Ong HL, Ambudkar IS. The Endoplasmic Reticulum-Plasma Membrane Junction: A Hub for Agonist Regulation of Ca
2+ Entry.
Cold Spring Harb Perspect Biol 2020;
12:cshperspect.a035253. [PMID:
31501196 DOI:
10.1101/cshperspect.a035253]
[Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Stimulation of cell-surface receptors induces cytosolic Ca2+ ([Ca2+]i) increases that are detected and transduced by effector proteins for regulation of cell function. Intracellular Ca2+ release, via endoplasmic reticulum (ER) proteins inositol 1,4,5-trisphosphate receptors (IP3R) and ryanodine receptors (RyR), and Ca2+ influx, via store-operated Ca2+ entry (SOCE), contribute to the increase in [Ca2+]i The amplitude, frequency, and spatial characteristics of the [Ca2+]i increases are controlled by the compartmentalization of proteins into signaling complexes such as receptor-signaling complexes and SOCE complexes. Both complexes include protein and lipid components, located in the plasma membrane (PM) and ER. Receptor signaling initiates in the PM via phospholipase C (PLC)-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), and culminates with the activation of IP3R in the ER. Conversely, SOCE is initiated in the ER by Ca2+-sensing stromal interaction molecule (STIM) proteins, which then interact with PM channels Orai1 and TRPC1 to activate Ca2+ entry. This review will address how ER-PM junctions serve a central role in agonist regulation of SOCE.
Collapse