systemic immune surveillance. A comprehensive grasp of physiological rhythms governing both the human body and tumor microenvironment can refine treatment efficacy, concurrently curtailing immune-related damage-a crucial facet of precision medicine.
Collapse
Affiliation(s)
- Zhanfeng Niu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, PR China
| | - Zhihua Yang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, PR China
| | - Shengyu Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, PR China
| | - Zhong Zeng
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, PR China; Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, PR China
| | - Qian Han
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, PR China; Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, PR China
| | - Liang Wu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, PR China
| | - Jinbo Bai
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, PR China
| | - Hailiang Li
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, PR China
| | - Hechun Xia
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, PR China; Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, PR China.
| |
Collapse
|
4
|
Yeh PS, Liu CT, Yu CY, Chang YC, Lin SY, Li YC, Luan YZ, Sung WW. Crebanine, an aporphine alkaloid, induces cancer cell apoptosis through PI3K-Akt pathway in glioblastoma multiforme. Front Pharmacol 2024; 15:1419044. [PMID: 38895635 PMCID: PMC11184677 DOI: 10.3389/fphar.2024.1419044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most prevalent and lethal primary central nervous system malignancies. GBM is notorious for its high rates of recurrence and therapy resistance and the PI3K/Akt pathway plays a pivotal role in its malignant behavior. Crebanine (CB), an alkaloid capable of penetrating the blood-brain barrier (BBB), has been shown to have inhibitory effects on proinflammatory molecules and multiple cancer cell lines via pathways such as PI3K/Akt. This study aims to investigate the efficacy and mechanisms of CB treatment on GBM. It is the first study to elucidate the anti-tumor role of CB in GBM, providing new possibilities for GBM therapy. Through a series of experiments, we demonstrate the significant anti-survival, anti-clonogenicity, and proapoptotic effects of CB treatment on GBM cell lines. Next-generation sequencing (NGS) is also conducted and provides a complete list of significant changes in gene expression after treatment, including genes related to apoptosis, the cell cycle, FoxO, and autophagy. The subsequent protein expressions of the upregulation of apoptosis and downregulation of PI3K/Akt are further proved. The clinical applicability of CB to GBM treatment could be high for its BBB-penetrating feature, significant induction of apoptosis, and blockage of the PI3K/Akt pathway. Future research is needed using in vivo experiments and other therapeutic pathways shown in NGS for further clinical or in vivo studies.
Collapse
Affiliation(s)
- Poh-Shiow Yeh
- Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan
| | - Chien-Te Liu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Ying Yu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ya-Chuan Chang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shu-Yu Lin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yun-Chen Li
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ze Luan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Wei Sung
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Schaff LR, Ioannou M, Geurts M, van den Bent MJ, Mellinghoff IK, Schreck KC. State of the Art in Low-Grade Glioma Management: Insights From Isocitrate Dehydrogenase and Beyond. Am Soc Clin Oncol Educ Book 2024; 44:e431450. [PMID: 38723228 PMCID: PMC11651235 DOI: 10.1200/edbk_431450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Low-grade gliomas present a formidable challenge in neuro-oncology because of the challenges imposed by the blood-brain barrier, predilection for the young adult population, and propensity for recurrence. In the past two decades, the systematic examination of genomic alterations in adults and children with primary brain tumors has uncovered profound new insights into the pathogenesis of these tumors, resulting in more accurate tumor classification and prognostication. It also identified several common recurrent genomic alterations that now define specific brain tumor subtypes and have provided a new opportunity for molecularly targeted therapeutic intervention. Adult-type diffuse low-grade gliomas are frequently associated with mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2), resulting in production of 2-hydroxyglutarate, an oncometabolite important for tumorigenesis. Recent studies of IDH inhibitors have yielded promising results in patients at early stages of disease with prolonged progression-free survival (PFS) and delayed time to radiation and chemotherapy. Pediatric-type gliomas have high rates of alterations in BRAF, including BRAF V600E point mutations or BRAF-KIAA1549 rearrangements. BRAF inhibitors, often combined with MEK inhibitors, have resulted in radiographic response and improved PFS in these patients. This article reviews emerging approaches to the treatment of low-grade gliomas, including a discussion of targeted therapies and how they integrate with the current treatment modalities of surgical resection, chemotherapy, and radiation.
Collapse
Affiliation(s)
- Lauren R. Schaff
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College
| | - Maria Ioannou
- Johns Hopkins University School of Medicine, Baltimore, MD
| | - Marjolein Geurts
- Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | | | - Karisa C. Schreck
- Johns Hopkins University School of Medicine Departments of Neurology and Oncology
| |
Collapse
|
6
|
Janneh AH. Sphingolipid Signaling and Complement Activation in Glioblastoma: A Promising Avenue for Therapeutic Intervention. BIOCHEM 2024; 4:126-143. [PMID: 38894892 PMCID: PMC11185840 DOI: 10.3390/biochem4020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Glioblastoma is the most common and aggressive type of malignant brain tumor with a poor prognosis due to the lack of effective treatment options. Therefore, new treatment options are required. Sphingolipids are essential components of the cell membrane, while complement components are integral to innate immunity, and both play a critical role in regulating glioblastoma survival signaling. This review focuses on recent studies investigating the functional roles of sphingolipid metabolism and complement activation signaling in glioblastoma. It also discusses how targeting these two systems together may emerge as a novel therapeutic approach.
Collapse
Affiliation(s)
- Alhaji H Janneh
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
7
|
Narsinh KH, Perez E, Haddad AF, Young JS, Savastano L, Villanueva-Meyer JE, Winkler E, de Groot J. Strategies to Improve Drug Delivery Across the Blood-Brain Barrier for Glioblastoma. Curr Neurol Neurosci Rep 2024; 24:123-139. [PMID: 38578405 PMCID: PMC11016125 DOI: 10.1007/s11910-024-01338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE OF REVIEW Glioblastoma remains resistant to most conventional treatments. Despite scientific advances in the past three decades, there has been a dearth of effective new treatments. New approaches to drug delivery and clinical trial design are needed. RECENT FINDINGS We discuss how the blood-brain barrier and tumor microenvironment pose challenges for development of effective therapies for glioblastoma. Next, we discuss treatments in development that aim to overcome these barriers, including novel drug designs such as nanoparticles and antibody-drug conjugates, novel methods of drug delivery, including convection-enhanced and intra-arterial delivery, and novel methods to enhance drug penetration, such as blood-brain barrier disruption by focused ultrasound and laser interstitial thermal therapy. Lastly, we address future opportunities, positing combination therapy as the best strategy for effective treatment, neoadjuvant and window-of-opportunity approaches to simultaneously enhance therapeutic effectiveness with interrogation of on-treatment biologic endpoints, and adaptive platform and basket trials as imperative for future trial design. New approaches to GBM treatment should account for the blood-brain barrier and immunosuppression by improving drug delivery, combining treatments, and integrating novel clinical trial designs.
Collapse
Affiliation(s)
- Kazim H Narsinh
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA.
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Edgar Perez
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Alexander F Haddad
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
| | - Jacob S Young
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
| | - Luis Savastano
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Javier E Villanueva-Meyer
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Ethan Winkler
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - John de Groot
- Department of Neurologic Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
8
|
Wu M, Chen Y, Hua G, Chunhui L. The CD2-CD58 axis: A novel marker predicting poor prognosis in patients with low-grade gliomas and potential therapeutic approaches. Immun Inflamm Dis 2023; 11:e1022. [PMID: 37904707 PMCID: PMC10571499 DOI: 10.1002/iid3.1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/31/2023] [Accepted: 09/09/2023] [Indexed: 11/01/2023] Open
Abstract
INTRODUCTION Low-grade gliomas (LGGs) are currently considered a premalignant condition for high-grade gliomas (HGGs) and are characterized by a relatively intact immune system. Immunotherapeutic modalities may offer a safe and effective treatment option for these patients. However, the CD2-CD58 axis, an important component of the immunological synapse, remains unknown in LGG. METHODS RNA-seq data from TCGA databases were analyzed. Immune cell infiltration was determined using a single-sample gene set enrichment analysis (ssGSEA) based on integrated immune gene sets from published studies. Kaplan-Meier survival analysis, univariate and multivariate logistic analysis, and the ESTIMATE algorithm were employed to evaluate the impact of the CD2-CD58 axis on adult LGG patients. RESULTS The expression of the CD2-CD58 axis was found to be elevated with increasing of WHO grade (p < .05). Uni- and multi-variable logistic analysis demonstrated that age, WHO grade, and CD58 levels were associated with poor prognosis in LGG patients with (p < .01). MetaSape pathways analysis revealed the involvement of CD58 in regulating T cell activation, leukocyte-mediated immunity, and the positive regulation of cell activation in WHO grade II and III. CD58 expression correlated with infiltrations of CD4+ lymphocytes, NK cells, and macrophages cells. The ESTIMATE algorithm indicated that patients with high CD58 expression had significantly higher immune scores compared with low CD58 expression in WHO grade II/III, but no statistical difference was observed in WHO grade IV (p < .05). Furthermore, correlation analysis demonstrated the significant association between CD58 and CD274 (r = 0.581, p < .001), HAVCR2 (r = 0.58i7, p < .001), and LGALS9 (r = 0.566, p < .001). Immunohistochemical staining further confirmed the relationship of CD58, HAVCR2, WHO grade, and prognosis in grade II and III patients. CONCLUSION Overall, our findings highlight the significant association between the CD2-CD58 axis and poor survival in LGG patients. High CD58 expression is implicated in T cell-mediated immune responses as an immunosuppressive factor and affect inhibitory immune checkpoint genes.
Collapse
Affiliation(s)
- Mingwei Wu
- Qinzhou First People's HospitalQinzhouChina
| | - Yiyuan Chen
- Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Gao Hua
- Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Liu Chunhui
- Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
9
|
Zhang Y, Wong CY, Lim CZJ, Chen Q, Yu Z, Natalia A, Wang Z, Pang QY, Lim SW, Loh TP, Ang BT, Tang C, Shao H. Multiplexed RNA profiling by regenerative catalysis enables blood-based subtyping of brain tumors. Nat Commun 2023; 14:4278. [PMID: 37460561 DOI: 10.1038/s41467-023-39844-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
Current technologies to subtype glioblastoma (GBM), the most lethal brain tumor, require highly invasive brain biopsies. Here, we develop a dedicated analytical platform to achieve direct and multiplexed profiling of circulating RNAs in extracellular vesicles for blood-based GBM characterization. The technology, termed 'enzyme ZIF-8 complexes for regenerative and catalytic digital detection of RNA' (EZ-READ), leverages an RNA-responsive transducer to regeneratively convert and catalytically enhance signals from rare RNA targets. Each transducer comprises hybrid complexes - protein enzymes encapsulated within metal organic frameworks - to configure strong catalytic activity and robust protection. Upon target RNA hybridization, the transducer activates directly to liberate catalytic complexes, in a target-recyclable manner; when partitioned within a microfluidic device, these complexes can individually catalyze strong chemifluorescence reactions for digital RNA quantification. The EZ-READ platform thus enables programmable and reliable RNA detection, across different-sized RNA subtypes (miRNA and mRNA), directly in sample lysates. When clinically evaluated, the EZ-READ platform established composite signatures for accurate blood-based GBM diagnosis and subtyping.
Collapse
Affiliation(s)
- Yan Zhang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Chi Yan Wong
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Carine Z J Lim
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Qingchang Chen
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Zhonglang Yu
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Auginia Natalia
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Zhigang Wang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Qing You Pang
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - See Wee Lim
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Tze Ping Loh
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Beng Ti Ang
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Carol Tang
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- National Neuroscience Institute, Singapore, Singapore.
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
10
|
Brem S, Henderson F, Bagley SJ, Desai AS. Commentary: Complementary and Alternative Medicine for Gliomas: Systematic Review and Critical Appraisal of Current Literature. Neurosurgery 2023; 92:e46-e47. [PMID: 36693123 DOI: 10.1227/neu.0000000000002328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 01/25/2023] Open
Affiliation(s)
- Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Glioblastoma Translational Center of Excellence (TCE), Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fraser Henderson
- Tenwek Mission Hospital, Bomet, Kenya
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
| | - Stephen J Bagley
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arati Suvas Desai
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Abstract
Importance Malignant primary brain tumors cause more than 15 000 deaths per year in the United States. The annual incidence of primary malignant brain tumors is approximately 7 per 100 000 individuals and increases with age. Five-year survival is approximately 36%. Observations Approximately 49% of malignant brain tumors are glioblastomas, and 30% are diffusely infiltrating lower-grade gliomas. Other malignant brain tumors include primary central nervous system (CNS) lymphoma (7%) and malignant forms of ependymomas (3%) and meningiomas (2%). Symptoms of malignant brain tumors include headache (50%), seizures (20%-50%), neurocognitive impairment (30%-40%), and focal neurologic deficits (10%-40%). Magnetic resonance imaging before and after a gadolinium-based contrast agent is the preferred imaging modality for evaluating brain tumors. Diagnosis requires tumor biopsy with consideration of histopathological and molecular characteristics. Treatment varies by tumor type and often includes a combination of surgery, chemotherapy, and radiation. For patients with glioblastoma, the combination of temozolomide with radiotherapy improved survival when compared with radiotherapy alone (2-year survival, 27.2% vs 10.9%; 5-year survival, 9.8% vs 1.9%; hazard ratio [HR], 0.6 [95% CI, 0.5-0.7]; P < .001). In patients with anaplastic oligodendroglial tumors with 1p/19q codeletion, probable 20-year overall survival following radiotherapy without vs with the combination of procarbazine, lomustine, and vincristine was 13.6% vs 37.1% (80 patients; HR, 0.60 [95% CI, 0.35-1.03]; P = .06) in the EORTC 26951 trial and 14.9% vs 37% in the RTOG 9402 trial (125 patients; HR, 0.61 [95% CI, 0.40-0.94]; P = .02). Treatment of primary CNS lymphoma includes high-dose methotrexate-containing regimens, followed by consolidation therapy with myeloablative chemotherapy and autologous stem cell rescue, nonmyeloablative chemotherapy regimens, or whole brain radiation. Conclusions and Relevance The incidence of primary malignant brain tumors is approximately 7 per 100 000 individuals, and approximately 49% of primary malignant brain tumors are glioblastomas. Most patients die from progressive disease. First-line therapy for glioblastoma is surgery followed by radiation and the alkylating chemotherapeutic agent temozolomide.
Collapse
Affiliation(s)
- Lauren R Schaff
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Neurology, Weill Cornell Medicine, New York, New York
| | - Ingo K Mellinghoff
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Neurology, Weill Cornell Medicine, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| |
Collapse
|