1
|
Lantto J, Johnson J, Huhta H, Haapsamo M, Kiviranta P, Räsänen K, Voipio HM, Sonesson SE, Voipio J, Räsänen J, Acharya G. Atrioventricular conduction abnormalities are associated with poor outcome following intermittent umbilical cord occlusions in fetal sheep. Acta Obstet Gynecol Scand 2025. [PMID: 40159824 DOI: 10.1111/aogs.15109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/14/2025] [Accepted: 03/16/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Fetal arrhythmias have been described with intrapartum hypoxemia; however, they cannot be accurately diagnosed with currently used fetal heart rate (FHR) monitoring systems due to low resolution and signal averaging. We used a Holter device to record electrocardiogram (ECG) at 250 Hz in term sheep fetuses that developed severe metabolic acidosis induced by intermittent umbilical cord occlusions (UCOs), mimicking human labor contractions. We hypothesized that UCOs leading to worsening fetal metabolic acidosis provoke distinct fetal arrhythmias that could indicate impending fetal death. MATERIAL AND METHODS Thirteen pregnant sheep (gestational age 133-135/145 days) were instrumented under general anesthesia. Three electrodes were placed on the fetal chest and connected to a Holter device for continuous ECG recording at a sampling rate of 250 Hz. The fetal axillary artery was catheterized and an inflatable occluder was placed around the umbilical cord. After a 4-5 day recovery, complete UCOs were induced by inflating the occluder for 1 min, followed by deflation for 2 min, until the fetal arterial pH dropped <7.0 and/or base excess (BE) <-16. Thereafter, an emergency cesarean section was performed to deliver the fetus. RESULTS Eight sheep fetuses were included in the final analysis. All fetuses had normal baseline arterial blood gases and lactate values. During the first two UCOs, all fetuses demonstrated isolated benign arrhythmias. Three fetuses that developed severe metabolic acidosis after five UCOs showed persistent atrioventricular (AV) conduction abnormalities during the last UCO and its release, requiring cardiopulmonary resuscitation (CPR) at birth. One fetus with third-degree AV block had no detectable QRS complexes at birth, developed ventricular tachycardia and fibrillation (VT/VF) during CPR, and was successfully defibrillated. Five fetuses tolerated ≥10 UCOs before developing severe metabolic acidosis, and none of these showed any persistent AV-conduction abnormalities, though one fetus died after developing VT/VF after the 10th UCO. CONCLUSIONS Metabolic acidemia induced by intermittent UCOs in term sheep fetuses is associated with various arrhythmias, some of which may be life-threatening. Continuous intrapartum fetal ECG recording at a sample rate of ≥250 Hz coupled with a software capable of automatically detecting significant arrhythmias could enhance intrapartum fetal monitoring in the future.
Collapse
Affiliation(s)
- Juulia Lantto
- Division of Obstetrics & Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Jonas Johnson
- Division of Obstetrics & Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Heikki Huhta
- Translational Research Group, Oulu University Hospital and Oulu University, Oulu, Finland
| | - Mervi Haapsamo
- Felicitas-Mehiläinen, Gynecological and Infertility Clinic, Oulu, Finland
| | - Panu Kiviranta
- Kuopio Pediatric Research Unit, University of Eastern Finland & Kuopio University Hospital, Kuopio, Finland
- The Finnish Medical Society Duodecim, Helsinki, Finland
| | - Kati Räsänen
- Kuopio Pediatric Research Unit, University of Eastern Finland & Kuopio University Hospital, Kuopio, Finland
| | - Hanna-Marja Voipio
- Oulu Laboratory Animal Centre, Oulu University Hospital and Oulu University, Oulu, Finland
| | - Sven-Erik Sonesson
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Juha Voipio
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Juha Räsänen
- Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ganesh Acharya
- Division of Obstetrics & Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Ananthan A, Balasubramanian H, Nanavati R, Raghavendra P. Fluid restriction for term infants with hypoxic-ischemic encephalopathy following perinatal asphyxia-a randomized controlled trial. J Trop Pediatr 2025; 71:fmaf009. [PMID: 39986667 DOI: 10.1093/tropej/fmaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Fluid management in the first postnatal week among infants with perinatal asphyxia and hypoxic-ischemic encephalopathy (HIE) is an important knowledge gap. We aimed to evaluate the effects of fluid restriction on short- and long-term outcomes in infants with HIE. Term infants with moderate or severe HIE on therapeutic hypothermia were randomized within 6 hours of age to receive either restricted intravenous maintenance fluids (45 ml/kg/day on day 1 to a maximum of 120 ml/kg/day on day 6) vs conventional fluid (60 ml/kg/day on day 1 to a maximum of 150 ml/kg/day on day 6). The primary outcome was a composite of mortality or neurological abnormality at hospital discharge. We studied neurodevelopmental disability at 18-24 months using Bayley Scales of Infant Development, third edition. A total of 210 infants were randomized. Three infants died during the hospital stay. The primary outcome of mortality or neurological abnormality at discharge was not significantly different between the restricted and the conventional fluid group [57% vs 53%, RR: 1.07 (95% CI: 0.83, 1.37), P-value .58]. The incidence of cranial magnetic resonance imaging abnormalities was similar in the groups (65% vs 71%, P-value .30). There were no differences in the rates of severe neurodevelopmental disability at 18-24 months in the two groups [27% vs 28%, RR: 0.96 (95% CI: 0.62, 1.50), P-value .88]. Adverse outcomes were similar in both groups. Fluid restriction in the first postnatal week of life did not improve short- and long-term neurodevelopmental outcomes in term infants with moderate or severe HIE.
Collapse
Affiliation(s)
- Anitha Ananthan
- Department of Neonatology, Seth GS Medical College and King Edward Memorial Hospital, Mumbai, Maharashtra, 400012, India
| | | | - Ruchi Nanavati
- Department of Neonatology, Seth GS Medical College and King Edward Memorial Hospital, Mumbai, Maharashtra, 400012, India
| | - Prashanth Raghavendra
- Department of Neonatology, Seth GS Medical College and King Edward Memorial Hospital, Mumbai, Maharashtra, 400012, India
| |
Collapse
|
3
|
Smith J, Solomons R, Volmer L, Lotz JW, Anthony J, Toorn RV. Intrapartum Basal Ganglia-Thalamic Pattern Injury. Am J Perinatol 2025; 42:134-138. [PMID: 35709721 DOI: 10.1055/a-1877-6569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Johan Smith
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Regan Solomons
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lindi Volmer
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jan W Lotz
- Division of Radiodiagnosis, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - John Anthony
- Department of Obstetrics and Gynaecology, University of Cape Town, Cape Town, South Africa
| | - Ronald van Toorn
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
4
|
Lear CA, Dhillon SK, Nakao M, Lear BA, Georgieva A, Ugwumadu A, Stone PR, Bennet L, Gunn AJ. The peripheral chemoreflex and fetal defenses against intrapartum hypoxic-ischemic brain injury at term gestation. Semin Fetal Neonatal Med 2024; 29:101543. [PMID: 39455374 DOI: 10.1016/j.siny.2024.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Fetal hypoxemia is ubiquitous during labor and, when severe, is associated with perinatal death and long-term neurodevelopmental disability. Adverse outcomes are highly associated with barriers to care, such that developing countries have a disproportionate burden of perinatal injury. The prevalence of hypoxemia and its link to injury can be obscure, simply because the healthy fetus has robust coordinated defense mechanisms, spearheaded by the peripheral chemoreflex, such that hypoxemia only becomes apparent in the minority of cases associated with stillbirth, severe metabolic acidemia or adverse neurodevelopmental outcomes. This represents only the extreme end of the spectrum, when defense mechanisms have failed due to severe/prolonged hypoxemia, or the fetal defenses are compromised by additional risk factors. Understanding the fetal defenses to hypoxemia and when the fetus begins to decompensate is crucial to understanding perinatal health and disease, by linking antenatal health, intrapartum events, the neonatal trajectory and ultimately life-long neurodevelopmental health.
Collapse
Affiliation(s)
- Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand; Auckland City Hospital, Auckland, New Zealand.
| | - Simerdeep K Dhillon
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Masahiro Nakao
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand; Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, Mie, Japan
| | - Benjamin A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Antoniya Georgieva
- Nuffield Department of Women's and Reproductive Health, The John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Austin Ugwumadu
- Department of Obstetrics and Gynaecology, St George's Hospital, London, United Kingdom
| | - Peter R Stone
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand; Starship Children's Hospital, Auckland, New Zealand
| |
Collapse
|
5
|
Lear BA, Zhou KQ, Dhillon SK, Lear CA, Bennet L, Gunn AJ. Preventive, rescue and reparative neuroprotective strategies for the fetus and neonate. Semin Fetal Neonatal Med 2024; 29:101542. [PMID: 39472238 DOI: 10.1016/j.siny.2024.101542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Neonatal encephalopathy remains a major contributor to death and disability around the world. Acute hypoxia-ischaemia before, during or after birth creates a series of events that can lead to neonatal brain injury. Understanding the evolution of injury underpinned the development of therapeutic hypothermia. This review discusses the determinants of injury, including maturity, the pattern of exposure to HI, impaired placental function, often associated with fetal growth restriction and in the long-term, socio-economic deprivation. Chorioamnionitis has been associated with the presence of NE, but it is important to note that experimentally, inflammation can either sensitize to greater neural injury after HI or alleviate injury, depending on its precise timing. As fetal surveillance tools improve it is likely that improved detection of specific pathways will offer future opportunities for preventive and reparative interventions in utero and after birth.
Collapse
Affiliation(s)
- Benjamin A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Kelly Q Zhou
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K Dhillon
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
6
|
Gunn AJ, Davidson JO. Stay cool and keep moving forwards. Pediatr Res 2024:10.1038/s41390-024-03546-0. [PMID: 39242940 DOI: 10.1038/s41390-024-03546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/09/2024]
Affiliation(s)
- Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand.
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Juul SE, Wood TR. Pipeline to Neonatal Clinical Transformation: The Importance of Preclinical Data. Clin Perinatol 2024; 51:735-748. [PMID: 39095107 DOI: 10.1016/j.clp.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Historically, neonatal neuroscience boasted a robust and successful preclinical pipeline for therapeutic interventions, in particular for the treatment of hypoxic-ischemic encephalopathy (HIE). However, since the successful translation of therapeutic hypothermia (TH), several high-profile failures of promising adjunctive therapies, in addition to the lack of benefit of TH in lower resource settings, have brought to light critical issues in that same pipeline. Using recent data from clinical trials of erythropoietin as an example, the authors highlight several key challenges facing preclinical neonatal neuroscience for HIE therapeutic development and propose key areas where model development and collaboration across the field in general can ensure ongoing success in treatment development for HIE worldwide.
Collapse
Affiliation(s)
- Sandra E Juul
- Institute on Human Development and Disability, University of Washington, Box 357920, 1701 Northeast Columbia Road, Seattle, WA 98195-7920, USA; Division of Neonatology, Department of Pediatrics, University of Washington, Box 356320, 1959 Northeast Pacific Street, RR451 HSB, Seattle, WA 98195-6320, USA
| | - Thomas R Wood
- Institute on Human Development and Disability, University of Washington, Box 357920, 1701 Northeast Columbia Road, Seattle, WA 98195-7920, USA; Division of Neonatology, Department of Pediatrics, University of Washington, Box 356320, 1959 Northeast Pacific Street, RR451 HSB, Seattle, WA 98195-6320, USA.
| |
Collapse
|
8
|
Zhou KQ, Dhillon SK, Bennet L, Davidson JO, Gunn AJ. How do we reach the goal of personalized medicine for neuroprotection in neonatal hypoxic-ischemic encephalopathy? Semin Perinatol 2024; 48:151930. [PMID: 38910063 DOI: 10.1016/j.semperi.2024.151930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Therapeutic hypothermia is now standard of care for neonates with hypoxic-ischemic encephalopathy (HIE) in high income countries (HIC). Conversely, compelling trial evidence suggests that hypothermia is ineffective, and may be deleterious, in low- and middle-income countries (LMIC), likely reflecting the lower proportion of infants who had sentinel events at birth, suggesting that injury had advanced to a stage when hypothermia is no longer effective. Although hypothermia significantly reduced the risk of death and disability in HICs, many infants survived with disability and in principle may benefit from targeted add-on neuroprotective or neurorestorative therapies. The present review will assess biomarkers that could be used to personalize treatment for babies with HIE - to determine first whether an individual infant is likely to respond to hypothermia, and second, whether additional treatments may be beneficial.
Collapse
Affiliation(s)
- Kelly Q Zhou
- Dept of Physiology, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Simerdeep K Dhillon
- Dept of Physiology, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Laura Bennet
- Dept of Physiology, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Joanne O Davidson
- Dept of Physiology, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Alistair J Gunn
- Dept of Physiology, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
9
|
Lacan L, Garabedian C, De Jonckheere J, Ghesquiere L, Storme L, Sharma D, Nguyen The Tich S. Fetal brain response to worsening acidosis: an experimental study in a fetal sheep model of umbilical cord occlusions. Sci Rep 2023; 13:23050. [PMID: 38155199 PMCID: PMC10754920 DOI: 10.1038/s41598-023-49495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023] Open
Abstract
Perinatal anoxia remains an important public health problem as it can lead to hypoxic-ischaemic encephalopathy (HIE) and cause significant neonatal mortality and morbidity. The mechanisms of the fetal brain's response to hypoxia are still unclear and current methods of in utero HIE prediction are not reliable. In this study, we directly analysed the brain response to hypoxia in fetal sheep using in utero EEG. Near-term fetal sheep were subjected to progressive hypoxia induced by repeated umbilical cord occlusions (UCO) at increasing frequency. EEG changes during and between UCO were analysed visually and quantitatively, and related with gasometric and haemodynamic data. EEG signal was suppressed during occlusions and progressively slowed between occlusions with the increasing severity of the occlusions. Per-occlusion EEG suppression correlated with per-occlusion bradycardia and increased blood pressure, whereas EEG slowing and amplitude decreases correlated with arterial hypotension and respiratory acidosis. The suppression of the EEG signal during cord occlusion, in parallel with cardiovascular adaptation could correspond to a rapid cerebral adaptation mechanism that may have a neuroprotective role. The progressive alteration of the signal with the severity of the occlusions would rather reflect the cerebral hypoperfusion due to the failure of the cardiovascular adaptation mechanisms.
Collapse
Affiliation(s)
- Laure Lacan
- CHU Lille, Univ. Lille, ULR 2694 - METRICS, 59000, Lille, France.
- Department of Pediatric Neurology, CHU Lille, 59000, Lille, France.
- Department of Pediatric Neurology, Hôpital Roger Salengro, CHU Lille, Avenue du Professeur Emile Laine, 59037, Lille Cedex, France.
| | - Charles Garabedian
- CHU Lille, Univ. Lille, ULR 2694 - METRICS, 59000, Lille, France
- Department of Obstetrics, CHU Lille, 59000, Lille, France
| | - Julien De Jonckheere
- CHU Lille, Univ. Lille, ULR 2694 - METRICS, 59000, Lille, France
- CHU Lille, CIC-IT 1403, 59000, Lille, France
| | - Louise Ghesquiere
- CHU Lille, Univ. Lille, ULR 2694 - METRICS, 59000, Lille, France
- Department of Obstetrics, CHU Lille, 59000, Lille, France
| | - Laurent Storme
- CHU Lille, Univ. Lille, ULR 2694 - METRICS, 59000, Lille, France
- Department of Neonatology, CHU Lille, 59000, Lille, France
| | - Dyuti Sharma
- CHU Lille, Univ. Lille, ULR 2694 - METRICS, 59000, Lille, France
- Department of Pediatric Surgery, CHU Lille, 59000, Lille, France
| | - Sylvie Nguyen The Tich
- CHU Lille, Univ. Lille, ULR 2694 - METRICS, 59000, Lille, France
- Department of Pediatric Neurology, CHU Lille, 59000, Lille, France
| |
Collapse
|
10
|
Shariff M, Dobariya A, Albaghdadi O, Awkal J, Moussa H, Reyes G, Syed M, Hart R, Longfellow C, Douglass D, El Ahmadieh TY, Good LB, Jakkamsetti V, Kathote G, Angulo G, Ma Q, Brown R, Dunbar M, Shelton JM, Evers BM, Patnaik S, Hoffmann U, Hackmann AE, Mickey B, Peltz M, Jessen ME, Pascual JM. Maintenance of pig brain function under extracorporeal pulsatile circulatory control (EPCC). Sci Rep 2023; 13:13942. [PMID: 37626089 PMCID: PMC10457326 DOI: 10.1038/s41598-023-39344-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Selective vascular access to the brain is desirable in metabolic tracer, pharmacological and other studies aimed to characterize neural properties in isolation from somatic influences from chest, abdomen or limbs. However, current methods for artificial control of cerebral circulation can abolish pulsatility-dependent vascular signaling or neural network phenomena such as the electrocorticogram even while preserving individual neuronal activity. Thus, we set out to mechanically render cerebral hemodynamics fully regulable to replicate or modify native pig brain perfusion. To this end, blood flow to the head was surgically separated from the systemic circulation and full extracorporeal pulsatile circulatory control (EPCC) was delivered via a modified aorta or brachiocephalic artery. This control relied on a computerized algorithm that maintained, for several hours, blood pressure, flow and pulsatility at near-native values individually measured before EPCC. Continuous electrocorticography and brain depth electrode recordings were used to evaluate brain activity relative to the standard offered by awake human electrocorticography. Under EPCC, this activity remained unaltered or minimally perturbed compared to the native circulation state, as did cerebral oxygenation, pressure, temperature and microscopic structure. Thus, our approach enables the study of neural activity and its circulatory manipulation in independence of most of the rest of the organism.
Collapse
Affiliation(s)
- Muhammed Shariff
- The Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390-8813, USA
| | - Aksharkumar Dobariya
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390-8813, USA
| | - Obada Albaghdadi
- The Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Jacob Awkal
- The Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Hadi Moussa
- The Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Gabriel Reyes
- The Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Mansur Syed
- The Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Robert Hart
- The Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Cameron Longfellow
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Debra Douglass
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tarek Y El Ahmadieh
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Neurosurgery, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA
| | - Levi B Good
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390-8813, USA
| | - Vikram Jakkamsetti
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390-8813, USA
| | - Gauri Kathote
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390-8813, USA
| | - Gus Angulo
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390-8813, USA
| | - Qian Ma
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390-8813, USA
| | - Ronnie Brown
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Misha Dunbar
- Animal Resource Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - John M Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sourav Patnaik
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ulrike Hoffmann
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Amy E Hackmann
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Heart and Vascular Center Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Bruce Mickey
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Matthias Peltz
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Michael E Jessen
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Juan M Pascual
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390-8813, USA.
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Eugene McDermott Center for Human Growth and Development/Center for Human Genetics, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
11
|
Chandraharan E, Ghi T, Fieni S, Jia YJ. Optimizing the management of acute, prolonged decelerations and fetal bradycardia based on the understanding of fetal pathophysiology. Am J Obstet Gynecol 2023; 228:645-656. [PMID: 37270260 DOI: 10.1016/j.ajog.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 06/05/2023]
Abstract
Any acute and profound reduction in fetal oxygenation increases the risk of anaerobic metabolism in the fetal myocardium and, hence, the risk of lactic acidosis. On the contrary, in a gradually evolving hypoxic stress, there is sufficient time to mount a catecholamine-mediated increase in the fetal heart rate to increase the cardiac output and redistribute oxygenated blood to maintain an aerobic metabolism in the fetal central organs. When the hypoxic stress is sudden, profound, and sustained, it is not possible to continue to maintain central organ perfusion by peripheral vasoconstriction and centralization. In case of acute deprivation of oxygen, the immediate chemoreflex response via the vagus nerve helps reduce fetal myocardial workload by a sudden drop of the baseline fetal heart rate. If this drop in the fetal heart rate continues for >2 minutes (American College of Obstetricians and Gynecologists' guideline) or 3 minutes (National Institute for Health and Care Excellence or physiological guideline), it is termed a prolonged deceleration, which occurs because of myocardial hypoxia, after the initial chemoreflex. The revised International Federation of Gynecology and Obstetrics guideline (2015) considers the prolonged deceleration to be a "pathologic" feature after 5 minutes. Acute intrapartum accidents (placental abruption, umbilical cord prolapse, and uterine rupture) should be excluded immediately, and if they are present, an urgent birth should be accomplished. If a reversible cause is found (maternal hypotension, uterine hypertonus or hyperstimulation, and sustained umbilical cord compression), immediate conservative measures (also called intrauterine fetal resuscitation) should be undertaken to reverse the underlying cause. In reversible causes of acute hypoxia, if the fetal heart rate variability is normal before the onset of deceleration, and normal within the first 3 minutes of the prolonged deceleration, then there is an increased likelihood of recovery of the fetal heart rate to its antecedent baseline within 9 minutes with the reversal of the underlying cause of acute and profound reduction in fetal oxygenation. The continuation of the prolonged deceleration for >10 minutes is termed "terminal bradycardia," and this increases the risk of hypoxic-ischemic injury to the deep gray matter of the brain (the thalami and the basal ganglia), predisposing to dyskinetic cerebral palsy. Therefore, any acute fetal hypoxia, which manifests as a prolonged deceleration on the fetal heart rate tracing, should be considered an intrapartum emergency requiring an immediate intervention to optimize perinatal outcome. In uterine hypertonus or hyperstimulation, if the prolonged deceleration persists despite stopping the uterotonic agent, then acute tocolysis is recommended to rapidly restore fetal oxygenation. Regular clinical audit of the management of acute hypoxia, including the "the onset of bradycardia to delivery interval," may help identify organizational and system issues, which may contribute to poor perinatal outcomes.
Collapse
Affiliation(s)
- Edwin Chandraharan
- Global Academy of Medical Education and Training, London, United Kingdom; Basildon University Hospital, Mid and South Essex NHS Foundation Trust, Basildon, United Kingdom.
| | - Tullio Ghi
- Obstetrics and Gynecology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefania Fieni
- Obstetrics and Gynecology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Yan-Ju Jia
- Department of Obstetrics, Tianjin Central Hospital of Obstetrics and Gynaecology/Tianjin Key Laboratory of Human Development and Reproductive Regulation/Affiliated Hospital of Obstetrics and Gynaecology of Nankai University, Tianjin, China
| |
Collapse
|
12
|
Lear CA, Westgate JA, Bennet L, Ugwumadu A, Stone PR, Tournier A, Gunn AJ. Fetal defenses against intrapartum head compression-implications for intrapartum decelerations and hypoxic-ischemic injury. Am J Obstet Gynecol 2023; 228:S1117-S1128. [PMID: 34801443 DOI: 10.1016/j.ajog.2021.11.1352] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/05/2021] [Accepted: 11/14/2021] [Indexed: 01/27/2023]
Abstract
Uterine contractions during labor and engagement of the fetus in the birth canal can compress the fetal head. Its impact on the fetus is unclear and still controversial. In this integrative physiological review, we highlight evidence that decelerations are uncommonly associated with fetal head compression. Next, the fetus has an impressive ability to adapt to increased intracranial pressure through activation of the intracranial baroreflex, such that fetal cerebral perfusion is well-maintained during labor, except in the setting of prolonged systemic hypoxemia leading to secondary cardiovascular compromise. Thus, when it occurs, fetal head compression is not necessarily benign but does not seem to be a common contributor to intrapartum decelerations. Finally, the intracranial baroreflex and the peripheral chemoreflex (the response to acute hypoxemia) have overlapping efferent effects. We propose the hypothesis that these reflexes may work synergistically to promote fetal adaptation to labor.
Collapse
Affiliation(s)
- Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Jenny A Westgate
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand; Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Austin Ugwumadu
- Department of Obstetrics and Gynaecology, St. George's University of London, London, United Kingdom
| | - Peter R Stone
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Alexane Tournier
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand; Department of Paediatrics, Starship Children's Hospital, Auckland, New Zealand.
| |
Collapse
|
13
|
Lear CA, Beacom MJ, Dhillon SK, Lear BA, Mills OJ, Gunning MI, Westgate JA, Bennet L, Gunn AJ. Dissecting the contributions of the peripheral chemoreflex and myocardial hypoxia to fetal heart rate decelerations in near-term fetal sheep. J Physiol 2023; 601:2017-2041. [PMID: 37017488 DOI: 10.1113/jp284286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/30/2023] [Indexed: 04/06/2023] Open
Abstract
Brief repeated fetal hypoxaemia during labour can trigger intrapartum decelerations of the fetal heart rate (FHR) via the peripheral chemoreflex or the direct effects of myocardial hypoxia, but the relative contribution of these two mechanisms and how this balance changes with evolving fetal compromise remain unknown. In the present study, chronically instrumented near-term fetal sheep received surgical vagotomy (n = 8) or sham vagotomy (control, n = 11) to disable the peripheral chemoreflex and unmask myocardial hypoxia. One-minute complete umbilical cord occlusions (UCOs) were performed every 2.5 min for 4 h or until arterial pressure fell below 20 mmHg. Hypotension and severe acidaemia developed progressively after 65.7 ± 7.2 UCOs in control fetuses and 49.5 ± 7.8 UCOs after vagotomy. Vagotomy was associated with faster development of metabolic acidaemia and faster impairment of arterial pressure during UCOs without impairing centralization of blood flow or neurophysiological adaptation to UCOs. During the first half of the UCO series, before severe hypotension developed, vagotomy was associated with a marked increase in FHR during UCOs. After the onset of evolving severe hypotension, FHR fell faster in control fetuses during the first 20 s of UCOs, but FHR during the final 40 s of UCOs became progressively more similar between groups, with no difference in the nadir of decelerations. In conclusion, FHR decelerations were initiated and sustained by the peripheral chemoreflex at a time when fetuses were able to maintain arterial pressure. After the onset of evolving hypotension and acidaemia, the peripheral chemoreflex continued to initiate decelerations, but myocardial hypoxia became progressively more important in sustaining and deepening decelerations. KEY POINTS: Brief repeated hypoxaemia during labour can trigger fetal heart rate decelerations by either the peripheral chemoreflex or myocardial hypoxia, but how this balance changes with fetal compromise is unknown. Reflex control of fetal heart rate was disabled by vagotomy to unmask the effects of myocardial hypoxia in chronically instrumented fetal sheep. Fetuses were then subjected to repeated brief hypoxaemia consistent with the rates of uterine contractions during labour. We show that the peripheral chemoreflex controls brief decelerations in their entirety at a time when fetuses were able to maintain normal or increased arterial pressure. The peripheral chemoreflex still initiated decelerations even after the onset of evolving hypotension and acidaemia, but myocardial hypoxia made an increasing contribution to sustain and deepen decelerations.
Collapse
Affiliation(s)
- Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Michael J Beacom
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K Dhillon
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Benjamin A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Olivia J Mills
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Mark I Gunning
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Jenny A Westgate
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
- Department of Paediatrics, Starship Children's Hospital, Auckland, New Zealand
| |
Collapse
|
14
|
Lear CA, Georgieva A, Beacom MJ, Wassink G, Dhillon SK, Lear BA, Mills OJ, Westgate JA, Bennet L, Gunn AJ. Fetal heart rate responses in chronic hypoxaemia with superimposed repeated hypoxaemia consistent with early labour: a controlled study in fetal sheep. BJOG 2023. [PMID: 36808862 DOI: 10.1111/1471-0528.17425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/20/2023]
Abstract
OBJECTIVE Deceleration area (DA) and capacity (DC) of the fetal heart rate can help predict risk of intrapartum fetal compromise. However, their predictive value in higher risk pregnancies is unclear. We investigated whether they can predict the onset of hypotension during brief hypoxaemia repeated at a rate consistent with early labour in fetal sheep with pre-existing hypoxaemia. DESIGN Prospective, controlled study. SETTING Laboratory. SAMPLE Chronically instrumented, unanaesthetised near-term fetal sheep. METHODS One-minute complete umbilical cord occlusions (UCOs) were performed every 5 minutes in fetal sheep with baseline pa O2 <17 mmHg (hypoxaemic, n = 8) and >17 mmHg (normoxic, n = 11) for 4 hours or until arterial pressure fell <20 mmHg. MAIN OUTCOME MEASURES DA, DC and arterial pressure. RESULTS Normoxic fetuses showed effective cardiovascular adaptation without hypotension and mild acidaemia (lowest arterial pressure 40.7 ± 2.8 mmHg, pH 7.35 ± 0.03). Hypoxaemic fetuses developed hypotension (lowest arterial pressure 20.8 ± 1.9 mmHg, P < 0.001) and acidaemia (final pH 7.07 ± 0.05). In hypoxaemic fetuses, decelerations showed faster falls in FHR over the first 40 seconds of UCOs but the final deceleration depth was not different to normoxic fetuses. DC was modestly higher in hypoxaemic fetuses during the penultimate (P = 0.04) and final (P = 0.012) 20 minutes of UCOs. DA was not different between groups. CONCLUSION Chronically hypoxaemic fetuses had early onset of cardiovascular compromise during labour-like brief repeated UCOs. DA was unable to identify developing hypotension in this setting, while DC only showed modest differences between groups. These findings highlight that DA and DC thresholds need to be adjusted for antenatal risk factors, potentially limiting their clinical utility.
Collapse
Affiliation(s)
- C A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - A Georgieva
- Nuffield Department of Women's and Reproductive Health, The John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - M J Beacom
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - G Wassink
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - S K Dhillon
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - B A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - O J Mills
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - J A Westgate
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - L Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - A J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Starship Children's Hospital, Auckland, New Zealand
| |
Collapse
|
15
|
Davidson JO, Battin MR, Gunn AJ. Implications of the HELIX trial for treating infants with hypoxic-ischaemic encephalopathy in low-to-middle-income countries. Arch Dis Child Fetal Neonatal Ed 2023; 108:83-84. [PMID: 35190398 DOI: 10.1136/archdischild-2021-323743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Malcolm R Battin
- Department of Neonatology, Auckland City Hospital, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Buchmann EJ, Bhorat I. Basal Ganglia-Thalamic Pattern Injury and Subacute Gradual-Onset Intrapartum Hypoxia: A Response. Am J Perinatol 2022; 39:1742-1744. [PMID: 34784610 DOI: 10.1055/s-0041-1739428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Eckhart J Buchmann
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ismail Bhorat
- Department of Obstetrics and Gynaecology, Division of Fetal Medicine, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
17
|
Schifrin BS, Koos BJ, Cohen WR, Soliman M. Approaches to Preventing Intrapartum Fetal Injury. Front Pediatr 2022; 10:915344. [PMID: 36210941 PMCID: PMC9537758 DOI: 10.3389/fped.2022.915344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/21/2022] [Indexed: 12/05/2022] Open
Abstract
Electronic fetal monitoring (EFM) was introduced into obstetric practice in 1970 as a test to identify early deterioration of fetal acid-base balance in the expectation that prompt intervention ("rescue") would reduce neonatal morbidity and mortality. Clinical trials using a variety of visual or computer-based classifications and algorithms for intervention have failed repeatedly to demonstrate improved immediate or long-term outcomes with this technique, which has, however, contributed to an increased rate of operative deliveries (deemed "unnecessary"). In this review, we discuss the limitations of current classifications of FHR patterns and management guidelines based on them. We argue that these clinical and computer-based formulations pay too much attention to the detection of systemic fetal acidosis/hypoxia and too little attention not only to the pathophysiology of FHR patterns but to the provenance of fetal neurological injury and to the relationship of intrapartum injury to the condition of the newborn. Although they do not reliably predict fetal acidosis, FHR patterns, properly interpreted in the context of the clinical circumstances, do reliably identify fetal neurological integrity (behavior) and are a biomarker of fetal neurological injury (separate from asphyxia). They provide insight into the mechanisms and trajectory (evolution) of any hypoxic or ischemic threat to the fetus and have particular promise in signaling preventive measures (1) to enhance the outcome, (2) to reduce the frequency of "abnormal" FHR patterns that require urgent intervention, and (3) to inform the decision to provide neuroprotection to the newborn.
Collapse
Affiliation(s)
- Barry S. Schifrin
- Department of Obstetrics and Gynecology, Western University of Health Sciences, Pomona, CA, United States
| | - Brian J. Koos
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Wayne R. Cohen
- Department of Obstetrics and Gynecology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Mohamed Soliman
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
18
|
Wang L, Zhou Q, Zhou C, Wang J, Shi C, Long B, Hu L, Peng Y, Liu Y, Xu G. Z-Score Reference Ranges for Umbilical Vein Diameter and Blood Flow Volume in Normal Fetuses. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:907-916. [PMID: 34219256 DOI: 10.1002/jum.15774] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES To establish Z-scores for the diameter and blood flow volume of the umbilical vein (UV) in normal fetuses. METHODS This was a prospective study involving 907 normal fetuses. We measured the diameter (Duv) of two different segments of the UV (FUV: the free loop of the UV; FIUV: the fetal intra-abdominal UV). Next, we calculated the blood flow volume (Quv). Z-scores were created for both Duv and Quv using gestational age, femur length, and biparietal diameter as independent variables. RESULTS We successfully acquired 858 (94.6%) normal fetal measurements. Between 20 and 39 weeks, the Duv of the FUV and FIUV increased from 0.38 to 0.80 cm and from 0.33 to 0.70 cm, respectively. The Quv of the FUV and FIUV increased from 32.66 to 381.88 ml/min and from 31.50 to 360.15 ml/min, respectively. Linear or quadratic regression models were best fitted between the parameters of UV and the independent variables. Z-scores were successfully determined for both the Duv and Quv. CONCLUSIONS The calculation of Z-scores for the Duv and Quv is simple by applying standard statistical methods. These Z-scores may be useful to evaluate placental circulation and provide a rationale for monitoring and evaluating the prognosis of fetuses.
Collapse
Affiliation(s)
- Ling Wang
- Department of Ultrasound, Women and Children Healthcare Hospital of Zhu Zhou, Zhuzhou, China
| | - Qichang Zhou
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chunhui Zhou
- Department of Ultrasound, Women and Children Healthcare Hospital of Zhu Zhou, Zhuzhou, China
| | - Jiqing Wang
- Department of Ultrasound, Women and Children Healthcare Hospital of Zhu Zhou, Zhuzhou, China
| | - Chunlan Shi
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Baiguo Long
- Department of Ultrasound, Women and Children Healthcare Hospital of Zhu Zhou, Zhuzhou, China
| | - Li Hu
- Department of Ultrasound, Women and Children Healthcare Hospital of Zhu Zhou, Zhuzhou, China
| | - Yang Peng
- Department of Ultrasound, Women and Children Healthcare Hospital of Zhu Zhou, Zhuzhou, China
| | - Yuchan Liu
- Department of Ultrasound, Women and Children Healthcare Hospital of Zhu Zhou, Zhuzhou, China
| | - Ganqiong Xu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Cord Blood Proteomic Biomarkers for Predicting Adverse Neurodevelopmental Outcomes in Monoamniotic Twins. Reprod Sci 2022; 29:1756-1763. [DOI: 10.1007/s43032-021-00825-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
|
20
|
Tournier A, Beacom M, Westgate JA, Bennet L, Garabedian C, Ugwumadu A, Gunn AJ, Lear CA. Physiological control of fetal heart rate variability during labour: Implications and controversies. J Physiol 2021; 600:431-450. [PMID: 34951476 DOI: 10.1113/jp282276] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/25/2021] [Indexed: 11/08/2022] Open
Abstract
The interpretation of fetal heart rate (FHR) patterns is the only available method to continuously monitor fetal wellbeing during labour. One of the most important yet contentious aspects of the FHR pattern is changes in FHR variability (FHRV). Some clinical studies suggest that loss of FHRV during labour is a sign of fetal compromise so this is reflected in practice guidelines. Surprisingly, there is little systematic evidence to support this observation. In this review we methodically dissect the potential pathways controlling FHRV during labour-like hypoxaemia. Before labour, FHRV is controlled by the combined activity of the parasympathetic and sympathetic nervous systems, in part regulated by a complex interplay between fetal sleep state and behaviour. By contrast, preclinical studies using multiple autonomic blockades have now shown that sympathetic neural control of FHRV was potently suppressed between periods of labour-like hypoxaemia, and thus, that the parasympathetic system is the sole neural regulator of FHRV once FHR decelerations are present during labour. We further discuss the pattern of changes in FHRV during progressive fetal compromise and highlight potential biochemical, behavioural and clinical factors that may regulate parasympathetic-mediated FHRV during labour. Further studies are needed to investigate the regulators of parasympathetic activity to better understand the dynamic changes in FHRV and their true utility during labour. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Alexane Tournier
- Department of Obstetrics, Universite de Lille, CHU Lille, ULR 2694 - METRICS, Lille, F 59000, France
| | - Michael Beacom
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Jenny A Westgate
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Charles Garabedian
- Department of Obstetrics, Universite de Lille, CHU Lille, ULR 2694 - METRICS, Lille, F 59000, France
| | - Austin Ugwumadu
- Department of Obstetrics and Gynaecology, St George's Hospital, St George's University of London, London, SW17 0RE, UK
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Redline RW. Placental pathology: Pathways leading to or associated with perinatal brain injury in experimental neurology, special issue: Placental mediated mechanisms of perinatal brain injury. Exp Neurol 2021; 347:113917. [PMID: 34748755 DOI: 10.1016/j.expneurol.2021.113917] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 11/04/2022]
Abstract
Perinatal brain injury is a multifactorial process. In utero placental physiology plays a major role in neuroprotection and the normal development of the fetal central nervous system. Advances in placental pathology have clarified several specific mechanisms of injury and the histologic lesions most strongly associated with them. This review provides an updated summary of the relevant placental anatomy and physiology, the specific placental pathways leading to brain injury, the revised Amsterdam classification system for placental pathology, and the known associations of specific placental lesions with subtypes of adverse neurologic outcomes.
Collapse
Affiliation(s)
- Raymond W Redline
- Case Western Reserve University School of Medicine, Departments of Pathology and Reproductive Biology, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH 44106, United States of America.
| |
Collapse
|
22
|
Tetorou K, Sisa C, Iqbal A, Dhillon K, Hristova M. Current Therapies for Neonatal Hypoxic-Ischaemic and Infection-Sensitised Hypoxic-Ischaemic Brain Damage. Front Synaptic Neurosci 2021; 13:709301. [PMID: 34504417 PMCID: PMC8421799 DOI: 10.3389/fnsyn.2021.709301] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Neonatal hypoxic-ischaemic brain damage is a leading cause of child mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The majority of neonatal hypoxic-ischaemic cases arise as a result of impaired cerebral perfusion to the foetus attributed to uterine, placental, or umbilical cord compromise prior to or during delivery. Bacterial infection is a factor contributing to the damage and is recorded in more than half of preterm births. Exposure to infection exacerbates neuronal hypoxic-ischaemic damage thus leading to a phenomenon called infection-sensitised hypoxic-ischaemic brain injury. Models of neonatal hypoxia-ischaemia (HI) have been developed in different animals. Both human and animal studies show that the developmental stage and the severity of the HI insult affect the selective regional vulnerability of the brain to damage, as well as the subsequent clinical manifestations. Therapeutic hypothermia (TH) is the only clinically approved treatment for neonatal HI. However, the number of HI infants needed to treat with TH for one to be saved from death or disability at age of 18-22 months, is approximately 6-7, which highlights the need for additional or alternative treatments to replace TH or increase its efficiency. In this review we discuss the mechanisms of HI injury to the immature brain and the new experimental treatments studied for neonatal HI and infection-sensitised neonatal HI.
Collapse
Affiliation(s)
| | | | | | | | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Maternal and Fetal Medicine, UCL Institute for Women’s Health, London, United Kingdom
| |
Collapse
|
23
|
Hamoud Y, Pekar JD, Drumez E, Lacan L, Maboudou P, De Jonckheere J, Storme L, Houfflin-Debarge V, Sharma D, Garabedian C, Ghesquière L. Changes in S100B and troponin levels in a fetal sheep model of worsening acidosis. Eur J Obstet Gynecol Reprod Biol 2021; 264:173-177. [PMID: 34304026 DOI: 10.1016/j.ejogrb.2021.06.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND S100B and cardiac troponin T (c-TnT) are relevant biomarkers at birth of hypoxic-ischemic encephalopathy (HIE) and myocardial ischemia secondary to metabolic acidosis during labor, respectively. The purpose was to assess in-utero changes in S100B and c-TnT levels in an experimental model of labor-like acidosis. METHODS Repeated umbilical cord occlusions (UCOs) in ten experiments were performed in mild (phase A, 1 UCO/5 mn), moderate (phase B, 1 UCO/3 mn), and severe (phase C, 1 UCO/2 mn) period. The experiments were stopped if arterial pH reached 6.90. RESULTS UCOs resulted in fetal acidosis with pH dropping to 6.99 ±0.13. When compared to the baseline period fetal S100B increased between phases A and B (7% ± 4 vs 17% ± 13, p = 0.030) and between phases A and C (7% ± 4 vs 24% ± 8, p < 0.001). Fetal c-TnT serum levels increased during occlusions: 102 ng/L (58-119) in phase A, vs 119 ng/L (103-198) in phase B vs 169 ng / L (128-268) in phase C (p < 0.05, for all). When compared to the baseline control period, fetal ΔcTnT was significantly modified throughout UCO series: 5.0% (-3; 45) in phase A, 51% (4; 263) in phase B, and 77% (56.5; 269) in phase C (p < 0.05 for all). CONCLUSIONS S100B and c-TnT increased when fetal acidosis occurred, which reflects the potential neurological damage and fetal cardiovascular adaptation.
Collapse
Affiliation(s)
- Yasmine Hamoud
- CHU Lille, Department of Obstetrics, F-59000 Lille, France.
| | - Jean David Pekar
- CHU Lille, Automated Biochemistry (UF 8832), F-59000 Lille, France
| | - Elodie Drumez
- University of Lille, CHU Lille, EA 2694 - Public Health Epidemiology and Quality of Care, F-59000 Lille, France
| | - Laure Lacan
- CHU Lille, Department of Neuropediatrics, F-59000 Lille, France
| | - Patrice Maboudou
- CHU Lille, Automated Biochemistry (UF 8832), F-59000 Lille, France
| | | | - Laurent Storme
- CHU Lille, Department of Neonatology, F-59000 Lille, France
| | | | - Dyuti Sharma
- CHU Lille, Department of Pediatric Surgery, F-59000 Lille, France
| | | | | |
Collapse
|
24
|
Lear CA, Westgate JA, Kasai M, Beacom MJ, Maeda Y, Magawa S, Miyagi E, Ikeda T, Bennet L, Gunn AJ. Reply to the "Letter to the Editor: measurement of fetal parasympathetic activity during labor: a new pathway for evaluation of fetal well-being?". Am J Physiol Regul Integr Comp Physiol 2021; 320:R469-R470. [PMID: 33793343 DOI: 10.1152/ajpregu.00024.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Jenny A Westgate
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Michi Kasai
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynecology, Yokohama City University, Yokohama, Japan
| | - Michael J Beacom
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Yoshiki Maeda
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Shoichi Magawa
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Etsuko Miyagi
- Department of Obstetrics and Gynecology, Yokohama City University, Yokohama, Japan
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
25
|
Georgieva A, Lear CA, Westgate JA, Kasai M, Miyagi E, Ikeda T, Gunn AJ, Bennet L. Deceleration area and capacity during labour-like umbilical cord occlusions identify evolving hypotension: a controlled study in fetal sheep. BJOG 2021; 128:1433-1442. [PMID: 33369871 DOI: 10.1111/1471-0528.16638] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Cardiotocography is widely used to assess fetal well-being during labour. The positive predictive value of current clinical algorithms to identify hypoxia-ischaemia is poor. In experimental studies, fetal hypotension is the strongest predictor of hypoxic-ischaemic injury. Cohort studies suggest that deceleration area and deceleration capacity of the fetal heart rate trace correlate with fetal acidaemia, but it is not known whether they are indices of fetal arterial hypotension. DESIGN Prospective, controlled study. SETTING Laboratory. SAMPLE Near-term fetal sheep. METHODS One minute of complete umbilical cord occlusions (UCOs) every 5 minutes (1:5 min, n = 6) or every 2.5 minutes (1:2.5 min, n = 12) for 4 hours or until fetal mean arterial blood pressure fell <20 mmHg. MAIN OUTCOME MEASURES Deceleration area and capacity during the UCO series were related to evolving hypotension. RESULTS The 1:5 min group developed only mild metabolic acidaemia, without hypotension. By contrast, 10/12 fetuses in the 1:2.5-min group progressively developed severe metabolic acidaemia and hypotension, reaching 16.8 ± 0.9 mmHg after 71.2 ± 6.7 UCOs. Deceleration area and capacity remained unchanged throughout the UCO series in the 1:5-min group, but progressively increased in the 1:2.5-min group. The severity of hypotension was closely correlated with both deceleration area (P < 0.001, R2 = 0.66, n = 18) and capacity (P < 0.001, R2 = 0.67, n = 18). Deceleration area and capacity predicted development of hypotension at a median of 103 and 123 minutes before the final occlusion, respectively. CONCLUSIONS Both deceleration area and capacity were strongly associated with developing fetal hypotension, supporting their potential to improve identification of fetuses at risk of hypotension leading to hypoxic-ischaemic injury during labour. TWEETABLE ABSTRACT Deceleration area and capacity of fetal heart rate identify developing hypotension during labour-like hypoxia.
Collapse
Affiliation(s)
- A Georgieva
- Nuffield Department of Women's and Reproductive Health, The John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - C A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - J A Westgate
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - M Kasai
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,The Department of Obstetrics and Gynecology, Yokohama City University, Yokohama, Japan
| | - E Miyagi
- The Department of Obstetrics and Gynecology, Yokohama City University, Yokohama, Japan
| | - T Ikeda
- Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - A J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - L Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
26
|
Lear CA, Westgate JA, Kasai M, Beacom MJ, Maeda Y, Magawa S, Miyagi E, Ikeda T, Bennet L, Gunn AJ. Parasympathetic activity is the key regulator of heart rate variability between decelerations during brief repeated umbilical cord occlusions in fetal sheep. Am J Physiol Regul Integr Comp Physiol 2020; 319:R541-R550. [PMID: 32877241 DOI: 10.1152/ajpregu.00186.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fetal heart rate variability (FHRV) is a widely used index of intrapartum well being. Both arms of the autonomic system regulate FHRV under normoxic conditions in the antenatal period. However, autonomic control of FHRV during labor when the fetus is exposed to repeated, brief hypoxemia during uterine contractions is poorly understood. We have previously shown that the sympathetic nervous system (SNS) does not regulate FHRV during labor-like hypoxia. We therefore investigated the hypothesis that the parasympathetic system is the main mediator of intrapartum FHRV. Twenty-six chronically instrumented fetal sheep at 0.85 of gestation received either bilateral cervical vagotomy (n = 7), atropine sulfate (n = 7), or sham treatment (control, n = 12), followed by three 1-min complete umbilical cord occlusions (UCOs) separated by 4-min reperfusion periods. Parasympathetic blockade reduced three measures of FHRV before UCOs (all P < 0.01). Between UCOs, atropine and vagotomy were associated with marked tachycardia (both P < 0.005), suppressed measures of FHRV (all P < 0.01), and abolished FHRV on visual inspection compared with the control group. Tachycardia in the atropine and vagotomy groups resolved over the first 10 min after the final UCO, in association with evidence that the SNS contribution to FHRV progressively returned during this time. Our findings support that SNS control of FHRV is acutely suppressed for at least 4 min after a deep intrapartum deceleration and takes 5-10 min to recover. The parasympathetic system is therefore likely to be the key mediator of FHRV once frequent FHR decelerations are established during labor.
Collapse
Affiliation(s)
- Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Jenny A Westgate
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Michi Kasai
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynecology, Yokohama City University, Yokohama, Japan
| | - Michael J Beacom
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Yoshiki Maeda
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Shoichi Magawa
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Etsuko Miyagi
- Department of Obstetrics and Gynecology, Yokohama City University, Yokohama, Japan
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
27
|
Gutiérrez-Expósito D, Arteche-Villasol N, Vallejo-García R, Ferreras-Estrada MC, Ferre I, Sánchez-Sánchez R, Ortega-Mora LM, Pérez V, Benavides J. Characterization of Fetal Brain Damage in Early Abortions of Ovine Toxoplasmosis. Vet Pathol 2020; 57:535-544. [PMID: 32406321 DOI: 10.1177/0300985820921539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is an unacknowledged clinical presentation of ovine toxoplasmosis characterized by early abortions and lesions of fetal leukoencephalomalacia. To investigate the pathogenesis of this condition, the extent and distribution of leukomalacia and the variations in the cell populations associated with it were characterized in 32 fetal brains from 2 previously published experimental studies of Toxoplasma gondii infection in pregnant sheep. Immunohistochemical labeling of βAPP allowed for the detection of leukomalacia in 100/110 (91%) studied samples. There was no clear influence of the challenge dose or the area of the brain (frontal lobe, corpus callosum, midbrain, and cerebellum). In tissues with leukomalacia, there was loss of oligodendrocytes and increased number of astrocytes and microglia both in the areas of necrosis but also in the surrounding area. These findings were similar to those described in ovine experimental models (inflammation syndrome and hypoxic models) of periventricular leukomalacia in humans. Thus, a fetal inflammatory syndrome may be involved in the pathogenesis of early abortion in ovine toxoplasmosis. However, further studies are needed to determine the pathogenesis of this clinical presentation because placental thrombosis and resulting hypoxia could also be responsible for the leukomalacia.
Collapse
Affiliation(s)
- Daniel Gutiérrez-Expósito
- Universidad de León, Campus de Vegazana, León, Spain.,Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, León, Spain
| | - Noive Arteche-Villasol
- Universidad de León, Campus de Vegazana, León, Spain.,Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, León, Spain
| | - Raquel Vallejo-García
- Universidad de León, Campus de Vegazana, León, Spain.,Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, León, Spain
| | - María C Ferreras-Estrada
- Universidad de León, Campus de Vegazana, León, Spain.,Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, León, Spain
| | | | | | | | - Valentín Pérez
- Universidad de León, Campus de Vegazana, León, Spain.,Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, León, Spain
| | - Julio Benavides
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, León, Spain
| |
Collapse
|
28
|
Kanazawa S, Muromoto J, Ozawa K, Mikami M, Ogawa K, Wada S, Sago H. Reliability and characteristics of ultrasound measurement of fetal umbilical venous blood flow volume according to the site of measurement. J Med Ultrason (2001) 2020; 47:305-312. [PMID: 31912321 DOI: 10.1007/s10396-019-00999-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/30/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE This study aimed at assessing the reliability and characteristics of fetal umbilical venous blood flow volume (UVFV) measurement using ultrasound. METHODS We conducted a prospective study at our center from November 2017 to July 2019. We performed transabdominal ultrasound examinations at 18-34 weeks' gestation in uncomplicated singleton pregnancies. UVFV was calculated using vessel diameter (D) and maximum flow velocity (V) as follows: (D/2)2 × π × V × 0.5 × 60 (Q, mL/min). Two examiners measured each value three times in the free-loop (FL) and intra-abdominal (IA) portions of the umbilical vein. Intra-rater and inter-rater reliability was evaluated by intraclass correlation coefficient (ICC) and a Bland-Altman plot. RESULTS Two hundred and eight cases were measured by two examiners. The rate of complete measurement at FL and IA was not significantly different (88.5% vs. 79.3%, respectively; p = 0.113). The intra-rater reliability of D and V was high at FL and IA. Regarding inter-rater reliability, the ICC of D, V, and Q was 0.973, 0.582, and 0.963 at FL, and 0.994, 0.912, and 0.989 at IA, respectively. A Bland-Altman plot showed that D and V had greater standard deviation at FL than IA. Regarding Q, the standard deviation at FL was also larger than at IA, and measurement variance at FL increased as the measured value increased, but that at IA did not. CONCLUSION UVFV measurement showed high intra-rater and inter-rater reliability at FL and IA, but the variance of measurements at FL became large as the measured value increased. Properties of different measurement sites should be considered when evaluating UVFV.
Collapse
Affiliation(s)
- Seiji Kanazawa
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.,Advanced Pediatric Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Jin Muromoto
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Katsusuke Ozawa
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Masashi Mikami
- Division of Biostatistics, Clinical Research Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kohei Ogawa
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Seiji Wada
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Haruhiko Sago
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan. .,Advanced Pediatric Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan.
| |
Collapse
|
29
|
Castel A, Frank YS, Feltner J, Karp FB, Albright CM, Frasch MG. Monitoring Fetal Electroencephalogram Intrapartum: A Systematic Literature Review. Front Pediatr 2020; 8:584. [PMID: 33042922 PMCID: PMC7518218 DOI: 10.3389/fped.2020.00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/07/2020] [Indexed: 12/05/2022] Open
Abstract
Background: Studies about the feasibility of monitoring fetal electroencephalogram (fEEG) during labor began in the early 1940s. By the 1970s, clear diagnostic and prognostic benefits from intrapartum fEEG monitoring were reported, but until today, this monitoring technology has remained a curiosity. Objectives: Our goal was to review the studies reporting the use of fEEG including the insights from interpreting fEEG patterns in response to uterine contractions during labor. We also used the most relevant information gathered from clinical studies to provide recommendations for enrollment in the unique environment of a labor and delivery unit. Data Sources: PubMed. Eligibility Criteria: The search strategy was: ("fetus"[MeSH Terms] OR "fetus"[All Fields] OR "fetal"[All Fields]) AND ("electroencephalography"[MeSH Terms] OR "electroencephalography"[All Fields] OR "eeg"[All Fields]) AND (Clinical Trial[ptyp] AND "humans"[MeSH Terms]). Because the landscape of fEEG research has been international, we included studies in English, French, German, and Russian. Results: From 256 screened studies, 40 studies were ultimately included in the qualitative analysis. We summarize and report features of fEEG which clearly show its potential to act as a direct biomarker of fetal brain health during delivery, ancillary to fetal heart rate monitoring. However, clinical prospective studies are needed to further establish the utility of fEEG monitoring intrapartum. We identified clinical study designs likely to succeed in bringing this intrapartum monitoring modality to the bedside. Limitations: Despite 80 years of studies in clinical cohorts and animal models, the field of research on intrapartum fEEG is still nascent and shows great promise to augment the currently practiced electronic fetal monitoring. Prospero Number: CRD42020147474.
Collapse
Affiliation(s)
- Aude Castel
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Montreal, QC, Canada
| | - Yael S Frank
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States
| | - John Feltner
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Floyd B Karp
- School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Catherine M Albright
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States
| | - Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States.,Center on Human Development and Disability, University of Washington, Seattle, WA, United States
| |
Collapse
|
30
|
Should therapeutic hypothermia be offered to babies with mild neonatal encephalopathy in the first 6 h after birth? Pediatr Res 2019; 85:442-448. [PMID: 30733613 DOI: 10.1038/s41390-019-0291-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/20/2018] [Accepted: 12/30/2018] [Indexed: 12/11/2022]
Abstract
Infants with moderate to severe neonatal encephalopathy (NE) benefit significantly from therapeutic hypothermia, with reduced risk of death or disability. However, the need for therapeutic hypothermia for infants with milder NE remains unclear. It has been suggested that these infants should not be offered therapeutic hypothermia as they may not be at risk for adverse neurodevelopmental outcome and that the balance of risk against potential benefit is unknown. Several key questions need to be answered including first, whether one can define NE in the first 6 h after birth so as to accurately distinguish infants with brain injury who may be at risk for adverse neurodevelopmental consequences. Second, will treatment of infants with mild NE with therapeutic hypothermia improve or even worsen neurological outcomes? Although alternate treatment protocols for mild NE may be feasible, the use of the current approach combined with rigorous avoidance of hyperthermia and initiation of hypothermia as early as possible after birth may promote optimal outcomes. Animal experimental data support the potential for greater benefit for mild HIE compared with moderate to severe HIE. This review will summarize current knowledge of mild NE and the challenges to a trial in this population.
Collapse
|
31
|
Gunn AJ, Thoresen M. Neonatal encephalopathy and hypoxic-ischemic encephalopathy. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:217-237. [PMID: 31324312 DOI: 10.1016/b978-0-444-64029-1.00010-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acute hypoxic-ischemic encephalopathy around the time of birth remains a major cause of death and life-long disability. The key insight that led to the modern revival of studies of neuroprotection was that, after profound asphyxia, many brain cells show initial recovery from the insult during a short "latent" phase, typically lasting approximately 6h, only to die hours to days later after a "secondary" deterioration characterized by seizures, cytotoxic edema, and progressive failure of cerebral oxidative metabolism. Studies designed around this framework showed that mild hypothermia initiated as early as possible before the onset of secondary deterioration and continued for a sufficient duration to allow the secondary deterioration to resolve is associated with potent, long-lasting neuroprotection. There is now compelling evidence from randomized controlled trials that mild to moderate induced hypothermia significantly improves survival and neurodevelopmental outcomes in infancy and mid-childhood.
Collapse
Affiliation(s)
- Alistair J Gunn
- Departments of Physiology and Paediatrics, University of Auckland, Auckland, New Zealand.
| | - Marianne Thoresen
- Department of Physiology University of Oslo, Oslo, Norway; Neonatal Neuroscience, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
32
|
Koehler RC, Yang ZJ, Lee JK, Martin LJ. Perinatal hypoxic-ischemic brain injury in large animal models: Relevance to human neonatal encephalopathy. J Cereb Blood Flow Metab 2018; 38:2092-2111. [PMID: 30149778 PMCID: PMC6282216 DOI: 10.1177/0271678x18797328] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Perinatal hypoxia-ischemia resulting in death or lifelong disabilities remains a major clinical disorder. Neonatal models of hypoxia-ischemia in rodents have enhanced our understanding of cellular mechanisms of neural injury in developing brain, but have limitations in simulating the range, accuracy, and physiology of clinical hypoxia-ischemia and the relevant systems neuropathology that contribute to the human brain injury pattern. Large animal models of perinatal hypoxia-ischemia, such as partial or complete asphyxia at the time of delivery of fetal monkeys, umbilical cord occlusion and cerebral hypoperfusion at different stages of gestation in fetal sheep, and severe hypoxia and hypoperfusion in newborn piglets, have largely overcome these limitations. In monkey, complete asphyxia produces preferential injury to cerebellum and primary sensory nuclei in brainstem and thalamus, whereas partial asphyxia produces preferential injury to somatosensory and motor cortex, basal ganglia, and thalamus. Mid-gestational fetal sheep provide a valuable model for studying vulnerability of progenitor oligodendrocytes. Hypoxia followed by asphyxia in newborn piglets replicates the systems injury seen in term newborns. Efficacy of post-insult hypothermia in animal models led to the success of clinical trials in term human neonates. Large animal models are now being used to explore adjunct therapy to augment hypothermic neuroprotection.
Collapse
Affiliation(s)
- Raymond C Koehler
- 1 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Zeng-Jin Yang
- 1 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer K Lee
- 1 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA.,2 The Pathobiology Graduate Training Program, Johns Hopkins University, Baltimore, MD, USA
| | - Lee J Martin
- 2 The Pathobiology Graduate Training Program, Johns Hopkins University, Baltimore, MD, USA.,3 Department of Pathology, Division of Neuropathology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
33
|
Lear CA, Westgate JA, Ugwumadu A, Nijhuis JG, Stone PR, Georgieva A, Ikeda T, Wassink G, Bennet L, Gunn AJ. Understanding Fetal Heart Rate Patterns That May Predict Antenatal and Intrapartum Neural Injury. Semin Pediatr Neurol 2018; 28:3-16. [PMID: 30522726 DOI: 10.1016/j.spen.2018.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electronic fetal heart rate (FHR) monitoring is widely used to assess fetal well-being throughout pregnancy and labor. Both antenatal and intrapartum FHR monitoring are associated with a high negative predictive value and a very poor positive predictive value. This in part reflects the physiological resilience of the healthy fetus and the remarkable effectiveness of fetal adaptations to even severe challenges. In this way, the majority of "abnormal" FHR patterns in fact reflect a fetus' appropriate adaptive responses to adverse in utero conditions. Understanding the physiology of these adaptations, how they are reflected in the FHR trace and in what conditions they can fail is therefore critical to appreciating both the potential uses and limitations of electronic FHR monitoring.
Collapse
Affiliation(s)
- Christopher A Lear
- Department of Physiology, The Fetal Physiology and Neuroscience Group, The University of Auckland, Auckland, New Zealand
| | - Jenny A Westgate
- Department of Physiology, The Fetal Physiology and Neuroscience Group, The University of Auckland, Auckland, New Zealand; Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Austin Ugwumadu
- Department of Obstetrics and Gynaecology, St George's, University of London, London, United Kingdom
| | - Jan G Nijhuis
- Department of Obstetrics and Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Peter R Stone
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Antoniya Georgieva
- Nuffield Department of Obstetrics and Gynaecology, The John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynaecology, Mie University Graduate School of Medicine, Mie, Japan
| | - Guido Wassink
- Department of Physiology, The Fetal Physiology and Neuroscience Group, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The Fetal Physiology and Neuroscience Group, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The Fetal Physiology and Neuroscience Group, The University of Auckland, Auckland, New Zealand; Department of Paediatrics, Starship Children's Hospital, Auckland, New Zealand.
| |
Collapse
|
34
|
Lear CA, Wassink G, Westgate JA, Nijhuis JG, Ugwumadu A, Galinsky R, Bennet L, Gunn AJ. The peripheral chemoreflex: indefatigable guardian of fetal physiological adaptation to labour. J Physiol 2018; 596:5611-5623. [PMID: 29604081 DOI: 10.1113/jp274937] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/29/2018] [Indexed: 01/10/2023] Open
Abstract
The fetus is consistently exposed to repeated periods of impaired oxygen (hypoxaemia) and nutrient supply in labour. This is balanced by the healthy fetus's remarkable anaerobic tolerance and impressive ability to mount protective adaptations to hypoxaemia. The most important mediator of fetal adaptations to brief repeated hypoxaemia is the peripheral chemoreflex, a rapid reflex response to acute falls in arterial oxygen tension. The overwhelming majority of fetuses are able to respond to repeated uterine contractions without developing hypotension or hypoxic-ischaemic injury. In contrast, fetuses who are either exposed to severe hypoxaemia, for example during uterine hyperstimulation, or enter labour with reduced anaerobic reserve (e.g. as shown by severe fetal growth restriction) are at increased risk of developing intermittent hypotension and cerebral hypoperfusion. It is remarkable to note that when fetuses develop hypotension during such repeated severe hypoxaemia, it is not mediated by impaired reflex adaptation, but by failure to maintain combined ventricular output, likely due to a combination of exhaustion of myocardial glycogen and evolving myocardial injury. The chemoreflex is suppressed by relatively long periods of severe hypoxaemia of 1.5-2 min, longer than the typical contraction. Even in this setting, the peripheral chemoreflex is consistently reactivated between contractions. These findings demonstrate that the peripheral chemoreflex is an indefatigable guardian of fetal adaptation to labour.
Collapse
Affiliation(s)
- Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Guido Wassink
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Jenny A Westgate
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Jan G Nijhuis
- Department of Obstetrics and Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Austin Ugwumadu
- Department of Obstetrics and Gynaecology, St George's, University of London, London, UK
| | - Robert Galinsky
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
35
|
Rudolph AM. Cerebral glucose deficiency versus oxygen deficiency in neonatal encephalopathy. J Neonatal Perinatal Med 2018; 11:115-120. [PMID: 29710737 DOI: 10.3233/npm-17109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) in newborn infants is generally considered to result from decreased arterial oxygen content or cerebral blood flow. Cerebral injury similar to that of HIE has been noted with hypoglycemia. Studies in fetal lambs have shown that ventilation with 3% oxygen did not change cerebral blood flow, but ventilation with 100% oxygen resulted in marked reduction in cerebral blood flow, glucose delivery and glucose consumption. Blood glucose concentration falls markedly after birth; this, associated with the fall in cerebral blood flow, greatly reduces glucose supply to the brain. In preterm infants, blood glucose levels tend to be very low. Also persistent patency of the ductus arteriosus may reduce cerebral flow in diastole, thus exaggerating the decrease in glucose supply. I propose that glycopenic-ischemic encephalopathy is a more appropriate term for the cerebral insult. We should consider more aggressive management of the low blood glucose concentrations in the neonate, and particularly in preterm infants. Administration of high levels of oxygen in inspired air should be avoided to reduce the enhancement of cerebral vasoconstriction and decreased flow that normally occurs after birth.
Collapse
Affiliation(s)
- A M Rudolph
- Department of Pediatrics, University of California, San Francisco, CA, USA
| |
Collapse
|
36
|
Millar LJ, Shi L, Hoerder-Suabedissen A, Molnár Z. Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challenges. Front Cell Neurosci 2017; 11:78. [PMID: 28533743 PMCID: PMC5420571 DOI: 10.3389/fncel.2017.00078] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Neonatal hypoxia-ischaemia (HI) is the most common cause of death and disability in human neonates, and is often associated with persistent motor, sensory, and cognitive impairment. Improved intensive care technology has increased survival without preventing neurological disorder, increasing morbidity throughout the adult population. Early preventative or neuroprotective interventions have the potential to rescue brain development in neonates, yet only one therapeutic intervention is currently licensed for use in developed countries. Recent investigations of the transient cortical layer known as subplate, especially regarding subplate's secretory role, opens up a novel set of potential molecular modulators of neonatal HI injury. This review examines the biological mechanisms of human neonatal HI, discusses evidence for the relevance of subplate-secreted molecules to this condition, and evaluates available animal models. Neuroserpin, a neuronally released neuroprotective factor, is discussed as a case study for developing new potential pharmacological interventions for use post-ischaemic injury.
Collapse
Affiliation(s)
- Lancelot J. Millar
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | - Lei Shi
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan UniversityGuangzhou, China
| | | | - Zoltán Molnár
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
37
|
Duncan JR, Camm E, Loeliger M, Cock ML, Harding R, Rees SM. Effects of Umbilical Cord Occlusion in Late Gestation on the Ovine Fetal Brain and Retina. ACTA ACUST UNITED AC 2016; 11:369-76. [PMID: 15350249 DOI: 10.1016/j.jsgi.2004.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Previous studies on the effects of umbilical cord occlusion (UCO) on the fetal brain have focused on short-term alterations, and in most cases have used only subjective techniques to evaluate brain injury. Our aim was to assess quantitatively the persistent consequences of UCO on the developing brain; we also examined the retina. METHODS We subjected fetal sheep to a single episode of UCO at 126 days of gestation (term approximately 147 days) to induce at least 10 minutes of isoelectric fetal electrocorticogram (ECoG). RESULTS UCO resulted in fetal asphyxia and transient mild alterations in fetal mean arterial pressure (MAP). UCO did not result in significant injury to the developing brain or retina when assessed 15 days after the insult. There was no change in the endogenous expression of brain-derived neurotrophic factor (BDNF) protein in the hippocampus, nor was there a significant loss of CA1 hippocampal pyramidal cells. However, this insult did result in subtle neuropathologic alterations in the brain, including a reduction in the weight of the cerebral hemispheres, an increase in the areal density of cerebellar Purkinje cells, and enlarged perivascular spaces around blood vessels and inflammatory cells in the cerebral white matter. UCO did not affect the thickness of the central or peripheral retina or the numbers of retinal dopaminergic, cholinergic, and nitrergic amacrine cells. CONCLUSIONS Thus, while 10 minutes of UCO did not result in overt injury to the fetal brain or retina, the observed changes in the fetal brain suggest altered growth of neural processes, which may contribute to neurologic deficits postnatally or to increased vulnerability of the brain to later insults during either the remainder of gestation or after birth.
Collapse
Affiliation(s)
- Jhodie R Duncan
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Since its inception, many have questioned the utility of electronic fetal heart rate (FHR) monitoring. However, it arrived without the benefit of clear, standard nomenclature, leading to difficulty interpreting studies regarding its benefit. In 2008, the National Institute of Child Health and Human Development (NICHD) developed standard nomenclature for interpreting eFHR tracings. Understanding what drives the tracings is key to managing them. Category II FHR patterns are by far the most common and most diverse patterns, leading to broad variation in care. Presented here is an algorithm for standardization of management of category II FHR tracings, based on the pathophysiology of decelerations, that can be followed in any labor unit.
Collapse
Affiliation(s)
- Audra E Timmins
- Texas Children's Hospital, Baylor College of Medicine, 6651 Main Street #1020, Houston, TX, 77030, USA.
| | - Steven L Clark
- Texas Children's Hospital, Baylor College of Medicine, 6651 Main Street #1020, Houston, TX, 77030, USA
| |
Collapse
|
39
|
Xu A, Matushewski B, Nygard K, Hammond R, Frasch MG, Richardson BS. Brain Injury and Inflammatory Response to Umbilical Cord Occlusions Is Limited With Worsening Acidosis in the Near-Term Ovine Fetus. Reprod Sci 2015; 23:858-70. [DOI: 10.1177/1933719115623640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Alex Xu
- Department of Obstetrics and Gynecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Brad Matushewski
- Department of Obstetrics and Gynecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Karen Nygard
- Biotron Experimental Climate Change Research Centre, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Robert Hammond
- Department of Pathology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Martin G. Frasch
- Department of Obstetrics and Gynaecology and Department of Neurosciences, CHU Ste-Justine Research Center, Université de Montréal, Montreal, Québec, Canada
- Centre de Recherche en Reproduction Animale, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Bryan S. Richardson
- Department of Obstetrics and Gynecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
40
|
Wang X, Durosier LD, Ross MG, Richardson BS, Frasch MG. Online detection of fetal acidemia during labour by testing synchronization of EEG and heart rate: a prospective study in fetal sheep. PLoS One 2014; 9:e108119. [PMID: 25268842 PMCID: PMC4182309 DOI: 10.1371/journal.pone.0108119] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/11/2014] [Indexed: 11/19/2022] Open
Abstract
Severe fetal acidemia during labour can result in life-lasting neurological deficits, but the timely detection of this condition is often not possible. This is because the positive predictive value (PPV) of fetal heart rate (FHR) monitoring, the mainstay of fetal health surveillance during labour, to detect concerning fetal acidemia is around 50%. In fetal sheep model of human labour, we reported that severe fetal acidemia (pH<7.00) during repetitive umbilical cord occlusions (UCOs) is preceded ∼60 minutes by the synchronization of electroencephalogram (EEG) and FHR. However, EEG and FHR are cyclic and noisy, and although the synchronization might be visually evident, it is challenging to detect automatically, a necessary condition for bedside utility. Here we present and validate a novel non-parametric statistical method to detect fetal acidemia during labour by using EEG and FHR. The underlying algorithm handles non-stationary and noisy data by recording number of abnormal episodes in both EEG and FHR. A logistic regression is then deployed to test whether these episodes are significantly related to each other. We then apply the method in a prospective study of human labour using fetal sheep model (n = 20). Our results render a PPV of 68% for detecting impending severe fetal acidemia ∼60 min prior to pH drop to less than 7.00 with 100% negative predictive value. We conclude that this method has a great potential to improve PPV for detection of fetal acidemia when it is implemented at the bedside. We outline directions for further refinement of the algorithm that will be achieved by analyzing larger data sets acquired in prospective human pilot studies.
Collapse
Affiliation(s)
- Xiaogang Wang
- Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada
| | - L. Daniel Durosier
- Department of Obstetrics and Gynecology and Department of Neurosciences, CHU Sainte-Justine Research Centre, Université de Montréal, Montreal, Quebec, Canada
| | - Michael G. Ross
- Department of Obstetrics & Gynecology, LA BioMed at Harbor-UCLA Med. Ctr., Torrance, California, United States of America
| | - Bryan S. Richardson
- Department of Obstetrics and Gynecology, Univ. Western Ontario, London, Ontario, Canada
| | - Martin G. Frasch
- Department of Obstetrics and Gynecology and Department of Neurosciences, CHU Sainte-Justine Research Centre, Université de Montréal, Montreal, Quebec, Canada
- Animal Reproduction Research Centre (CRRA), Faculty of Veterinary Medicine, Université de Montréal, Montréal, QC, Canada
- * E-mail:
| |
Collapse
|
41
|
Status epilepticus after prolonged umbilical cord occlusion is associated with greater neural injury in [corrected] fetal sheep at term-equivalent. PLoS One 2014; 9:e96530. [PMID: 24797081 PMCID: PMC4010475 DOI: 10.1371/journal.pone.0096530] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 04/08/2014] [Indexed: 12/24/2022] Open
Abstract
The majority of pre-clinical studies of hypoxic-ischemic encephalopathy at term-equivalent have focused on either relatively mild insults, or on functional paradigms of cerebral ischemia or hypoxia-ischemia/hypotension. There is surprisingly little information on the responses to single, severe ‘physiological’ insults. In this study we examined the evolution and pattern of neural injury after prolonged umbilical cord occlusion (UCO). 36 chronically instrumented fetal sheep at 125–129 days gestational age (term = 147 days) were subjected to either UCO until mean arterial pressure was < = 8 mmHg (n = 29), or sham occlusion (n = 7). Surviving fetuses were killed after 72 hours for histopathologic assessment with acid-fuchsin thionine. After UCO, 11 fetuses died with intractable hypotension and 5 ewes entered labor and were euthanized. The remaining 13 fetuses showed marked EEG suppression followed by evolving seizures starting at 5.8 (6.8) hours (median (interquartile range)). 6 of 13 developed status epilepticus, which was associated with a transient secondary increase in cortical impedance (a measure of cytotoxic edema, p<0.05). All fetuses showed moderate to severe neuronal loss in the hippocampus and the basal ganglia but mild cortical cell loss (p<0.05 vs sham occlusion). Status epilepticus was associated with more severe terminal hypotension (p<0.05) and subsequently, greater neuronal loss (p<0.05). In conclusion, profound UCO in term-equivalent fetal sheep was associated with delayed seizures, secondary cytotoxic edema, and subcortical injury, consistent with the predominant pattern after peripartum sentinel events at term. It is unclear whether status epilepticus exacerbated cortical injury or was simply a reflection of a longer duration of asphyxia.
Collapse
|
42
|
Does Maturity Affect Cephalic Perfusion and T/QRS Ratio during Prolonged Umbilical Cord Occlusion in Fetal Sheep? Obstet Gynecol Int 2014; 2014:314159. [PMID: 24693290 PMCID: PMC3945773 DOI: 10.1155/2014/314159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/18/2013] [Accepted: 12/31/2013] [Indexed: 11/17/2022] Open
Abstract
T/QRS ratio monitoring is used to help identify fetal asphyxia. However, immature animals have greater capacity to maintain blood pressure during severe asphyxia, raising the possibility that they may show an attenuated T/QRS increase during asphyxia. Chronically instrumented fetal sheep at 0.6 of gestation (0.6 GA; n = 12), 0.7 GA (n = 12), and 0.8 GA (n = 8) underwent complete umbilical cord occlusion for 30 min, 25 min, or 15 min, respectively. Cord occlusion was associated with progressive metabolic acidosis and initial hypertension followed by severe hypotension, with a more rapid fall in mean arterial blood pressure (MAP) and carotid blood flow (CaBF) with advancing gestation. T/QRS ratio rose after occlusion more rapidly at 0.8 GA than in immature fetuses, to a similar final peak at all ages, followed by a progressive fall that was slower at 0.8 GA than in the immature fetuses. The increase in T/QRS ratio correlated with initial hypertension at 0.8 GA (P < 0.05, R2 = 0.38), and conversely, its fall correlated closely with falling MAP in all gestational groups (P < 0.01, R2 = 0.67). In conclusion, elevation of the T/QRS ratio is an index of onset of severe asphyxia in the last third of gestation, but not of fetal compromise.
Collapse
|
43
|
Wassink G, Bennet L, Davidson JO, Westgate JA, Gunn AJ. Pre-existing hypoxia is associated with greater EEG suppression and early onset of evolving seizure activity during brief repeated asphyxia in near-term fetal sheep. PLoS One 2013; 8:e73895. [PMID: 23991209 PMCID: PMC3749175 DOI: 10.1371/journal.pone.0073895] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/23/2013] [Indexed: 11/19/2022] Open
Abstract
Spontaneous antenatal hypoxia is associated with high risk of adverse outcomes, however, there is little information on neural adaptation to labor-like insults. Chronically instrumented near-term sheep fetuses (125 ± 3 days, mean ± SEM) with baseline PaO2 < 17 mmHg (hypoxic group: n = 8) or > 17 mmHg (normoxic group: n = 8) received 1-minute umbilical cord occlusions repeated every 5 minutes for a total of 4 hours, or until mean arterial blood pressure (MAP) fell below 20 mmHg for two successive occlusions. 5/8 fetuses with pre-existing hypoxia were unable to complete the full series of occlusions (vs. 0/8 normoxic fetuses). Pre-existing hypoxia was associated with progressive metabolic acidosis (nadir: pH 7.08 ± 0.04 vs. 7.33 ± 0.02, p<0.01), hypotension during occlusions (nadir: 24.7 ± 1.8 vs. 51.4 ± 3.2 mmHg, p<0.01), lower carotid blood flow during occlusions (23.6 ± 6.1 vs. 63.0 ± 4.8 mL/min, p<0.01), greater suppression of EEG activity during, between, and after occlusions (p<0.01) and slower resolution of cortical impedance, an index of cytotoxic edema. No normoxic fetuses, but 4/8 hypoxic fetuses developed seizures 148 ± 45 minutes after the start of occlusions, with a seizure burden of 26 ± 6 sec during the inter-occlusion period, and 15.1 ± 3.4 min/h in the first 6 hours of recovery. In conclusion, in fetuses with pre-existing hypoxia, repeated brief asphyxia at a rate consistent with early labor is associated with hypotension, cephalic hypoperfusion, greater EEG suppression, inter-occlusion seizures, and more sustained cytotoxic edema, consistent with early onset of neural injury.
Collapse
Affiliation(s)
- Guido Wassink
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | | | | | - Alistair J. Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
44
|
Kaandorp JJ, Derks JB, Oudijk MA, Torrance HL, Harmsen MG, Nikkels PGJ, van Bel F, Visser GHA, Giussani DA. Antenatal allopurinol reduces hippocampal brain damage after acute birth asphyxia in late gestation fetal sheep. Reprod Sci 2013; 21:251-9. [PMID: 23793473 DOI: 10.1177/1933719113493516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Free radical-induced reperfusion injury is a recognized cause of brain damage in the newborn after birth asphyxia. The xanthine oxidase inhibitor allopurinol reduces free radical synthesis and crosses the placenta easily. Therefore, allopurinol is a promising therapeutic candidate. This study tested the hypothesis that maternal treatment with allopurinol during fetal asphyxia limits ischemia-reperfusion (I/R) damage to the fetal brain in ovine pregnancy. The I/R challenge was induced by 5 repeated measured compressions of the umbilical cord, each lasting 10 minutes, in chronically instrumented fetal sheep at 0.8 of gestation. Relative to control fetal brains, the I/R challenge induced significant neuronal damage in the fetal hippocampal cornu ammonis zones 3 and 4. Maternal treatment with allopurinol during the I/R challenge restored the fetal neuronal damage toward control scores. Maternal treatment with allopurinol offers potential neuroprotection to the fetal brain in the clinical management of perinatal asphyxia.
Collapse
Affiliation(s)
- Joepe J Kaandorp
- 1Perinatal Center, University Medical Center, Utrecht, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Low JA. Fetal Asphyxia: A Case Study of Translational Research. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2013; 35:258-262. [DOI: 10.1016/s1701-2163(15)30998-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Volpe JJ. Neonatal encephalopathy: an inadequate term for hypoxic-ischemic encephalopathy. Ann Neurol 2012; 72:156-66. [PMID: 22926849 DOI: 10.1002/ana.23647] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This Point of View article addresses neonatal encephalopathy (NE) presumably caused by hypoxia-ischemia and the terminology currently in wide use for this disorder. The nonspecific term NE is commonly utilized for those infants with the clinical and imaging characteristics of neonatal hypoxic-ischemic encephalopathy (HIE). Multiple magnetic resonance imaging studies of term infants with the clinical setting of presumed hypoxia-ischemia near the time of delivery have delineated a topography of lesions highly correlated with that defined by human neuropathology and by animal models, including primate models, of hypoxia-ischemia. These imaging findings, coupled with clinical features consistent with perinatal hypoxic-ischemic insult(s), warrant the specific designation of neonatal HIE.
Collapse
Affiliation(s)
- Joseph J Volpe
- Department of Neurology, Harvard Medical School, Children's Hospital Boston, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Vijlbrief DC, Benders MJNL, Kemperman H, van Bel F, de Vries WB. Cardiac biomarkers as indicators of hemodynamic adaptation during postasphyxial hypothermia treatment. Neonatology 2012; 102:243-8. [PMID: 22907615 DOI: 10.1159/000339117] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 04/10/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Little is known about the effects of hypothermia on the cardiovascular system in term newborns with neonatal encephalopathy. OBJECTIVES To evaluate whether mild hypothermia for neonatal encephalopathy is cardioprotective as indicated by the cardiac biomarkers cardiac troponin I (cTnI) and B-type natriuretic peptide (BNP). METHODS This was an observational cohort study of infants treated for perinatal asphyxia. In infants, mild total body hypothermia treatment of 33.5°C during 72 h was initiated (n = 20). Samples of cTnI and BNP were collected before the start of hypothermia, at 24 and 48 h after birth, and after rewarming (84 h). BNP and cTnI values were then compared with BNP and cTnI values of asphyxiated infants not treated with hypothermia (n = 28). RESULTS No differences were found between the groups in clinical patient characteristics or inotropic support. The hypothermia-treated patients seemed to be clinically more affected (5-min Apgar score, p < 0.05; umbilical artery pH, p = 0.08), but showed similar encephalopathy scores. Significantly lower values for BNP were found in hypothermia- compared to nonhypothermia-treated infants at 48 h and at normothermia after rewarming [144 pmol/l (95-286) vs. 75 pmol/l (45-143), 182 pmol/l (73-341) vs. 43 pmol/l (24-163)]. No differences were found for cTnI concentrations between both groups. CONCLUSIONS The raised, but similar, cTnI values between hypothermia- and nonhypothermia-treated infants indicate similar myocardial damage in both groups. The lower BNP levels during hypothermia treatment suggest that hypothermia after perinatal asphyxia exerts a beneficial effect on cardiac function.
Collapse
Affiliation(s)
- D C Vijlbrief
- Department of Neonatology, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
48
|
Frasch MG, Keen AE, Gagnon R, Ross MG, Richardson BS. Monitoring fetal electrocortical activity during labour for predicting worsening acidemia: a prospective study in the ovine fetus near term. PLoS One 2011; 6:e22100. [PMID: 21789218 PMCID: PMC3137606 DOI: 10.1371/journal.pone.0022100] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 06/16/2011] [Indexed: 11/19/2022] Open
Abstract
Background Severe fetal acidemia during labour with arterial pH below 7.00 is associated with increased risk of hypoxic-ischemic brain injury. Electronic fetal heart rate (FHR) monitoring, the mainstay of intrapartum surveillance, has poor specificity for detecting fetal acidemia. We studied brain electrical activity measured with electrocorticogram (ECOG) in the near term ovine fetus subjected to repetitive umbilical cord occlusions (UCO) inducing FHR decelerations, as might be seen in human labour, to delineate the time-course for ECOG changes with worsening acidemia and thereby assess the potential clinical utility of fetal ECOG. Methodology/Principal Findings Ten chronically catheterized fetal sheep were studied through a series of mild, moderate and severe UCO until the arterial pH was below 7.00. At a pH of 7.24±0.04, 52±13 min prior to the pH dropping <7.00, spectral edge frequency (SEF) increased to 23±2 Hz from 3±1 Hz during each FHR deceleration (p<0.001) and was correlated to decreases in FHR and in fetal arterial blood pressure during each FHR deceleration (p<0.001). Conclusions/Significance The UCO-related changes in ECOG occurred in advance of the pH decreasing below 7.00. These ECOG changes may be a protective mechanism suppressing non-essential energy needs when oxygen supply to the fetal brain is decreased acutely. By detecting such “adaptive brain shutdown,” the need for delivery in high risk pregnant patients may be more accurately predicted than with FHR monitoring alone. Therefore, monitoring fetal electroencephalogram (EEG, the human equivalent of ECOG) during human labour may be a useful adjunct to FHR monitoring.
Collapse
Affiliation(s)
- Martin G Frasch
- Department of Obstetrics and Gynecology, Lawson Health Research Institute, The University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | |
Collapse
|
49
|
Abstract
Cerebral hypothermia reduces brain injury and improves behavioral recovery after hypoxia-ischemia (HI) at birth. However, using current enrolment criteria many infants are not helped, and conversely, a significant proportion of control infants survive without disability. In order to further improve treatment we need better biomarkers of injury. A 'true' biomarker for the phase of evolving, 'treatable' injury would allow us to identify not only whether infants are at risk of damage, but also whether they are still able to benefit from intervention. Even a less specific measure that allowed either more precise early identification of infants at risk of adverse neurodevelopmental outcome would reduce the variance of outcome of trials, improving trial power while reducing the number of infants unnecessarily treated. Finally, valid short-term surrogates for long term outcome after treatment would allow more rapid completion of preliminary evaluation and thus allow new strategies to be tested more rapidly. Experimental studies have demonstrated that there is a relatively limited 'window of opportunity' for effective treatment (up to about 6-8h after HI, the 'latent phase'), before secondary cell death begins. We critically evaluate the utility of proposed biochemical, electronic monitoring, and imaging biomarkers against this framework. This review highlights the two central limitations of most presently available biomarkers: that they are most precise for infants with severe injury who are already easily identified, and that their correlation is strongest at times well after the latent phase, when injury is no longer 'treatable'. This is an important area for further research.
Collapse
Affiliation(s)
- L. Bennet
- Corresponding author. Dr Laura Bennet, Professor, Fetal Physiology and Neuroscience Group Department of Physiology, The University of Auckland, Private Bag 92019 Auckland, New Zealand Tel.: +64 9 373 7599 ext. 84890; fax: +64 9 373 7499. (L. Bennet)
| | | | | |
Collapse
|
50
|
Watanabe M, Masaoka N, Nakajima Y, Nagaishi M, Yamamoto T. Changes of expression of glucose transporters in the fetal lamb brain after MCI-186 administration to the maternal circulation with 10-min persistent umbilical cord occlusion. J Matern Fetal Neonatal Med 2010; 22:829-36. [PMID: 19637108 DOI: 10.1080/14767050902801702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To evaluate the effect of MCI-186 (3-methyl-1-phenyl-2-pyrazoline-5-one), a potent hydroxyl radical scavenger, administered to the maternal circulation following umbilical cord occlusion in regard to glucose transporter (GLUT) expression. MATERIALS AND METHODS Fourteen instrumented lambs were prepared. In three cases, a 10-min persistent umbilical cord occlusion was performed; 30 min after the insult, fetal brains were extirpated (Group A). Four cases had a 10-min occlusion(Group B) and four cases had 10-min occlusion and were administered MCI-186 to the maternal circulation (Group C).Three days following the insult, the fetal brains were extirpated. The remaining three cases had a sham operation (Group D).Brain tissue sections were stained at the locations of GLUT-1, -3 and -5 and were evaluated by two pathologists. RESULTS The expression of GLUT-1 and -3 significantly increased in the basal ganglia, hippocampi and periventricular region of Group B when compared with that of Group A. The expression of GLUT-1 and -3 in three regions of Group B were significantly higher than that of Group C and D. GLUT-5 was recognised only in Group B. CONCLUSION On the basis of expression of GLUT, the protective effect of MCI-186 on brain injury resulting from hypoxia/ ischemia-reperfusion is documented.
Collapse
Affiliation(s)
- Masao Watanabe
- Department of Obstetrics and Gynecology, Tokyo Womnen's Medical University Yachiyo Medical Center, 477-96 Owada-Shinden, Yachiyo Chiba 276-8524, Japan
| | | | | | | | | |
Collapse
|