1
|
Spengler D, Rintz N, Krause MF. An Unsettled Promise: The Newborn Piglet Model of Neonatal Acute Respiratory Distress Syndrome (NARDS). Physiologic Data and Systematic Review. Front Physiol 2019; 10:1345. [PMID: 31736777 PMCID: PMC6831728 DOI: 10.3389/fphys.2019.01345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Despite great advances in mechanical ventilation and surfactant administration for the newborn infant with life-threatening respiratory failure no specific therapies are currently established to tackle major pro-inflammatory pathways. The susceptibility of the newborn infant with neonatal acute respiratory distress syndrome (NARDS) to exogenous surfactant is linked with a suppression of most of the immunologic responses by the innate immune system, however, additional corticosteroids applied in any severe pediatric lung disease with inflammatory background do not reduce morbidity or mortality and may even cause harm. Thus, the neonatal piglet model of acute lung injury serves as an excellent model to study respiratory failure and is the preferred animal model for reasons of availability, body size, similarities of porcine and human lung, robustness, and costs. In addition, similarities to the human toll-like receptor 4, the existence of intraalveolar macrophages, the sensitivity to lipopolysaccharide, and the production of nitric oxide make the piglet indispensable in anti-inflammatory research. Here we present the physiologic and immunologic data of newborn piglets from three trials involving acute lung injury secondary to repeated airway lavage (and others), mechanical ventilation, and a specific anti-inflammatory intervention via the intratracheal route using surfactant as a carrier substance. The physiologic data from many organ systems of the newborn piglet—but with preference on the lung—are presented here differentiating between baseline data from the uninjured piglet, the impact of acute lung injury on various parameters (24 h), and the follow up data after 72 h of mechanical ventilation. Data from the control group and the intervention groups are listed separately or combined. A systematic review of the newborn piglet meconium aspiration model and the repeated airway lavage model is finally presented. While many studies assessed lung injury scores, leukocyte infiltration, and protein/cytokine concentrations in bronchoalveolar fluid, a systematic approach to tackle major upstream pro-inflammatory pathways of the innate immune system is still in the fledgling stages. For the sake of newborn infants with life-threatening NARDS the newborn piglet model still is an unsettled promise offering many options to conquer neonatal physiology/immunology and to establish potent treatment modalities.
Collapse
Affiliation(s)
- Dietmar Spengler
- Department of Pediatrics, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Nele Rintz
- Department of Pediatrics, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Martin F Krause
- Department of Pediatrics, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
2
|
Shao JI, Lin CH, Yang YH, Jeng MJ. Effects of intravenous phosphodiesterase inhibitors and corticosteroids on severe meconium aspiration syndrome. J Chin Med Assoc 2019; 82:568-575. [PMID: 31274789 DOI: 10.1097/jcma.0000000000000063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Meconium aspiration syndrome (MAS) is a major cause of severe respiratory failure in near- and full-term neonates. Alleviating inflammation is key to successfully treating severe MAS. Phosphodiesterase (PDE) inhibitors are known to play a role in airway smooth muscle relaxation and alveolar inflammation inhibition. This study aimed to investigate the effects of various intravenous (IV) PDE inhibitors and corticosteroids on MAS. METHODS MAS was induced in newborn piglets by instilling human meconium in them. The piglets were randomly divided into five groups (n = 5 in each group): (1) control (sham treatment); (2) dexamethasone (Dex) (IV 0.6 mg/kg of dexamethasone); (3) aminophylline (Ami) (IV 6 mg/kg of aminophylline, followed by continuous infusion of 0.5 mg/kg/h of aminophylline; (4) milrinone (Mil) (IV 50 μg/kg of milrinone, followed by continuous infusion of 0.75 μg/kg/h of milrinone); and (5) rolipram (Rol) (IV 0.8 mg/kg of rolipram). The duration of the experimental period was 4 hours. RESULTS Compared to the control group, all the four treatment groups revealed better oxygenation 3 hours and more after the start of treatment. The Rol group had a significantly elevated heart beat (p < 0.05) and relatively lower blood pressure compared to the other groups during the first 2 hours of the experiment. The Dex group had significantly lower interleukin (IL)-1β levels in the lung tissue compared to the other groups (p < 0.05) and significantly lower IL-6 levels compared to the Ami and Mil groups (p < 0.05). Lung histology showed slightly less inflammation and atelectasis in the Dex group compared to the other groups, but lung injury scores showed no significant between-group differences. CONCLUSION Using IV corticosteroids or any type of PDE inhibitors has some beneficial effects in improving oxygenation in MAS. PDE inhibitors are not superior to IV corticosteroids; in fact, adverse cardiovascular effects occur with the phosphodiesterase type 4 (PDE4) inhibitor. Further investigations are required before using IV corticosteroids and PDE inhibitors in future clinical application.
Collapse
Affiliation(s)
- Ju-Ing Shao
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Chih-Hsueh Lin
- Department of Life Science, School of Life Science, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Yi-Hsin Yang
- School of Medicine, Fu Jen Catholic University, New Taipei, Taiwan, ROC
| | - Mei-Jy Jeng
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Pediatrics, Children's Medical Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
3
|
Mikolka P, Mokrá D, Kopincová J, Tomčíková-Mikušiaková L, Calkovská A. Budesonide added to modified porcine surfactant Curosurf may additionally improve the lung functions in meconium aspiration syndrome. Physiol Res 2014; 62:S191-200. [PMID: 24329699 DOI: 10.33549/physiolres.932606] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Severe meconium aspiration syndrome (MAS) in newborns is often treated by exogenous surfactant. Because its efficacy is reduced by meconium-induced inflammation, glucocorticoid budesonide was added into surfactant preparation Curosurf to enhance efficacy of the surfactant therapy in experimental model of MAS. Oxygen-ventilated rabbits were intratracheally given meconium (25 mg/ml, 4 ml/kg) to induce respiratory failure. Thirty minutes later, animals were treated by intratracheal budesonide (0.25 mg/kg) or surfactant lung lavage (10 ml/kg, 5 mg phospholipids/ml) repeated twice, followed by undiluted Curosurf (100 mg phospholipids/kg) or by the above mentioned surfactant treatment with the last surfactant dose fortified with budesonide (0.25 mg/kg) or were untreated. Animals were ventilated for additional 5 hours and respiratory parameters were measured regularly. After sacrificing animals, wet-dry lung weight ratio was evaluated and plasma levels of interleukins (IL)-1beta, -6, -8, and TNF-alpha were measured by ELISA method. Efficacy of the given therapies to enhance lung functions and to diminish lung edema formation and inflammation increased from budesonide-only and surfactant-only therapy to surfactant+budesonide therapy. Combined therapy improved gas exchange from 30 min of administration, and showed a longer-lasting effect than surfactant-only therapy. In conclusions, budesonide additionally improved the effects of exogenous surfactant in experimental MAS.
Collapse
Affiliation(s)
- P Mikolka
- Department of Physiology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia.
| | | | | | | | | |
Collapse
|
4
|
Mokra D, Mokry J, Tonhajzerova I. Anti-inflammatory treatment of meconium aspiration syndrome: Benefits and risks. Respir Physiol Neurobiol 2013; 187:52-7. [DOI: 10.1016/j.resp.2013.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
|
5
|
Abstract
Meconium aspiration syndrome is a serious neonatal disease with complex pathophysiology. With respect to the contribution of meconium-induced lung edema, inflammation and vasoconstriction on the course of the disease, glucocorticoids are increasingly used in the treatment of MAS despite the fact that principal questions on the choice of GCs derivative, mode of delivery and dosing have not been answered yet. To bring a complex insight into the topic, this article reviews the pathomechanisms of MAS, mechanisms of action of GCs, as well as the advantages and disadvantages of GCs administration in experimental models and newborns with MAS.
Collapse
|
6
|
Mokra D, Tonhajzerova I, Petraskova M, Calkovska A. Effects of dexamethasone on cardiovascular functions in acute phase in meconium-injured rabbits. Pediatr Int 2009; 51:132-7. [PMID: 19371293 DOI: 10.1111/j.1442-200x.2008.02674.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Because cardiovascular functions and their control mechanisms may be influenced by meconium aspiration and by treatment, cardiovascular parameters including heart rate variability (HRV) were evaluated after meconium instillation and treatment with dexamethasone. METHODS Adult rabbits were anesthetized, paralyzed, and artificially ventilated. Meconium suspension (25 mg/mL, 4 mL/kg) was instilled intratracheally to induce respiratory failure. Thirty minutes later, animals received i.v. dexamethasone (0.5 mg/kg; dexa group, n = 6) or were left without treatment (control group, n = 5). All animals were ventilated for an additional 5 h. Mean heart rate (MHR), mean blood pressure (MBP), central venous pressure (CVP), and time and spectral analyses of HRV were registered and evaluated. Blood gases were measured and right-to-left pulmonary shunts (RLS) calculated. RESULTS Immediately after meconium instillation, MBP, CVP, and RLS increased and MHR decreased (P < 0.05). MHR and MBP were restored within several minutes, while CVP and RLS remained high until the end of experiment. Thirty minutes after meconium instillation, slightly but non-significantly higher spectral powers in all frequency bands of HRV were found (P > 0.05). Dexamethasone treatment enhanced oxygenation (P < 0.05) and slightly reduced PaCO(2) (P > 0.05), increased parasympathetic activity expressed by mean squared successive difference and decreased spectral power in the very low frequency band (P < 0.05) compared to controls, but had no significant effect on MHR, MBP, CVP, and RLS. CONCLUSIONS Single-dose i.v. dexamethasone showed a trend to improve gas exchange, however, increased parasympathetic activity, what should be considered in use of corticosteroids in the treatment of meconium aspiration syndrome.
Collapse
Affiliation(s)
- Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia.
| | | | | | | |
Collapse
|
7
|
Abstract
In this article we have attempted to review the current pharmacological treatment options for infants with meconium aspiration syndrome with or without persistent pulmonary hypertension. These treatments include ventilatory support, surfactant treatment and inhaled nitric oxide (INO), in addition to older and newer pharmacological treatments. These include sedatives, muscle relaxants, alkali infusion, antibiotics and the newer vasodilators. Many aspects of treatment, including ventilatory care, surfactant treatment and the use of INO, are reviewed in great detail in this issue. On the other hand, many newer pharmacological modalities of treatment described here have not been evaluated with randomized control trials. We have given an overview of these emerging therapies.
Collapse
Affiliation(s)
- A Asad
- Division of Neonatology, Department of Pediatrics, University of Illinois at Medical Center, Chicago, IL 60612, USA
| | | |
Collapse
|
8
|
Mokra D, Tonhajzerova I, Mokry J, Drgova A, Petraskova M, Calkovska A, Javorka K. Rapid cardiovascular effects of dexamethasone in rabbits with meconium-induced acute lung injury. Can J Physiol Pharmacol 2008; 86:804-14. [DOI: 10.1139/y08-086] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoids may improve lung function in newborns with meconium aspiration syndrome (MAS), but information on the acute side effects of glucocorticoids in infants is limited. In this study using a rabbit model of MAS, we addressed the hypothesis that systemic administration of dexamethasone causes acute cardiovascular changes. Adult rabbits were treated with 2 intravenous doses of dexamethasone (0.5 mg/kg each) or saline at 0.5 h and 2.5 h after intratracheal instillation of human meconium or saline. Animals were oxygen-ventilated for 5 h after the first dose of treatment. Blood pressure, heart rate, and short-term heart rate variability (HRV) were analyzed during treatment, for 5 min immediately after each dose, and for the 5 h of the experiment. In the meconium-instilled animals, dexamethasone increased blood pressure, decreased heart rate, increased HRV parameters, and caused cardiac arrhythmia during and immediately after administration. In the saline-instilled animals, the effect of dexamethasone was inconsistent. In these animals, the acute effects of dexamethasone on blood pressure and cardiac rhythm were reversed after 30 min, whereas heart rate continued to decrease and HRV parameters continued to increase for 5 h after the first dose of dexamethasone. These effects were more pronounced in meconium-instilled animals. If systemic glucocorticoids are used in the treatment of MAS, cardiovascular side effects of glucocorticoids should be considered.
Collapse
Affiliation(s)
- Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Ingrid Tonhajzerova
- Department of Physiology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Juraj Mokry
- Department of Physiology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Anna Drgova
- Department of Physiology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Maria Petraskova
- Department of Physiology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Andrea Calkovska
- Department of Physiology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Kamil Javorka
- Department of Physiology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| |
Collapse
|
9
|
Vidyasagar D, Lukkarinen H, Kaapa P, Zagariya A. Inflammatory Response and Apoptosis in Newborn Lungs after Meconium Aspiration. Biotechnol Prog 2008; 21:192-7. [PMID: 15903258 DOI: 10.1021/bp0497886] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An important feature of meconium-instilled newborn lungs is an inflammatory response and apoptotic cell death. It was recently demonstrated by our group and supported by several other investigators in a relatively short period of time. Apoptosis exists also in healthy lungs, but in meconium-instilled lungs its level is usually dramatically higher. Apoptosis is characterized by loss of cell function, decrease in cell size, and its morphology. Apoptosis plays an important role in normal cell life, but increased levels of apoptosis induce great damage for any tissues. Apoptosis in the lungs has been greatly overlooked for the past decade, and meconium-induced apoptosis is a relatively new event and not effectively studied at the present time. This Review summarized current knowledge regarding meconium-induced inflammation and apoptosis in newborn lungs.
Collapse
Affiliation(s)
- D Vidyasagar
- Division of Neonatology, University of Illinois at Chicago, Chicago, Illinois, USA.
| | | | | | | |
Collapse
|
10
|
Kriemler S, Kohler M, Zehnder M, Bloch KE, Brunner-La Rocca H. Successful Treatment of Severe Acute Mountain Sickness and Excessive Pulmonary Hypertension with Dexamethasone in a Prepubertal Girl. High Alt Med Biol 2006; 7:256-61. [PMID: 16978138 DOI: 10.1089/ham.2006.7.256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Susi Kriemler
- Institute for Sports and Sport Science, University of Basel, Switzerland., Exercise Physiology, ETH-University of Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
11
|
Miller TL, Singhaus CJ, Sherman TI, Greenspan JS, Shaffer TH. Physiologic implications of helium as a carrier gas for inhaled nitric oxide in a neonatal model of Bethanecol-induced bronchoconstriction. Pediatr Crit Care Med 2006; 7:159-64. [PMID: 16531948 DOI: 10.1097/01.pcc.0000200942.23574.ca] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To compare heliox to nitrogen-oxygen (nitrox) as a carrier gas for inducible nitric oxide (iNO) in the presence of pharmacologically inhaled bronchoconstriction. We hypothesized that respiratory resistance and gas exchange would improve when iNO is delivered with heliox. DESIGN Interventional laboratory study. SETTING An academic medical research facility in the northeastern United States. SUBJECTS Sedated, ventilated newborn piglets. INTERVENTIONS Newborn piglets (n = 16; 2.3 +/- 0.1 kg) were placed on a flow-controlled ventilator and given intravenous Bethanecol (2 x 1 mg/kg followed by 1 mg/kg/hr) to induce bronchoconstriction. Piglets were randomized to heliox or nitrox (Fio2 = 0.3) and given 80 ppm iNO. MEASUREMENTS AND MAIN RESULTS Hemodynamics, blood chemistry, and pulmonary mechanics were recorded at 30-min intervals for 2 hrs. Bethanecol dosing increased inspiratory respiratory resistance (cm H2O/L/min; p < .01) and decreased respiratory compliance (mL/cm H2O/kg; p < .01). Following carrier gas assignment, hemodynamics and respiratory compliance were similar between groups and respiratory resistance decreased (p < .01) in the heliox group. Over 2 hrs with iNO therapy, Paco2 increased (p < .01) whereas blood pH decreased (p < .01) in the heliox group. Respiratory resistance trended downward, oxygenation index improved (p < .01), and blood methemoglobin levels trended higher for nitrox compared with heliox. CONCLUSIONS The INOvent was effective for controlling heliox delivery of iNO. Despite marked reduction in respiratory resistance with heliox gas ventilation in a neonatal model of pharmacologic bronchoconstriction, nitrox might perform better as a delivery vehicle for iNO.
Collapse
Affiliation(s)
- Thomas L Miller
- Nemours Research Lung Center, Nemours Children's Clinic-Wilmington of the Nemours Foundation, Alfred I. duPont Children's Hospital, Wilmington, DE, USA
| | | | | | | | | |
Collapse
|
12
|
Mokry J, Mokra D, Antosova M, Bulikova J, Calkovska A, Nosalova G. Dexamethasone alleviates meconium-induced airway hyperresponsiveness and lung inflammation in rabbits. Pediatr Pulmonol 2006; 41:55-60. [PMID: 16229002 DOI: 10.1002/ppul.20330] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effects of dexamethasone on in vitro airway reactivity associated with lung inflammation were investigated in rabbits with meconium aspiration. Oxygen-ventilated adult rabbits received an intratracheal bolus of 4 ml/kg body weight of saline (Sal, n = 4) or human meconium (25 mg/ml). Thirty minutes later, meconium-instilled animals intravenously received 0.5 mg/kg of dexamethasone (Dexa, n = 6), or were left without treatment (Meco, n = 5). The animals were ventilated for a further 5 hr and then sacrificed. The left lungs were lavaged with saline, and the white blood cell (WBC) count was estimated. Tracheal and right-lung tissue strips were placed into organ chambers with Krebs-Henseleit solution. Cumulative doses of histamine (10(-8)-10(-3) mol/l) and acetylcholine (10(-8)-10(-3) mol/l) were added to the chambers, and recordings of contractions were made after a 30-min loading phase with a tension of 4 grams, and another 30-min adaptation phase with a tension of 2 g. Tracheal smooth muscle in vitro reactivity to histamine was higher in the Meco than in the Sal group, and dexamethasone decreased the reactivity compared to the Meco group (P < 0.05). Lung tissue in vitro reactivity to histamine was slightly higher in the Meco than in the Sal group (P > 0.05), and dexamethasone decreased the reactivity compared to both the Meco and Sal groups (P < 0.05). No between-group differences were observed in tracheal or lung in vitro reactivity to acetylcholine (P > 0.05). In the Meco group, blood WBC (P > 0.05) and neutrophil (P < 0.05) counts were lower than in the Sal and Dexa groups. Lung neutrophils and eosinophils were higher in both the Meco and Dexa groups than in the Sal group (P < 0.01). Dexamethasone decreased neutrophils (P < 0.05) compared to the Meco group. Meconium-induced airway hyperreactivity to histamine and lung inflammation were alleviated by dexamethasone.
Collapse
Affiliation(s)
- Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia.
| | | | | | | | | | | |
Collapse
|
13
|
Miller TL, Shashikant BN, Melby JM, Pilon AL, Shaffer TH, Wolfson MR. Recombinant human Clara cell secretory protein in acute lung injury of the rabbit: effect of route of administration. Pediatr Crit Care Med 2005; 6:698-706. [PMID: 16276338 DOI: 10.1097/01.pcc.0000165565.96773.08] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To test the hypothesis that intratracheal instillation of Clara cell secretory protein (CC 10) to the lung may afford greater protection than intravenous administration from ventilator-induced lung inflammation. DESIGN Interventional laboratory study. SETTING An academic medical research facility in northeastern United States. SUBJECTS Sedated, lavage-injured juvenile rabbits. INTERVENTIONS A total of 18 juvenile rabbits were anesthetized, ventilated, injured with saline lavage (Pao2 of <100 mm Hg; respiratory compliance of <0.50 mL.cm H2O.kg and <50% baseline), and randomized to receive intratracheally administered surfactant plus no recombinant human CC 10 (rhCC 10, control), intravenous rhCC 10, or intratracheal rhCC 10. MEASUREMENT AND MAIN RESULTS Arterial blood chemistry and pulmonary mechanics were monitored; plasma and urine were collected serially. After 4 hrs of ventilation, lungs were lavaged and harvested. Surfactant function was analyzed from bronchoalveolar lavage samples (surfactometry); rhCC 10, interleukin-8, and lung myeloperoxidase concentrations were measured. Pao2, oxygenation index, ventilatory efficiency index, and respiratory compliance were not different across time or group beyond injury. Surfactometry data identified no differences as a function of group or time. Plasma, bronchoalveolar lavage, and lung interleukin-8 concentrations, lung myeloperoxidase concentrations, and inflammatory cell counts in the alveolar and interstitial spaces of intravenous and intratracheal groups were lower than in the control group (p < .05) but not statistically different from each other. Concentrations of rhCC 10 in lung, bronchoalveolar lavage, and plasma were greater in the intratracheal group than in the intravenous group (p<.05). Urine rhCC 10 concentrations were greater for the intravenous group than for the intratracheal group (p<.05) at 1, 3, and 4 hrs after treatment. No group differences in histomorphometry were noted. CONCLUSIONS Both intravenous and intratracheal rhCC 10 delivery, after surfactant therapy, effectively decrease lung inflammation vs. surfactant alone. While supporting the physiologic profile, intratracheal instillation results in greater, maintained lung and plasma rhCC 10 pools compared with intravenous administration. As such, intratracheal instillation of rhCC 10 may afford more prolonged protection against lung inflammation than intravenous administration.
Collapse
Affiliation(s)
- Thomas L Miller
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
14
|
Alonso-Spilsbury M, Mota-Rojas D, Villanueva-García D, Martínez-Burnes J, Orozco H, Ramírez-Necoechea R, Mayagoitia AL, Trujillo ME. Perinatal asphyxia pathophysiology in pig and human: A review. Anim Reprod Sci 2005; 90:1-30. [PMID: 16257594 DOI: 10.1016/j.anireprosci.2005.01.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 12/20/2004] [Accepted: 01/10/2005] [Indexed: 10/25/2022]
Abstract
In utero fetuses are evidently exposed to several factors that cause an interruption of the oxygen flow through the umbilical cord causing asphyxia leading to hypoxia and metabolic acidosis. These conditions are important causes of intra-partum and neonatal mortality. The main objective of this review is to provide current information regarding the pathophysiology of asphyxia in piglets around parturition; the physiological mechanisms invoked by affected piglets to compensate perinatal hypoxemia are discussed. This review also addresses some similarities and differences of asphyxia between piglets and other mammals, including human neonates. Metabolic acidosis and hypoxia are sequela to asphyxia and can cause profound health effects in postnatal performance because of an abnormal suckling, a reduced absorption of colostrum and inadequate passive transfer of neonatal immunity. Acidosis also cause hypothermia, increased mortality and reduced survival in neonates. One of the first deleterious effects of intrauterine hypoxia is the expulsion of meconium into the amniotic sac leading to meconium staining of the skin, and in severe cases, meconium aspiration into the lungs. Even though there have been technological changes and improvements in husbandry, piglet mortality due to asphyxia remains a major problem. One potential alternative to reduce neonatal mortality in pigs is the monitoring of fetal stress during birth and the implemention of strategies such as the Apgar score, that is often used in human pediatrics. It is also important to consider the physiological, behavioral and biochemical changes that take place during parturition which subsequently impact the vitality, maturity and development of neonatal pigs. Understanding the pathophysiology of fetal hypoxia should help practitioners and farmers implement more effective delivery techniques aimed at reducing neonatal mortality and improving postnatal performance.
Collapse
Affiliation(s)
- María Alonso-Spilsbury
- Agriculture & Animal Production Department Area: Ecodesarrollo de la Producción Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico city, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Miller TL, Shashikant BN, Pilon AL, Pierce RA, Shaffer TH, Wolfson MR. Effects of an intratracheally delivered anti-inflammatory protein (rhCC10) on physiological and lung structural indices in a juvenile model of acute lung injury. Neonatology 2005; 89:159-70. [PMID: 16210850 DOI: 10.1159/000088843] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 07/25/2005] [Indexed: 01/15/2023]
Abstract
BACKGROUND Mechanical ventilation results in acute lung trauma that can stimulate processes that alter lung development. Activation of matrix metalloproteinases (MMPs) and their tissue-produced inhibitors (TIMPs) is initiated by the inflammatory response to mechanical ventilation and are involved in breakdown of the basement membrane and parenchymal modeling. OBJECTIVES The aim of this study was to test the hypothesis that rhCC10, a lung anti-inflammatory mediator, would foster improved lung function, structural preservation, and a reduction in net MMP activity in a juvenile model of acute lung injury. METHODS Twenty-four juvenile rabbits were saline-lavage-injured and treated with 100 or 25 mg/kg surfactant (Survanta, Ross Labs) with or without rhCC10 (Claragen, Inc.; n=6 per group). Animals were ventilated for 4 h, then euthanized for in vitro surfactant function analysis, lung histomorphometry, and analysis of MMP-2, MMP-7, and MMP-9 and TIMPs 1 and 2 in the lung. RESULTS Apical lung expansion, reduced with the lower dose of surfactant, was partially restored with the addition of rhCC10. Alveolar septal wall thickness was reduced (p<0.05) with low-dose surfactant plus rhCC10 compared to high-dose surfactant alone. Increased within-group variance in MMP-2 and MMP-9 proteolytic activity was found with the low-dose surfactant and was abolished with rhCC10. MMP-7 was reduced (p<0.05) with rhCC10 administration, independent of surfactant dose. CONCLUSIONS Intratracheal administration of the anti-inflammatory rhCC10 resulted in preserved lung structure and MMP/TIMP profile after 4 h of mechanical ventilation, in a surfactant dose-dependent manner.
Collapse
Affiliation(s)
- Thomas L Miller
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, and Nemours Research Lung Center, Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | | | | | | | | | | |
Collapse
|
16
|
Korhonen K, Kiuru A, Svedström E, Kääpä P. Pentoxifylline reduces regional inflammatory and ventilatory disturbances in meconium-exposed piglet lungs. Pediatr Res 2004; 56:901-6. [PMID: 15470201 DOI: 10.1203/01.pdr.0000145256.19073.e4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neonatal meconium aspiration frequently produces severe respiratory distress, which is associated with patchy pulmonary neutrophil influx and inflammatory injury. To examine the effects of pentoxifylline (PTX), a potent anti-inflammatory agent, on regional pulmonary inflammation and ventilation after meconium aspiration, we studied 17 anesthetized and ventilated neonatal piglets (age <2 d) for 12 h. After unilateral intrapulmonary instillation of meconium, PTX treatment was started in nine animals, and eight untreated animals served as controls. Bronchoalveolar lavage (BAL) fluid and lung tissue were studied for inflammatory variables at the end of the study, and changes in regional ventilation were serially analyzed with a dynamic pulmonary x-ray imaging method. Meconium insufflation increased BAL fluid total cell, neutrophil, and macrophage counts and tumor necrosis factor-alpha (TNF-alpha) and protein concentrations as well as lung tissue myeloperoxidase activity in the instilled lungs, compared with the noninstilled side. PTX treatment prevented the increase of BAL fluid alveolar macrophage count and TNF-alpha and protein concentrations in the meconium-instilled lungs but had no significant effect on the pulmonary neutrophil accumulation. Ventilation of the meconium-insulted lung was initially disturbed similarly in both study groups, but PTX administration prevented the sustained local ventilatory perturbation at 4, 6, and 12 h after meconium instillation. The results thus indicate that PTX treatment may attenuate meconium-induced regional ventilation derangements, mainly through its effects on local alveolar macrophages and TNF-alpha production as well as alveolocapillary permeability rather than via significant prevention of accumulation of active neutrophils in the insulted lungs.
Collapse
Affiliation(s)
- Kalle Korhonen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| | | | | | | |
Collapse
|
17
|
Berdeli A, Akisu M, Dagci T, Akisu C, Yalaz M, Kultursay N. Meconium enhances platelet-activating factor and tumor necrosis factor production by rat alveolar macrophages. Prostaglandins Leukot Essent Fatty Acids 2004; 71:227-32. [PMID: 15301793 DOI: 10.1016/j.plefa.2004.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 03/29/2004] [Indexed: 11/29/2022]
Abstract
Meconium aspiration syndrome (MAS) frequently results in inactivation of surfactant, persistent pulmonary hypertension (PPHN) and respiratory failure among newborn infants. Inflammation and inflammatory mediators play an important role in MAS. Since alveolar macrophages are thought to be very important cells in the pathogenesis of various inflammatory diseases, we evaluated whether meconium could stimulate rat alveolar macrophages to generate platelet-activating factor (PAF) and tumor necrosis factor (TNF)-alpha in vitro. We also examined the response to A23187 (calcium ionophore), 1-0-Hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (synthetic PAF) and dexamethasone on meconium-induced release of PAF and TNF-alpha. PAF and TNF-alpha concentrations from supernatant fluid were measured after high-performance liquid chromatography purification by specific radioimmunoassay, and TNF-alpha concentrations were determined by using an enzyme-linked immunosorbent assay. Our results showed that alveolar macrophages exposed to meconium could enhance PAF and TNF-alpha production in a dose (0.1, 1, 5 and 10%, P<0.01)-dependent way. In the presence of A23187, the capability of meconium to stimulate PAF production was further enhanced in the supernatant fluids. Furthermore, treatment with synthetic PAF significantly increased the generation of TNF-alpha in response to meconium. On the other hand, dexamethasone effectively inhibited both PAF and TNF-alpha production stimulated by 5% meconium (P<0.01, P<0.01; respectively). We suggest that alveolar macrophages and PAF, TNF-alpha play an important role in the pathogenesis of lung injury and severe complications in MAS. Furthermore, the protective effect of glucocorticoids in MAS could be due, at least in part, to a suppression of PAF and TNF-alpha generation.
Collapse
Affiliation(s)
- Afig Berdeli
- Department of Pediatrics, Ege University Medical Faculty, BORNOVA, Izmir 35100, Turkey
| | | | | | | | | | | |
Collapse
|
18
|
Korhonen K, Soukka H, Halkola L, Peuravuori H, Aho H, Pulkki K, Kero P, Kääpä PO. Meconium induces only localized inflammatory lung injury in piglets. Pediatr Res 2003; 54:192-7. [PMID: 12736389 DOI: 10.1203/01.pdr.0000072784.55140.1e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neonatal meconium aspiration often produces severe respiratory distress due to an inflammatory pulmonary injury, but the extension of this damaging reaction to the noncontaminated lung regions is still uncertain. To investigate the presence of generalized pulmonary inflammatory response, 31 anesthetized and ventilated neonatal piglets (1-3 d) were studied. Meconium (n = 16) or saline (n = 15) was instilled unilaterally into the right lung, and analysis of the lung tissue or bronchoalveolar lavage (BAL) fluid from both lungs was performed after 12 h. Meconium increased the wet/dry weight ratio, histologic tissue injury score and tissue myeloperoxidase activity as well as BAL fluid total cell count in the contaminated lung. Tumor necrosis factor-alfa concentrations in BAL fluid did not however differ significantly. Furthermore, in the meconium-instilled lungs the tissue and lavage fluid catalytic activity of phospholipase A2 (PLA2) and tissue PLA2 group-I and group-II concentrations were significantly elevated. Although BAL fluid catalytic activity of PLA2 was moderately increased also in the meconium noninstilled lung, significant inflammatory injury in this lung was absent. The results thus indicate that meconium aspiration induces severe local inflammation and lung injury, but significant generalized pulmonary inflammatory damage in the pathogenesis of meconium aspiration syndrome is unlikely.
Collapse
Affiliation(s)
- Kalle Korhonen
- Research Centre of Applied and Preventive Cardiovascular Medicine (CAPC), Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
BACKGROUND Meconium aspiration syndrome may cause severe respiratory distress in the newborn infant, with an associated high morbidity and mortality. A chemical pneumonitis is believed to occur secondary to bile, bile acids and pancreatic secretions contained in meconium. It has therefore been hypothesised that corticosteroids may be of benefit in the management of this condition through their anti-inflammatory properties. OBJECTIVES The objective of this review was to determine whether steroid therapy for meconium aspiration syndrome decreases the morbidity and mortality associated with this condition without adverse effects. SEARCH STRATEGY Searches were made of PREMEDLINE and MEDLINE from 1966 to April 2003, CINAHL back to 1982, Current Contents back to 1998, The Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, Issue 1, 2003) and Oxford Database of Perinatal Trials. The search included cross-referencing of previous reviews, and a review of abstracts, conference and symposia proceedings published in Pediatric Research from 1993 to 2003. SELECTION CRITERIA Randomised controlled trials and quasi-randomised trials comparing steroid treatment to no steroid treatment for neonates with meconium aspiration syndrome were considered for this review. DATA COLLECTION AND ANALYSIS The methodological quality of each trial was assessed independently by each author. Data were extracted, analysed and results reviewed independently by each author. Meta-analysis was performed with RevMan 4.2, using the fixed effects model. Mean difference (MD) and weighted mean differences (WMD) with 95% confidence intervals in brackets for continuous variables and Relative Risk (RR) with 95% confidence intervals for categorical data were reported. MAIN RESULTS Three randomised controlled trials were identified. Two trials, by Wu 1999 (50 participants) and Yeh 1977 (35 participants), were included in the review. The trial by Davey 1995, as yet unpublished, was excluded from this review as insufficient information about methodology and results were available. On meta-analysis, there was no significant reduction in mortality [typical RR 0.95 (0.20, 4.58)]. A small but significant increase in duration of oxygen therapy was seen with the use of steroids [WMD 30.0 hours (8.4, 51.6)]. There was no significant difference in duration of hospital stay in the study by Wu 1999 [MD 0.00 days (-3.09, 3.09)]. Duration of mechanical ventilation was reported by Wu 1999 with no significant difference seen [MD -1.10 days (-2.79, 0.59)]. Incidence of air leak was reported by Yeh 1977 with no significant difference detected [RR 0.64 (0.18, 2.26)]. Long-term outcome was not reported in either of the two studies. REVIEWER'S CONCLUSIONS At present, there is insufficient evidence to assess the effects of steroid therapy in the management of meconium aspiration syndrome. A further large randomised controlled trial assessing potential benefits and harm would be required to determine its role.
Collapse
Affiliation(s)
- Meredith C Ward
- Royal Hospital for WomenDepartment of NeonatologyHigh StRandwick, SydneyNSWAustralia
| | - John KH Sinn
- Royal North Shore HospitalNeonatal UnitLevel 5, Douglas BuildingPacific HwySt LeonardsNew South WalesAustralia2065
| | | |
Collapse
|
20
|
Tølløfsrud PA, Medbø S, Solas AB, Drevon CA, Saugstad OD. Albumin mixed with meconium attenuates pulmonary dysfunction in a newborn piglet model with meconium aspiration. Pediatr Res 2002; 52:545-53. [PMID: 12357049 DOI: 10.1203/00006450-200210000-00014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We hypothesized that lipids and bile acids in meconium may induce pulmonary insufficiency in newborns. Because albumin may bind these components we studied the effect of albumin on meconium-induced lung injury in piglets. We measured concentration of FFA in the meconium (110 mg dry weight/mL) and added albumin to provide a molar FFA to albumin ratio of 1:1. Newborn piglets, 0-2 d of age, artificially ventilated and exposed to hypoxemia by ventilation with 8% O2, were randomized to group A receiving meconium (n = 12) or group B receiving meconium + albumin (n = 12), 3 mL/kg intratracheally. The animals were reoxygenated for 8 h. Reoxygenation was started when mean blood pressure was <20 mm Hg or base excess was <-20 mM. Pulmonary function was assessed in parallel with pulmonary hemodynamics. From the start of reoxygenation and the next 8 h we found a significant difference (by ANOVA) between the two groups in oxygenation index (p = 0.005), with an increase from 1.6 +/- 0.2 to 6.1 +/- 6.8 (p = 0.04) in the meconium group and from 1.8 +/- 0.3 to 3.1 +/- 3.1 (NS) in meconium + albumin group. There were also significant differences (by ANOVA) between the groups in favor of the treatment group concerning need of inspired fraction of O2, mean airway pressure, dynamic compliance of the respiratory system, time constant, ventilation index, and pulmonary vascular resistance. In conclusion, albumin given concurrently with meconium significantly reduced detrimental effects of meconium aspiration in the lungs of newborn piglets.
Collapse
|
21
|
Khan AM, Lally KP, Larsen GL, Colasurdo GN. Enhanced release of thromboxane A(2) after exposure of human airway epithelial cells to meconium. Pediatr Pulmonol 2002; 33:111-6. [PMID: 11802247 DOI: 10.1002/ppul.10058] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Meconium aspiration syndrome (MAS) is a cause of significant morbidity and mortality in the perinatal period. Despite the clinical relevance of MAS, its pathogenesis is poorly understood. Epithelial cell-derived prostanoids are involved in the regulation of several cellular functions within the lung, including the control of tone and reactivity of airway and vascular smooth muscle. In this study, we evaluated whether exposure to meconium affects the metabolic function of human airway epithelial cells. Monolayers of A549 cells, a transformed human epithelial cell line, were incubated with various concentrations of meconium. Control cells were incubated with serum-free medium in a similar manner. The supernatant fluid was removed at various time points and assayed for thromboxane A(2) (TXA(2)) production. The latter was accomplished by measuring its immediate and stable metabolite thromboxane B(2), using an enzyme-linked immunosorbent assay (ELISA). In selected experiments, the modulatory effects of indomethacin (10(-6) M), dexamethasone (10(-6) M), and L-nitroarginine methyl ester (L-NAME, 10(-6) M) on TXA(2) production were evaluated. Results were expressed in terms of pg/mg protein (mean +/- SE). We found that exposure to meconium produced a significant release of TXA(2) from A549 cells. Indomethacin, dexamethasone, and in part, L-NAME inhibited meconium-induced release of TXA(2). Our findings demonstrate that meconium enhances the production of thromboxanes from A549 cells, suggesting that airway epithelial cells and their metabolic products may play an important role in the pathogenesis of MAS.
Collapse
Affiliation(s)
- Amir M Khan
- Department of Pediatrics, University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|