1
|
Treatment with Hyaluronic Acid and Collagen-Polyvinylpyrrolidone Improves Extracellular Matrix Assembly for Scarring after Tracheal Resection. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3964518. [PMID: 32908887 PMCID: PMC7474357 DOI: 10.1155/2020/3964518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/04/2020] [Accepted: 08/11/2020] [Indexed: 11/20/2022]
Abstract
Treatment of tracheal stenosis is occasionally performed in combination with wound healing modulators to manipulate new extracellular matrix (ECM) formation and prevent fibrosis. Hyaluronic acid (HA) and collagen-polyvinylpyrrolidone (collagen-PVP) decrease fibrosis in experimental tracheal healing. However, they have not been used clinically as their effect on ECM components, which modify tracheal scarring, has not been described. Objective. To evaluate the effect of the application of HA, collagen-PVP, a mixture of HA and collagen-PVP (HA+collagen-PVP), and mitomycin C on the expression of decorin, matrix metalloproteinase 1 (MMP1), and MMP9, as well as the type of collagen and deposits formed in the scar after resection and end-to-end anastomosis (REEA) of the cervical trachea using an experimental model. Materials and Methods. Thirty dogs underwent REEA of the cervical trachea and were treated with different wound healing modulators: group I (n = 6), control; group II (n = 6), HA; group III (n = 6), collagen-PVP; group IV (n = 6), HA+collagen-PVP; and group V (n = 6), mitomycin C. The dogs were evaluated clinically and endoscopically for 4 weeks. Subsequently, macroscopic and microscopic changes, expression of ECM proteins, and collagen deposition in tracheal scars were analysed. Results. Groups II, III, and IV showed reduced endoscopic, macroscopic, and microscopic inflammation, improved neovascularization, high decorin expression (p < 0.01, analysis of variance (ANOVA)), and moderate expression of MMP1 (p < 0.003, ANOVA) and type I and III collagen (p < 0.05, Kruskal–Wallis). Groups IV and V developed fewer collagen deposits (p < 0.001, ANOVA). Conclusion. Treatment with HA and collagen-PVP improved post-REEA healing by increasing neovascularization, stimulating the expression of decorin, and regulating the expression of MMP1, as well as type I and III collagen and their deposition.
Collapse
|
2
|
Hou C, Peng D, Gao L, Tian D, Dai J, Luo Z, Liu E, Chen H, Zou L, Fu Z. Human umbilical cord-derived mesenchymal stem cells protect from hyperoxic lung injury by ameliorating aberrant elastin remodeling in the lung of O 2-exposed newborn rat. Biochem Biophys Res Commun 2017; 495:1972-1979. [PMID: 29242152 DOI: 10.1016/j.bbrc.2017.12.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 12/10/2017] [Indexed: 01/08/2023]
Abstract
The incidence and mortality rates of bronchopulmonary dysplasia (BPD) remain very high. Therefore, novel therapies are imminently needed to improve the outcome of this disease. Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) show promising therapeutic effects on oxygen-induced model of BPD. In our experiment, UC-MSCs were intratracheally delivered into the newborn rats exposed to hyperoxia, a well-established BPD model. This study demonstrated that UC-MSCs reduce elastin expression stimulated by 90% O2 in human lung fibroblasts-a (HLF-a), and inhibit HLF-a transdifferentiation into myofibroblasts. In addition, the therapeutic effects of UC-MSCs in neonatal rats with BPD, UC-MSCs could inhibit lung elastase activity and reduce aberrant elastin expression and deposition in the lung of BPD rats. Overall, this study suggested that UC-MSCs could ameliorate aberrant elastin expression in the lung of hyperoxia-induced BPD model which may be associated with suppressing increased TGFβ1 activation.
Collapse
Affiliation(s)
- Chen Hou
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Danyi Peng
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Li Gao
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Otorhinolaryngology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Daiyin Tian
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jihong Dai
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Zhengxiu Luo
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Enmei Liu
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Hong Chen
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Chongqing Key Laboratory of Pediatrics, China; Department of Pediatrics, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Lin Zou
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Center for Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China.
| | - Zhou Fu
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China.
| |
Collapse
|
3
|
Gogiel T, Galewska Z, Romanowicz L, Jaworski S, Bańkowski E. Pre-eclampsia-associated alterations in decorin, biglycan and versican of the umbilical cord vein wall. Eur J Obstet Gynecol Reprod Biol 2007; 134:51-6. [PMID: 17097211 DOI: 10.1016/j.ejogrb.2006.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 08/30/2006] [Accepted: 10/05/2006] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The role of proteoglycans in the rearrangement of the extracellular matrix of the umbilical cord vein wall in pre-eclampsia is not known. Decorin, biglycan and versican are the main proteoglycans of the umbilical cord vein wall. We decided to test whether the amounts of these proteoglycans alter in pre-eclampsia. STUDY DESIGN Study was performed on the umbilical cord veins taken from 10 newborns delivered by healthy mothers (control group) and from 10 newborns delivered by mothers with pre-eclampsia. Proteoglycans were extracted in dissociative conditions, purified by Q-Sepharose anion exchange chromatography and lyophilised. Decorin, biglycan and versican were analysed by SDS-PAGE followed by Western blotting before and after treatment with chondroitinase ABC. The amounts of decorin, biglycan and versican core proteins were assessed by ELISA method. RESULTS We found that both control and pre-eclamptic umbilical cord vein wall contained all the three proteoglycans. ELISA assay showed the amounts of the core proteins of decorin, biglycan and versican were distinctly higher in pre-eclamptic material in comparison to control vessel. Western blotting confirmed that the expression of all these proteoglycan core proteins increased in pre-eclampsia. They featured in the same electrophoretic mobility-45 and 47 kDa for decorin, 45 kDa for biglycan, and 300 and 320 kDa for versican. CONCLUSION The content of decorin, biglycan and versican in the umbilical cord vein wall is elevated in pre-eclampsia in comparison to the corresponding control vessel. These alterations may affect the mechanical properties of this vessel and disturb foetal blood circulation.
Collapse
Affiliation(s)
- Tomasz Gogiel
- Department of Medical Biochemistry, Medical Academy of Białystok, ul. Mickiewicza 2, 15-089 Białystok-1, Poland.
| | | | | | | | | |
Collapse
|
4
|
Hofstaetter JG, Wunderlich L, Samuel RE, Saad FA, Choi YH, Glimcher MJ. Systemic hypoxia alters gene expression levels of structural proteins and growth factors in knee joint cartilage. Biochem Biophys Res Commun 2005; 330:386-94. [PMID: 15796895 DOI: 10.1016/j.bbrc.2005.02.168] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Indexed: 10/25/2022]
Abstract
We investigated the effects of short- (8- and 24-h) and long-term (3 weeks) exposure to systemic normobaric hypoxia (13%) on the gene expression level of structural proteins and growth factors in knee joint cartilage of rabbits. Collagen type Ia2, II, and Va1, TGF-beta1, and b-FGF were upregulated after short-term hypoxia in both menisci, but not in articular cartilage. In contrast, long-term hypoxia downregulated gene expression level of collagens, aggrecan, and growth factors in articular cartilage and meniscal fibrocartilage. Interestingly, gene expression levels of non-collagenous proteins biglycan, decorin, and versican were not affected by short-term or by long-term hypoxia in knee joint cartilage. The present study suggests that changes in oxygen level differentially affect gene expression levels of growth factors, collagens, and non-collagenous proteins in normal knee joint cartilage in rabbits.
Collapse
Affiliation(s)
- Jochen G Hofstaetter
- Laboratory for Skeletal Disorders and Rehabilitation, Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Veness-Meehan KA, Pierce RA, Moats-Staats BM, Stiles AD. Retinoic acid attenuates O2-induced inhibition of lung septation. Am J Physiol Lung Cell Mol Physiol 2002; 283:L971-80. [PMID: 12376350 DOI: 10.1152/ajplung.00266.2001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure of the newborn lung to hyperoxia is associated with impaired alveolar development. In newborn rats exposed to hyperoxia and studied at day 14 of life, retinoic acid (RA) treatment improved survival and increased lung collagen but did not improve alveolar development. To determine whether RA treatment during exposure to hyperoxia results in late improvement in alveolarization, we treated newborn rats with RA and hyperoxia from day 3 to day 14 and then weaned O2 to room air by day 20, and studied the animals on day 42. O2-exposed animals had larger mean lung volumes, larger alveoli, and decreased gas-exchange tissue relative to air-exposed animals, whereas RA-treated O2-exposed animals were not statistically different from air-exposed controls. Relative to control animals, elastin staining at day 14 was decreased in hyperoxia-exposed lung independent of RA treatment, and, at day 42, elastin staining was similar in all treatment groups. At day 14, elastin gene expression was similar in all treatment groups, whereas at day 42 lung previously exposed to hyperoxia showed increased elastin signal independent of RA treatment. These results indicate that RA treatment during hyperoxia exposure promotes septal formation without evidence of effects on elastin gene expression after 4 wk of recovery.
Collapse
Affiliation(s)
- Kathleen A Veness-Meehan
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7596, USA.
| | | | | | | |
Collapse
|
6
|
Koslowski R, Pfeil U, Fehrenbach H, Kasper M, Skutelsky E, Wenzel KW. Changes in xylosyltransferase activity and in proteoglycan deposition in bleomycin-induced lung injury in rat. Eur Respir J 2001; 18:347-56. [PMID: 11529295 DOI: 10.1183/09031936.01.00085601] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Several lines of evidence support the hypothesis of the involvement of altered proteoglycan deposition in the development of lung diseases. UDP-D-xylose: core protein beta-D-xylosyltransferase (UDP-xylosyltransferase; EC 2.4.2.26) is a key enzyme for the glycosylation of proteoglycan core proteins. This study examined the catalytic activity of UDP-xylosyltransferase in lung tissue and in isolated fibroblasts, as well as the deposition of the proteoglycans versican, biglycan and decorin in rat lung tissue during bleomycin-induced lung injury. Rats were given, endotracheally, a single dose of bleomycin. Deposition of proteoglycans in lung tissue was assessed by immunohistochemistry and the catalytic activity of xylosyltransferase was determined with an acceptor peptide of the sequence Q-E-E-E-G-S-G-G-G-Q-G-G as a substrate. The results show coincidence of increasing xylosyltransferase activities in lung tissue with accumulation of versican at alveolar entrance rings and in fibrotic regions in close proximity to alpha-smooth muscle actin-positive cells. In contrast, no changes in biglycan and decorin deposition in fibrotic lungs were observed, except for decorin in alveolar type II pneumocytes and alveolar macrophages. Bleomycin treatment of isolated rat lung fibroblasts resulted in a concentration-dependent increase of xylosyltransferase activity up to 2 mU bleomycin x mL(-1). The data suggest a participation of myofibroblasts with increased xylosyltransferase activities in accumulation of versican in fibrotic foci of injured lung tissue at the early stages of development of lung fibrosis.
Collapse
Affiliation(s)
- R Koslowski
- Institutes of Physiological Chemistry, Dresden University of Technology, Germany
| | | | | | | | | | | |
Collapse
|