1
|
Carter SWD, Biswas A, Watson HRS, Ip HLC, Fee EL, Seah KYM, Kumagai Y, Amin Z, Choolani MA, Jobe AH, Illanes SE, Kemp MW. Addressing the long-term risks of administering antenatal steroids. Expert Opin Pharmacother 2025; 26:617-629. [PMID: 40033629 DOI: 10.1080/14656566.2025.2475190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
INTRODUCTION A single course of antenatal steroid (ANS) therapy is standard of care for women at risk of preterm birth, reducing the risk of neonatal respiratory distress syndrome, neonatal morbidity, and mortality. An unresolved challenge relates to the potential risk of adverse long-term effects, and how these risks might be balanced with therapeutic benefit. AREAS COVERED We outline key concepts in glucocorticoid signaling, pharmacokinetics/pharmacodynamics, and clinical use before presenting data on the potential long-term harms of ANS therapy. EXPERT OPINION Our assessment is that: i) Currently used, high dose ANS regimens can induce multi-system changes in the fetus that alter growth and development, potentially increasing long-term disease risk; and ii) relative risks likely increase proportionally to the magnitude and duration of steroid exposure, in late preterm and term ANS use, and in off-target treatments. A single course of ANS therapy to at risk women between 24- and 34-weeks' gestation is well justified. Efforts should be made to improve dosing and patient selection. At periviable gestations, the high immediate risk of serious disease or death justifies modest long-term risks. At late preterm and term gestations, where steroids do not provide notable survival or health benefits, supporting routine ANS use is more difficult.
Collapse
Affiliation(s)
- Sean W D Carter
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Women and Infants Research Foundation, Perth, Western, Australia
| | - Agnihotri Biswas
- Department of Neonatology, Khoo-Teck Puat National University Children's Medical Institute, National University Hospital, Singapore
| | - Hannah R S Watson
- Women and Infants Research Foundation, Perth, Western, Australia
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
| | - Han Lin Chelsea Ip
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Erin L Fee
- Women and Infants Research Foundation, Perth, Western, Australia
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
| | - Kay Yi Michelle Seah
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yusaku Kumagai
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Zubair Amin
- Department of Neonatology, Khoo-Teck Puat National University Children's Medical Institute, National University Hospital, Singapore
| | - Mahesh A Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alan H Jobe
- Division of Pulmonary Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Sebastian E Illanes
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Matthew W Kemp
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Women and Infants Research Foundation, Perth, Western, Australia
| |
Collapse
|
2
|
Berger MM, Macholz F, Schmidt P, Fried S, Perz T, Dankl D, Niebauer J, Bärtsch P, Mairbäurl H, Sareban M. Inhaled Budesonide Does Not Affect Hypoxic Pulmonary Vasoconstriction at 4559 Meters of Altitude. High Alt Med Biol 2018; 19:52-59. [PMID: 29298124 DOI: 10.1089/ham.2017.0113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Berger, Marc Moritz, Franziska Macholz, Peter Schmidt, Sebastian Fried, Tabea Perz, Daniel Dankl, Josef Niebauer, Peter Bärtsch, Heimo Mairbäurl, and Mahdi Sareban. Inhaled budesonide does not affect hypoxic pulmonary vasoconstriction at 4559 meters of altitude. High Alt Med Biol 19:52-59, 2018.-Oral intake of the corticosteroid dexamethasone has been shown to lower pulmonary artery pressure (PAP) and to prevent high-altitude pulmonary edema. This study tested whether inhalation of the corticosteroid budesonide attenuates PAP and right ventricular (RV) function after rapid ascent to 4559 m. In this prospective, randomized, double-blind, and placebo-controlled trial, 50 subjects were randomized into three groups to receive budesonide at 200 or 800 μg twice/day (n = 16 and 17, respectively) or placebo (n = 17). Inhalation was started 1 day before ascending from 1130 to 4559 m within 20 hours. Systolic PAP (SPAP) and RV function were assessed by transthoracic echocardiography at low altitude (423 m) and after 7, 20, 32, and 44 hours at 4559 m. Ascent to high altitude increased SPAP about 1.7-fold (p < 0.001), whereas RV function was preserved. There was no difference in SPAP and RV function between groups at low and high altitude (all p values >0.10). Capillary partial pressure of oxygen (PO2) and carbon dioxide as well as the alveolar to arterial PO2 difference were decreased at high altitude but not affected by budesonide. Prophylactic inhalation of budesonide does not attenuate high-altitude-induced pulmonary vasoconstriction and RV function after rapid ascent to 4559 m.
Collapse
Affiliation(s)
- Marc Moritz Berger
- 1 Department of Anesthesiology, Perioperative and General Critical Care Medicine, University Hospital Salzburg, Paracelsus Medical University , Salzburg, Austria .,2 Department of Anesthesiology, University Hospital Heidelberg , Heidelberg, Germany
| | - Franziska Macholz
- 1 Department of Anesthesiology, Perioperative and General Critical Care Medicine, University Hospital Salzburg, Paracelsus Medical University , Salzburg, Austria
| | - Peter Schmidt
- 1 Department of Anesthesiology, Perioperative and General Critical Care Medicine, University Hospital Salzburg, Paracelsus Medical University , Salzburg, Austria
| | - Sebastian Fried
- 3 Division of Sports Medicine, Department of Internal Medicine VII, University Hospital Heidelberg , Heidelberg, Germany
| | - Tabea Perz
- 4 University Institute of Sports Medicine, Prevention and Rehabilitation; Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University , Salzburg, Austria
| | - Daniel Dankl
- 1 Department of Anesthesiology, Perioperative and General Critical Care Medicine, University Hospital Salzburg, Paracelsus Medical University , Salzburg, Austria
| | - Josef Niebauer
- 4 University Institute of Sports Medicine, Prevention and Rehabilitation; Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University , Salzburg, Austria
| | - Peter Bärtsch
- 3 Division of Sports Medicine, Department of Internal Medicine VII, University Hospital Heidelberg , Heidelberg, Germany
| | - Heimo Mairbäurl
- 3 Division of Sports Medicine, Department of Internal Medicine VII, University Hospital Heidelberg , Heidelberg, Germany .,5 Translational Lung Research Center (TLRC), German Center for Lung Research (DZL) , Heidelberg, Germany
| | - Mahdi Sareban
- 4 University Institute of Sports Medicine, Prevention and Rehabilitation; Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University , Salzburg, Austria
| |
Collapse
|
3
|
Abstract
We distinguish two forms of high altitude illness, a cerebral form called acute mountain sickness and a pulmonary form called high-altitude pulmonary edema (HAPE). Individual susceptibility is the most important determinant for the occurrence of HAPE. The hallmark of HAPE is an excessively elevated pulmonary artery pressure (mean pressure 36-51 mm Hg), caused by an inhomogeneous hypoxic pulmonary vasoconstriction which leads to an elevated pulmonary capillary pressure and protein content as well as red blood cell-rich edema fluid. Furthermore, decreased fluid clearance from the alveoli may contribute to this noncardiogenic pulmonary edema. Immediate descent or supplemental oxygen and nifedipine or sildenafil are recommended until descent is possible. Susceptible individuals can prevent HAPE by slow ascent, average gain of altitude not exceeding 300 m/d above an altitude of 2500 m. If progressive high altitude acclimatization would not be possible, prophylaxis with nifedipine or tadalafil for long sojourns at high altitude or dexamethasone for a short stay of less then 5 days should be recommended.
Collapse
|
4
|
Mizuno M, Takeba Y, Matsumoto N, Tsuzuki Y, Asoh K, Takagi M, Kobayashi S, Yamamoto H. Antenatal glucocorticoid therapy accelerates ATP production with creatine kinase increase in the growth-enhanced fetal rat heart. Circ J 2009; 74:171-80. [PMID: 19952437 DOI: 10.1253/circj.cj-09-0311] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Previous study has demonstrated the increase of several cardiac function-related proteins, including creatine kinase (CK) as an important enzyme in the process of ATP synthesis in the fetal heart of rats administered glucocorticoid (GC) antenatally. In the present study the effect of antenatal GC administration on the CK expression in fetal and neonatal hearts was demonstrated. METHODS AND RESULTS Dexamethasone was administered to pregnant rats on days 19 and 20 of gestation. The mRNA levels of the CK isoforms, CK-M and Mi-CK, in 21-day-old fetal and 1-day-old neonatal hearts were significantly increased after antenatal GC administration. CK protein levels were also increased in both cultured cardiomyocytes and the mitochondria of the hearts. Uptake of 5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethyl-benzimidazolocarbocyanine iodide by mitochondria was significantly increased. An increased ATP level accompanied the CK increase in the neonatal hearts. Furthermore, in vitro these effects were mediated though the GC receptor of cardiomyocytes. Peroxisome proliferator-activated receptor gamma as the upstream transcription factor of CK was significantly increased in fetal hearts. CONCLUSIONS These results suggest that antenatal GC administration accelerates ATP synthesis through increased CK and may contribute to maturation of the premature heart so that it is ready for preterm delivery. (Circ J 2010; 74: 171 - 180).
Collapse
Affiliation(s)
- Masanori Mizuno
- Department of Pediatrics, St Marianna University School of Medicine, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Arima M, Kumai T, Asoh K, Takeba Y, Murano K, Goto K, Tsuzuki Y, Mizuno M, Kojima T, Kobayashi S, Koitabashi Y. Effects of Antenatal Dexamethasone on Antioxidant Enzymes and Nitric Oxide Synthase in the Rat Lung. J Pharmacol Sci 2008; 106:242-8. [DOI: 10.1254/jphs.fp0060844] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
6
|
Stream JO, Grissom CK. Update on High-Altitude Pulmonary Edema: Pathogenesis, Prevention, and Treatment. Wilderness Environ Med 2008; 19:293-303. [DOI: 10.1580/07-weme-rev-173.1] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Suzuki K, Hooper SB, Wallace MJ, Probyn ME, Harding R. Effects of antenatal corticosteroid treatment on pulmonary ventilation and circulation in neonatal lambs with hypoplastic lungs. Pediatr Pulmonol 2006; 41:844-54. [PMID: 16850430 DOI: 10.1002/ppul.20453] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Our aim was to determine whether antenatal corticosteroids improve perinatal adaptation of the pulmonary circulation in lambs with lung hypoplasia (LH). LH was induced in 12 ovine fetuses between 105 and 140 days gestation (term approximately 147 days); in 6 of these the ewe was given a single dose of betamethasone (11.4 mg im) 24 hr before delivery (LH + B). All lambs, including a control group (n = 6), were delivered at approximately 140 days and ventilated for 2 hr during which arterial pressures, pulmonary blood flow (PBF), and ventilating pressure and flow were recorded. During ventilation, respiratory system compliance was lower in both LH + B and LH groups than in controls. Pulmonary vascular resistance (PVR) was lower in LH + B lambs than in LH lambs and similar to controls; PBF was reduced in LH lambs but was restored to control levels by betamethasone. The mean density of small arteries of LH + B lambs was similar to that of LH lambs (P = 0.06) and lower than in controls; the thickness of the media of small pulmonary arteries from LH + B lambs was similar to that in LH lambs and thicker than in controls. VEGF mRNA levels were not different between groups. PDGF mRNA levels in LH + B lambs were higher than in LH lambs; a similar trend (P = 0.06) was seen for PECAM-1. SP-C mRNA levels were greater in both LH and LH + B lambs than in controls. Effects of betamethasone were greater on indices of pulmonary circulation than ventilation. We conclude that a single dose of maternal betamethasone 24 hr prior to birth has significant favorable effects on the postnatal adaptation of the pulmonary circulation in lambs with LH.
Collapse
Affiliation(s)
- Keiji Suzuki
- Department of Physiology, Monash University, Victoria, Australia
| | | | | | | | | |
Collapse
|
8
|
Abstract
Neonatal chronic lung disease (CLD) is the major long-term pulmonary complication of preterm birth affecting about 20% of infants who need mechanical ventilation. CLD is the result of abnormal repair processes following inflammatory lung injury that lead to remodeling of the lung. Inflammation may be initiated by a variety of stimuli including mechanical ventilation, oxygen toxicity and infection. The resultant neutrophil chemotaxis and degranulation leads to the release of enzymes such as matrix metalloproteinases that can cause proteolysis of the lung extracellular matrix. Abnormal healing with remodeling leads to poorly compliant lungs with reduced capacity for gas exchange. Drugs can influence the normal process of lung modeling or remodeling. Fetal lung development can be influenced by glucocorticosteroids and inflammation. Both can cause abnormal lung modeling with fewer, larger alveoli and accelerated lung maturation, which confers benefits in terms of reduced morbidity and mortality from respiratory distress syndrome but potentially increases the risk of subsequent lung injury. Antioxidants, such as retinol (vitamin A), administered post-natally may reduce the effects of oxidative stress leading to a modest reduction in CLD but they require repeated intramuscular injections. Postnatal glucocorticosteroid therapy can modify the lung inflammatory response and reduce CLD but it can also have detrimental effects on the developing brain and lung, thereby creating a clinical dilemma for neonatologists. Proteinase inhibitors may be a rational therapy but more research is needed before they can be accepted as a treatment for preterm neonates.'Modeling' is defined as planning or forming that follows a set pattern. The term is used to describe the normal process of lung growth and development that culminates in mature branching alveolar air spaces surrounded by a network of capillaries. Normal lung modeling occurs under a variety of genetic and hormonal influences that can be altered, leading to abnormal patterns of growth. 'Remodeling' is defined as altering the structure of or re-making and, in the case of the lung, is used to describe the abnormal patterns of lung growth that occur after lung injury. Modeling and remodeling of the lungs occur to an extent throughout life but never more rapidly than during the fetal and early neonatal periods, and factors that influence this process may lead to development of neonatal CLD. Some of the factors involved in normal and abnormal lung modeling and inflammation and glucocorticosteroid-induced remodeling in the perinatal period, in the context of neonatal CLD, are reviewed with considerations of how various drugs may influence these processes.
Collapse
Affiliation(s)
- David G Sweet
- Regional Neonatal Unit, Royal Maternity Hospital, Belfast, Northern Ireland.
| | | |
Collapse
|
9
|
Abstract
A significant number of infants are born prematurely each year, many of whom will develop respiratory disease and require ventilation. A substantial number of these infants will die and many of the survivors will subsequently develop chronic inflammatory lung disease. Administration of corticosteroids to women prior to a premature delivery is associated with a significant reduction in mortality and in the incidence of respiratory distress syndrome and intracranial haemorrhage in their infants once born. Postnatal administration of corticosteroids to the infant who develops chronic lung disease has been widely practised for many years. Recent meta-analyses have suggested that benefit may be limited. Treatment is also associated with a range of different side-effects but it has been assumed that the cost-benefit ratio favoured treatment. Recent evidence of permanent and highly significant long-term adverse effects has questioned the validity of this judgement.
Collapse
Affiliation(s)
- Alan T Gibson
- North Trent Neonatal Intensive Care Unit, Jessop Wing, Sheffield Teaching Hospitals NHS Trust, Tree Root Walk, Sheffield S10 2SF, UK.
| |
Collapse
|
10
|
Lin CH, Tsai ML, Chou SJ, Yeh TF. Effect of antenatal dexamethasone on the expression of endothelial nitric oxide synthase in the lungs of postnatal pups. Semin Perinatol 2001; 25:94-9. [PMID: 11339671 DOI: 10.1053/sper.2001.23193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Activities of endothelial nitric oxide synthase (eNOS) are developmentally regulated and its presence at birth may play a role in the transition of cardiopulmonary circulation. Antenatal dexamethasone (Dex) therapy accelerates fetal lung maturation. We speculate that Dex therapy may enhance pulmonary eNOS protein expression in the newborn. This article examines whether antenatal Dex therapy affected the expression of eNOS in the lungs of rat pups in the postnatal period. Time-dated pregnant Wistar rats were subjected to 2 doses of Dex (0.8 mg/kg, intramuscularly, daily) or equivalent volume of normal saline at the 18th and 19th gestational day and delivered naturally. The newborn pups were randomly assigned to 4 groups by age: days 1, 3, 5, and 7. After homogenization, abundance of eNOS protein in lungs was determined by Western blot analysis. There were 7 dams in each group. Mean body weights of the pups in the Dex group were lighter than those in the control at birth and remained stunted up to day 7 (5.68+/-0.47 g v 6.34+/-0.47 g, P <.01). However, there were no differences in wet lung weights and lung/body weight ratios between both groups in the study period. Abundance of eNOS protein expression decreased in both the control and Dex groups (P < .01). Pups that received antenatal Dex had 39% more in abundance of eNOS protein expression in lungs when compared to the control on day 1 (P < .05) but there were no differences between both groups from day 3 to 7. We conclude that antenatal Dex therapy enhances the abundance of eNOS protein expression in the lung at birth and could be a factor in improving respiratory functions in infants who received antenatal steroid therapy.
Collapse
Affiliation(s)
- C H Lin
- Department of Pediatrics and Physiology, Medical College National Cheng Kung University, Tainan, Taiwan
| | | | | | | |
Collapse
|