1
|
Panneflek TJR, Kuypers KLAM, Polglase GR, Derleth DP, Dekker J, Hooper SB, van den Akker T, Pas ABT. The influence of chorioamnionitis on respiratory drive and spontaneous breathing of premature infants at birth: a narrative review. Eur J Pediatr 2024; 183:2539-2547. [PMID: 38558311 PMCID: PMC11098929 DOI: 10.1007/s00431-024-05508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 03/02/2024] [Indexed: 04/04/2024]
Abstract
Most very premature infants breathe at birth but require respiratory support in order to stimulate and support their breathing. A significant proportion of premature infants are affected by chorioamnionitis, defined as an umbrella term for antenatal inflammation of the foetal membranes and umbilical vessels. Chorioamnionitis produces inflammatory mediators that potentially depress the respiratory drive generated in the brainstem. Such respiratory depression could maintain itself by delaying lung aeration, hampering respiratory support at birth and putting infants at risk of hypoxic injury. This inflammatory-mediated respiratory depression may contribute to an association between chorioamnionitis and increased requirement of neonatal resuscitation in premature infants at birth. This narrative review summarises mechanisms on how respiratory drive and spontaneous breathing could be influenced by chorioamnionitis and provides possible interventions to stimulate spontaneous breathing. Conclusion: Chorioamnionitis could possibly depress respiratory drive and spontaneous breathing in premature infants at birth. Interventions to stimulate spontaneous breathing could therefore be valuable. What is Known: • A large proportion of premature infants are affected by chorioamnionitis, antenatal inflammation of the foetal membranes and umbilical vessels. What is New: • Premature infants affected by chorioamnionitis might be exposed to higher concentrations of respiratory drive inhibitors which could depress breathing at birth. • Premature infants affected by chorioamnionitis seem to be associated with a higher and more extensive requirement of resuscitation at birth.
Collapse
Affiliation(s)
- Timothy J R Panneflek
- Division of Neonatology, Department of Paediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, P.O. Box 9600, 2300 RC, Leiden, Netherlands.
| | - Kristel L A M Kuypers
- Division of Neonatology, Department of Paediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, P.O. Box 9600, 2300 RC, Leiden, Netherlands
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Douglas P Derleth
- Department of Paediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Janneke Dekker
- Division of Neonatology, Department of Paediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, P.O. Box 9600, 2300 RC, Leiden, Netherlands
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Thomas van den Akker
- Department of Obstetrics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Arjan B Te Pas
- Division of Neonatology, Department of Paediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, P.O. Box 9600, 2300 RC, Leiden, Netherlands
| |
Collapse
|
2
|
Mani S, Mirza H, Ziegler J, Chandrasekharan P. Early Pulmonary Hypertension in Preterm Infants. Clin Perinatol 2024; 51:171-193. [PMID: 38325940 PMCID: PMC10850766 DOI: 10.1016/j.clp.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pulmonary hypertension (PH) in preterm neonates has multifactorial pathogenesis with unique characteristics. Premature surfactant-deficient lungs are injured following exposure to positive pressure ventilation and high oxygen concentrations resulting in variable phenotypes of PH. The prevalence of early PH is variable and reported to be between 8% and 55% of extremely preterm infants. Disruption of the lung development and vascular signaling pathway could lead to abnormal pulmonary vascular transition. The management of early PH and the off-label use of selective pulmonary vasodilators continue to be controversial.
Collapse
Affiliation(s)
- Srinivasan Mani
- Section of Neonatology, Department of Pediatrics, The University of Toledo/ ProMedica Russell J. Ebeid Children's Hospital, Toledo, OH 43606, USA
| | - Hussnain Mirza
- Section of Neonatology, Department of Pediatrics, Advent Health for Children/ UCF College of Medicine, Orlando, FL 32408, USA
| | - James Ziegler
- Division of Cardiovascular Diseases, Department of Pediatrics, Hasbro Children's Hospital/ Brown University, Providence, RI 02903, USA
| | - Praveen Chandrasekharan
- Division of Neonatology, Department of Pediatrics, Jacobs School of Medicine & Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 32408, USA; Oishei Children's Hospital, 818 Ellicott Street, Buffalo, NY 14203, USA.
| |
Collapse
|
3
|
Abstract
A persistent left-to-right shunt through a patent ductus arteriosus (PDA) increases the rate of hydrostatic fluid filtration into the lung's interstitium, impairs pulmonary mechanics, and prolongs the need for mechanical ventilation. In preclinical trials, pharmacologic PDA closure leads to improved alveolarization and minimizes the impaired postnatal alveolar development that is the pathologic hallmark of bronchopulmonary dysplasia (BPD). Although routine prophylactic treatment of a PDA on the day of birth does not appear to offer any more protection against BPD than delaying treatment for 2-3 days, recent evidence from quality improvement trials suggests that early pharmacologic treatment decreases the incidence of BPD compared with a treatment approach that exposes infants to a moderate-to-large PDA shunt for the first 7-10 days after birth. After the first week, routine pharmacologic treatment (compared with continued PDA exposure) no longer appears to alter the course of BPD development. Evidence from epidemiologic, preclinical, and randomized controlled trials demonstrate that early ductus ligation is an independent risk factor for the development of BPD.
Collapse
Affiliation(s)
- Ronald I Clyman
- Cardiovascular Research Institute, Departments of Pediatrics and the Cardiovascular Research Institute, University of California, San Francisco, UCSF Box 1346, HSW 1408, 513 Parnassus Ave, San Francisco, CA 94143-1346.
| |
Collapse
|
4
|
Yum SK, Kim MS, Kwun Y, Moon CJ, Youn YA, Sung IK. Impact of histologic chorioamnionitis on pulmonary hypertension and respiratory outcomes in preterm infants. Pulm Circ 2018; 8:2045894018760166. [PMID: 29480140 PMCID: PMC5843110 DOI: 10.1177/2045894018760166] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We aimed to evaluate the association between the presence of histologic chorioamnionitis (HC) and development of pulmonary hypertension (PH) during neonatal intensive care unit (NICU) stay. Data of preterm infants born at 32 weeks of gestation or less were reviewed. The development of PH and other respiratory outcomes were compared according to the presence of HC. Potential risk factors associated with the development of PH during NICU stay were used for multivariable logistic regression analysis. A total of 188 infants were enrolled: 72 in the HC group and 116 in the no HC group. The HC group infants were born at a significantly shorter gestational age and lower birthweight, with a greater proportion presenting preterm premature rupture of membrane (pPROM) > 18 h before delivery. More infants in the HC group developed pneumothorax (P = 0.008), and moderate and severe bronchopulmonary dysplasia (BPD; P = 0.001 and P = 0.006, respectively). PH in the HC group was significantly more frequent compared to the no HC group (25.0% versus 8.6%, P = 0.002). Based on a multivariable logistic regression analysis, birthweight (P = 0.009, odds ratio [OR] = 0.997, 95% confidence interval [CI] = 0.995–0.999), the presence of HC (P = 0.047, OR = 2.799, 95% CI = 1.014–7.731), and duration of invasive mechanical ventilation (MV) > 14 days (P = 0.015, OR = 8.036, 95% CI = 1.051–43.030) were significant factors. The presence of HC and prolonged invasive MV in infants with lower birthweight possibly synergistically act against preterm pulmonary outcomes and leads to the development of PH. Verification of this result and further investigation to establish effective strategies to prevent or ameliorate these adverse outcomes are needed.
Collapse
Affiliation(s)
- Sook Kyung Yum
- Division of Neonatology, Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Min-Sung Kim
- Division of Neonatology, Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoojin Kwun
- Division of Neonatology, Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Cheong-Jun Moon
- Division of Neonatology, Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young-Ah Youn
- Division of Neonatology, Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - In Kyung Sung
- Division of Neonatology, Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
5
|
Abstract
Premature infants suffer significant respiratory morbidity during infancy with long-term negative consequences on health, quality of life, and health care costs. Enhanced susceptibility to a variety of infections and inflammation play a large role in early and prolonged lung disease following premature birth, although the mechanisms of susceptibility and immune dysregulation are active areas of research. This article reviews aspects of host-pathogen interactions and immune responses that are altered by preterm birth and that impact chronic respiratory morbidity in these children.
Collapse
Affiliation(s)
- Gloria S. Pryhuber
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 651, Rochester, NY 14642, USA,Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA,Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 651, Rochester, NY 14642.
| |
Collapse
|
6
|
Willems MGM, Ophelders DRMG, Nikiforou M, Jellema RK, Butz A, Delhaas T, Kramer BW, Wolfs TGAM. Systemic interleukin-2 administration improves lung function and modulates chorioamnionitis-induced pulmonary inflammation in the ovine fetus. Am J Physiol Lung Cell Mol Physiol 2015; 310:L1-7. [PMID: 26519206 DOI: 10.1152/ajplung.00289.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/23/2015] [Indexed: 01/30/2023] Open
Abstract
Chorioamnionitis, an inflammatory reaction of the fetal membranes to microbes, is an important cause of preterm birth and associated with inflammation-driven lung injury. However, inflammation in utero overcomes immaturity of the premature lung by inducing surfactant lipids and lung gas volume. Previously, we found that lipopolysaccharide (LPS)-induced chorioamnionitis resulted in pulmonary inflammation with increased effector T cells and decreased regulatory T cell (Treg) numbers. Because Tregs are crucial for immune regulation, we assessed the effects of interleukin (IL)-2-driven selective Treg expansion on the fetal lung in an ovine chorioamnionitis model. Instrumented fetuses received systemic prophylactic IL-2 treatment [118 days gestational age (dGA)] with or without subsequent exposure to intra-amniotic LPS (122 dGA). Following delivery at 129 dGA (term 147 dGA), pulmonary and systemic inflammation, morphological changes, lung gas volume, and phospholipid concentration were assessed. IL-2 pretreatment increased the FoxP3(+)/CD3(+) ratio, which was associated with reduced CD3-positive cells in the fetal lungs of LPS-exposed animals. Prophylactic IL-2 treatment did not prevent pulmonary accumulation of myeloperoxidase- and PU.1-positive cells or elevation of bronchoalveolar lavage fluid IL-8 and systemic IL-6 concentrations in LPS-exposed animals. Unexpectedly, IL-2 treatment improved fetal lung function of control lambs as indicated by increased disaturated phospholipids and improved lung gas volume. In conclusion, systemic IL-2 treatment in utero preferentially expanded Tregs and improved lung gas volume and disaturated phospholipids. These beneficial effects on lung function were maintained despite the moderate immunomodulatory effects of prophylactic IL-2 in the course of chorioamnionitis.
Collapse
Affiliation(s)
| | - Daan R M G Ophelders
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; and
| | - Maria Nikiforou
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; and
| | - Reint K Jellema
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; and
| | - Anke Butz
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tammo Delhaas
- Department of BioMedical Engineering, Maastricht University Medical Center, Maastricht, The Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands; GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; and
| | - Tim G A M Wolfs
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands; GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands;
| |
Collapse
|
7
|
Hilgendorff A, Reiss I, Ehrhardt H, Eickelberg O, Alvira CM. Chronic lung disease in the preterm infant. Lessons learned from animal models. Am J Respir Cell Mol Biol 2014; 50:233-45. [PMID: 24024524 DOI: 10.1165/rcmb.2013-0014tr] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neonatal chronic lung disease, also known as bronchopulmonary dysplasia (BPD), is the most common complication of premature birth, affecting up to 30% of very low birth weight infants. Improved medical care has allowed for the survival of the most premature infants and has significantly changed the pathology of BPD from a disease marked by severe lung injury to the "new" form characterized by alveolar hypoplasia and impaired vascular development. However, increased patient survival has led to a paucity of pathologic specimens available from infants with BPD. This, combined with the lack of a system to model alveolarization in vitro, has resulted in a great need for animal models that mimic key features of the disease. To this end, a number of animal models have been created by exposing the immature lung to injuries induced by hyperoxia, mechanical stretch, and inflammation and most recently by the genetic modification of mice. These animal studies have 1) allowed insight into the mechanisms that determine alveolar growth, 2) delineated factors central to the pathogenesis of neonatal chronic lung disease, and 3) informed the development of new therapies. In this review, we summarize the key findings and limitations of the most common animal models of BPD and discuss how knowledge obtained from these studies has informed clinical care. Future studies should aim to provide a more complete understanding of the pathways that preserve and repair alveolar growth during injury, which might be translated into novel strategies to treat lung diseases in infants and adults.
Collapse
Affiliation(s)
- Anne Hilgendorff
- 1 Department of Perinatology Grosshadern, Ludwig-Maximilian-University, Munich, Germany
| | | | | | | | | |
Collapse
|
8
|
Polglase GR, Tingay DG, Bhatia R, Berry CA, Kopotic RJ, Kopotic CP, Song Y, Szyld E, Jobe AH, Pillow JJ. Pressure- versus volume-limited sustained inflations at resuscitation of premature newborn lambs. BMC Pediatr 2014; 14:43. [PMID: 24529320 PMCID: PMC3937019 DOI: 10.1186/1471-2431-14-43] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 02/05/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sustained inflations (SI) are advocated for the rapid establishment of FRC after birth in preterm and term infants requiring resuscitation. However, the most appropriate way to deliver a SI is poorly understood. We investigated whether a volume-limited SI improved the establishment of FRC and ventilation homogeneity and reduced lung inflammation/injury compared to a pressure-limited SI. METHODS 131 d gestation lambs were resuscitated with either: i) pressure-limited SI (PressSI: 0-40 cmH2O over 5 s, maintained until 20 s); or ii) volume-limited SI (VolSI: 0-15 mL/kg over 5 s, maintained until 20 s). Following the SI, all lambs were ventilated using volume-controlled ventilation (7 mL/kg tidal volume) for 15 min. Lung mechanics, regional ventilation distribution (electrical impedance tomography), cerebral tissue oxygenation index (near infrared spectroscopy), arterial pressures and blood gas values were recorded regularly. Pressure-volume curves were performed in-situ post-mortem and early markers of lung injury were assessed. RESULTS Compared to a pressure-limited SI, a volume-limited SI had increased pressure variability but reduced volume variability. Each SI strategy achieved similar end-inflation lung volumes and regional ventilation homogeneity. Volume-limited SI increased heart-rate and arterial pressure faster than pressure-limited SI lambs, but no differences were observed after 30 s. Volume-limited SI had increased arterial-alveolar oxygen difference due to higher FiO2 at 15 min (p = 0.01 and p = 0.02 respectively). No other inter-group differences in arterial or cerebral oxygenation, blood pressures or early markers of lung injury were evident. CONCLUSION With the exception of inferior oxygenation, a sustained inflation targeting delivery to preterm lambs of 15 mL/kg volume by 5 s did not influence physiological variables or early markers of lung inflammation and injury at 15 min compared to a standard pressure-limited sustained inflation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jane J Pillow
- Centre for Neonatal Research and Education, School of Paediatrics and Child Health, University of Western Australia, Perth, Australia.
| |
Collapse
|
9
|
Abstract
A persistent left-to-right shunt through a patent ductus arteriosus (PDA) increases the rate of hydrostatic fluid filtration into the lung's interstitium, impairs pulmonary mechanics, and prolongs the need for mechanical ventilation. In preclinical trials, pharmacologic PDA closure leads to improved alveolarization and minimizes the impaired postnatal alveolar development that is the pathologic hallmark of the "new bronchopulmonary dysplasia (BPD)". Although early pharmacologic closure of the PDA decreases the incidence of pulmonary hemorrhage, intraventricular hemorrhage, and the need for PDA ligation, there is little evidence from controlled, clinical trials to support or refute a causal role for the PDA in the development of BPD. However, evidence from epidemiologic, preclinical, and randomized controlled clinical trials demonstrate that early ductus ligation is an independent risk factor for the development of BPD and may directly contribute to the neonatal morbidities it is trying to prevent.
Collapse
Affiliation(s)
- Ronald I Clyman
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
10
|
Savasan ZA, Chaiworapongsa T, Romero R, Hussein Y, Kusanovic JP, Xu Y, Dong Z, Kim CJ, Hassan SS. Interleukin-19 in fetal systemic inflammation. J Matern Fetal Neonatal Med 2012; 25:995-1005. [PMID: 21767236 PMCID: PMC3383927 DOI: 10.3109/14767058.2011.605917] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The fetal inflammatory response syndrome (FIRS) is considered the fetal counterpart of the systemic inflammatory response syndrome (SIRS), which can be caused by infection and non-infection-related insults. Although the initial response is mediated by pro-inflammatory signals, the control of this response is achieved by anti-inflammatory mediators which are essential for the successful outcome of the affected individual. Interleukin (IL)-19 is capable of stimulating the production of IL-10, a major anti-inflammatory cytokine, and is a potent inducer of the T-helper 2 (Th2) response. The aim of this study was to determine if there is a change in umbilical cord plasma IL-19 and IL-10 concentrations in preterm neonates with and without acute funisitis, the histologic counterpart of FIRS. METHODS A case-control study was conducted including 80 preterm neonates born after spontaneous labor. Neonates were classified according to the presence (n = 40) or absence of funisitis (n = 40), which is the pathologic hallmark of FIRS. Neonates in each group were also matched for gestational age. Umbilical cord plasma IL-19 and IL-10 concentrations were determined by ELISA. RESULTS 1) The median umbilical cord plasma IL-19 concentration was 2.5-fold higher in neonates with funisitis than in those without funisitis (median 87 pg/mL; range 20.6-412.6 pg/mL vs. median 37 pg/mL; range 0-101.7 pg/mL; p < 0.001); 2) newborns with funisitis had a significantly higher median umbilical cord plasma IL-10 concentration than those without funisitis (median 4 pg/mL; range 0-33.5 pg/mL vs. median 2 pg/mL; range 0-13.8 pg/mL; p < 0.001); and 3) the results were similar when we included only patients with funisitis who met the definition of FIRS by umbilical cord plasma IL-6 concentrations ≥ 17.5 pg/mL (p < 0.001). CONCLUSION IL-19 and IL-10 are parts of the immunologic response of FIRS. A subset of fetuses with FIRS had high umbilical cord plasma IL-19 concentrations. In utero exposure to high systemic concentrations of IL-19 may reprogram the immune response.
Collapse
Affiliation(s)
- Zeynep Alpay Savasan
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, United States
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, United States
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, United States
| | - Youssef Hussein
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, United States
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, United States
- Department of Obstetrics and Gynecology, Pontificia Universidad Católica de Chile, Santiago, Chile and Center for Perinatal Research, Sótero del Río Hospital, Santiago, Chile
| | - Yi Xu
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, United States
| | - Zhong Dong
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, United States
| | - Chong Jai Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, United States
- Department of Pathology, Wayne State University, Detroit, MI, United States
| | - Sonia S Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, United States
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
11
|
Regional pulmonary inflammation in an endotoxemic ovine acute lung injury model. Respir Physiol Neurobiol 2012; 183:149-58. [PMID: 22728442 DOI: 10.1016/j.resp.2012.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 06/08/2012] [Accepted: 06/11/2012] [Indexed: 11/23/2022]
Abstract
The regional distribution of inflammation during acute lung injury (ALI) is not well known. In an ovine ALI model we studied regional alveolar inflammation, surfactant composition, and CT-derived regional specific volume change (sVol) and specific compliance (sC). 18 ventilated adult sheep received IV lipopolysaccharide (LPS) until severe ALI was achieved. Blood and bronchoalveolar lavage (BAL) samples from apical and basal lung regions were obtained at baseline and injury time points, for analysis of cytokines (IL-6, IL-1β), BAL protein and surfactant composition. Whole lung CT images were obtained in 4 additional sheep. BAL protein and IL-1β were significantly higher in injured apical vs. basal regions. No significant regional surfactant composition changes were observed. Baseline sVol and sC were lower in apex vs. base; ALI enhanced this cranio-caudal difference, reaching statistical significance only for sC. This study suggests that apical lung regions show greater inflammation than basal ones during IV LPS-induced ALI which may relate to differences in regional mechanical events.
Collapse
|
12
|
Musk GC, Polglase GR, Bunnell JB, McLean CJ, Nitsos I, Song Y, Pillow JJ. High positive end-expiratory pressure during high-frequency jet ventilation improves oxygenation and ventilation in preterm lambs. Pediatr Res 2011; 69:319-24. [PMID: 21178822 DOI: 10.1203/pdr.0b013e31820bbdf5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Increasing positive end-expiratory pressure (PEEP) is advocated to recruit alveoli during high-frequency jet ventilation (HFJV), but its effect on cardiopulmonary physiology and lung injury is poorly documented. We hypothesized that high PEEP would recruit alveoli and reduce lung injury but compromise pulmonary blood flow (PBF). Preterm lambs of anesthetized ewes were instrumented, intubated, and delivered by cesarean section after instillation of surfactant. HFJV was commenced with a PEEP of 5 cm H2O. Lambs were allocated randomly at delivery to remain on constant PEEP (PEEPconst, n = 6) or to recruitment via stepwise adjustments in PEEP (PEEPadj, n = 6) to 12 cm H2O then back to 8 cm H2O over the initial 60 min. PBF was measured continuously while ventilatory parameters and arterial blood gases were measured at intervals. At postmortem, in situ pressure-volume deflation curves were recorded, and bronchoalveolar lavage fluid and lung tissue were obtained to assess inflammation. PEEPadj lambs had lower pressure amplitude, fractional inspired oxygen concentration, oxygenation index, and PBF and more compliant lungs. Inflammatory markers were lower in the PEEPadj group. Adjusted PEEP during HFJV improves oxygenation and lung compliance and reduces ventilator requirements despite reducing pulmonary perfusion.
Collapse
Affiliation(s)
- Gabrielle C Musk
- School of Women's and Infants' Health, University of Western Australia, Perth, Western Australia 6009, Australia.
| | | | | | | | | | | | | |
Collapse
|
13
|
Waleh N, McCurnin DC, Yoder BA, Shaul PW, Clyman RI. Patent ductus arteriosus ligation alters pulmonary gene expression in preterm baboons. Pediatr Res 2011; 69:212-6. [PMID: 21131894 PMCID: PMC3065199 DOI: 10.1203/pdr.0b013e3182084f8d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ibuprofen-induced ductus closure improves pulmonary mechanics and increases alveolar surface area in premature baboons compared with baboons with a persistent patent ductus arteriosus (PDA). Ibuprofen-treatment has no effect on the expression of genes that regulate pulmonary inflammation but does increase the expression of alpha-ENaC (the transepithelial sodium channel that is critical for alveolar water clearance). Although ligation eliminates the PDA, it does not improve pulmonary mechanics or increase alveolar surface area. We used preterm baboons (delivered at 67% of term gestation and ventilated for 14 d) to study whether the lack of beneficial effects, after PDA ligation, might be due to alterations in pulmonary gene expression. We found no differences in ventilation or oxygenation indices between animals that were ligated (n = 7) on day of life 6 and those that had a persistent PDA (n = 12) during the entire 14 d study. In contrast with no intervention, PDA ligation produced a significant increase in the expression of genes involved with pulmonary inflammation (COX-2, TNF-α, and CD14) and a significant decrease in alpha-ENaC sodium channel expression. We speculate that these changes may decrease the rate of alveolar fluid clearance and contribute to the lack of improvement in pulmonary mechanics after PDA ligation.
Collapse
Affiliation(s)
- Nahid Waleh
- Pharmaceutical Discovery Division, SRI International, Menlo Park, California 94025, USA
| | | | | | | | | |
Collapse
|
14
|
Sato A, Whitsett JA, Scheule RK, Ikegami M. Surfactant protein-d inhibits lung inflammation caused by ventilation in premature newborn lambs. Am J Respir Crit Care Med 2010; 181:1098-105. [PMID: 20133924 DOI: 10.1164/rccm.200912-1818oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Premature newborns frequently require manual ventilation for resuscitation during which lung injury occurs. Although surfactant protein (SP)-D regulates pulmonary inflammation, SP-D levels are low in the preterm lung. Commercial surfactants for treatment of respiratory distress syndrome do not contain SP-D. OBJECTIVES To determine whether addition of recombinant human SP-D (rhSP-D) to commercial surfactant influences lung inflammation in ventilated premature newborn lambs. METHODS Prematurely delivered lambs (130 d gestation age) were resuscitated with 100% O(2) and peak inspiratory pressure 40 cm H(2)O for 20 minutes and then treated with Survanta or Survanta containing rhSP-D. Ventilation was then changed to regulate tidal volume at 8 to 9 ml/kg. At 5 hours of age lambs were killed for sample collection. MEASUREMENTS AND MAIN RESULTS Sequential blood gas and tidal volume were similar in lambs treated with or without rhSP-D, indicating that lung immaturity and ventilatory stress used to support premature lambs were comparable between the two groups. Ventilation caused pulmonary inflammation in lambs treated with surfactant alone. In contrast, surfactant containing rhSP-D decreased neutrophil numbers in bronchoalveolar lavage fluid and decreased neutrophil elastase activity in lung tissue. IL-8 mRNA and IL-8 protein were significantly decreased in the +rhSP-D group lamb lungs, to 20% of those in controls. The addition of rhSP-D also rendered Survanta more resistant to plasma protein inhibition of surfactant function. CONCLUSIONS Treatment with rhSP-D-containing surfactant inhibited lung inflammation and enhanced the resistance of surfactant to inhibition, supporting its potential usefulness for prevention of lung injury in the preterm newborn.
Collapse
Affiliation(s)
- Atsuyasu Sato
- Cincinnati Children's Hospital Medical Center, Division of Pulmonary Biology, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|
15
|
Been JV, Zimmermann LJI, Debeer A, Kloosterboer N, van Iwaarden JF. Bronchoalveolar lavage fluid from preterm infants with chorioamnionitis inhibits alveolar epithelial repair. Respir Res 2009; 10:116. [PMID: 19930634 PMCID: PMC2784455 DOI: 10.1186/1465-9921-10-116] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 11/23/2009] [Indexed: 11/24/2022] Open
Abstract
Background Preterm infants are highly susceptible to lung injury. While both chorioamnionitis and antenatal steroids induce lung maturation, chorioamnionitis is also associated with adverse lung development. We investigated the ability of bronchoalveolar lavage fluid (BALF) from ventilated preterm infants to restore alveolar epithelial integrity after injury in vitro, depending on whether or not they were exposed to chorioamnionitis or antenatal steroids. For this purpose, a translational model for alveolar epithelial repair was developed and characterised. Methods BALF was added to mechanically wounded monolayers of A549 cells. Wound closure was quantified over time and compared between preterm infants (gestational age < 32 wks) exposed or not exposed to chorioamnionitis and antenatal steroids (≥ 1 dose). Furthermore, keratinocyte growth factor (KGF) and vascular endothelial growth factor (VEGF) were quantified in BALF, and their ability to induce alveolar epithelial repair was evaluated in the model. Results On day 0/1, BALF from infants exposed to antenatal steroids significantly increased epithelial repair (40.3 ± 35.5 vs. -6.3 ± 75.0% above control/mg protein), while chorioamnionitis decreased wound-healing capacity of BALF (-2.9 ± 87.1 vs. 40.2 ± 36.9% above control/mg protein). BALF from patients with chorioamnionitis contained less KGF (11 (0-27) vs. 0 (0-4) pg/ml) and less detectable VEGF (66 vs. 95%) on day 0. BALF levels of VEGF and KGF correlated with its ability to induce wound repair. Moreover, KGF stimulated epithelial repair dose-dependently, although the low levels in BALF suggest KGF is not a major modulator of BALF-induced wound repair. VEGF also stimulated alveolar epithelial repair, an effect that was blocked by addition of soluble VEGF receptor-1 (sVEGFr1/Flt-1). However, BALF-induced wound repair was not significantly affected by addition of sVEGFr1. Conclusion Antenatal steroids improve the ability of BALF derived from preterm infants to stimulate alveolar epithelial repair in vitro. Conversely, chorioamnionitis is associated with decreased wound-healing capacity of BALF. A definite role for KGF and VEGF in either process could not be established. Decreased ability to induce alveolar epithelial repair after injury may contribute to the association between chorioamnionitis and adverse lung development in mechanically ventilated preterm infants.
Collapse
Affiliation(s)
- Jasper V Been
- Department of Paediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, the Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Normann E, Lacaze-Masmonteil T, Eaton F, Schwendimann L, Gressens P, Thébaud B. A novel mouse model of Ureaplasma-induced perinatal inflammation: effects on lung and brain injury. Pediatr Res 2009; 65:430-6. [PMID: 19127208 DOI: 10.1203/pdr.0b013e31819984ce] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chorioamnionitis is associated with increased lung and brain injury in premature infants. Ureaplasma is the microorganisms most frequently associated with preterm birth. Whether Ureaplasma-induced antenatal inflammation worsens lung and brain injury is unknown. We developed a mouse model combining antenatal Ureaplasma infection and postnatal oxygen exposure. Intraamniotic Ureaplasma Parvum (UP) increased proinflammatory cytokines in placenta and fetal lungs. Antenatal exposure to UP or broth caused mild postnatal inflammation and worsened oxygen-induced lung injury. Antenatal UP exposure induced central microgliosis and disrupted brain development as detected by decreased number of calbindin-positive and calretinin-positive neurons in the neocortex. Postnatal oxygen decreased calretinin-positive neurons in the neocortex but combined with antenatal UP exposure did not worsen brain injury. Antenatal inflammation exacerbates the deleterious effects of oxygen on lung development, but the broth effects prohibit concluding that UP by itself is a compounding risk factor for bronchopulmonary dysplasia. In contrast, antenatal UP-induced inflammation alone is sufficient to disturb brain development. This model may be helpful in exploring the pathophysiology of perinatal lung and brain injury to develop new protective strategies.
Collapse
Affiliation(s)
- Erik Normann
- Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2J3, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Thomas W, Seidenspinner S, Kramer BW, Kawczyńska-Leda N, Chmielnicka-Kopaczyk M, Marx A, Wirbelauer J, Szymankiewicz M, Speer CP. Airway concentrations of angiopoietin-1 and endostatin in ventilated extremely premature infants are decreased after funisitis and unbalanced with bronchopulmonary dysplasia/death. Pediatr Res 2009; 65:468-73. [PMID: 19127216 DOI: 10.1203/pdr.0b013e3181991f35] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A systemic inflammatory response of the fetus, reflected by histologic funisitis, is a risk factor for bronchopulmonary dysplasia (BPD). Impaired pulmonary angiogenesis accompanied by simplification and rarification of alveoli is a histologic hallmark of BPD. Angiopoietin-1 mediates vascular development, maturation, and stabilization. Endostatin mainly acts as an angiostatic factor. We hypothesized that funisitis was associated with changes of endostatin and angiopoietin-1 concentrations in the airways and that an imbalance between the factors might be associated with BPD or death. We measured concentrations of angiopoietin-1 and endostatin by enzyme-linked immunosorbent assay in tracheobronchial aspirate fluid samples of 42 ventilated preterm infants during postnatal days 1 through 15. The secretory component for IgA served as reference protein. A standardized histologic examination was used to distinguish three groups: chorioamnionitis, funisitis, and controls without inflammation. Concentrations of the mediators steadily decreased. Funisitis was associated with lower concentrations of both proteins, which might impair their physiologic activities in pulmonary angiogenesis. An increase of the ratio angiopoietin-1/endostatin until day 7 of life indicated a shift of the mediators potentially favoring angiogenesis. However, infants, who developed BPD or died, had a decreased ratio on days 1, 3, and 15, suggesting an imbalance toward inhibition of pulmonary angiogenesis.
Collapse
Affiliation(s)
- Wolfgang Thomas
- University Children's Hospital, University Hospital Würzburg, Würzburg 97080, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sampath V, Radish AC, Eis AL, Broniowska K, Hogg N, Konduri GG. Attenuation of lipopolysaccharide-induced oxidative stress and apoptosis in fetal pulmonary artery endothelial cells by hypoxia. Free Radic Biol Med 2009; 46:663-71. [PMID: 19135525 PMCID: PMC2646363 DOI: 10.1016/j.freeradbiomed.2008.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 12/03/2008] [Accepted: 12/03/2008] [Indexed: 01/27/2023]
Abstract
Pulmonary vascular endothelial injury resulting from lipopolysaccharide (LPS) and oxygen toxicity contributes to vascular simplification seen in the lungs of premature infants with bronchopulmonary dysplasia. Whether the severity of endotoxin-induced endothelial injury is modulated by ambient oxygen tension (hypoxic intrauterine environment vs. hyperoxic postnatal environment) remains unknown. We posited that ovine fetal pulmonary artery endothelial cells (FPAEC) will be more resistant to LPS toxicity under hypoxic conditions (20-25 Torr) mimicking the fetal milieu. LPS (10 microg/ml) inhibited FPAEC proliferation and induced apoptosis under normoxic conditions (21% O(2)) in vitro. LPS-induced FPAEC apoptosis was attenuated in hypoxia (5% O(2)) and exacerbated by hyperoxia (55% O(2)). LPS increased intracellular superoxide formation, as measured by 2-hydroxyethidium (2-HE) formation, in FPAEC in normoxia and hypoxia. 2-HE formation in LPS-treated FPAEC increased in parallel with the severity of LPS-induced apoptosis in FPAEC, increasing from hypoxia to normoxia to hyperoxia. Differences in LPS-induced apoptosis between hypoxia and normoxia were abolished when LPS-treated FPAEC incubated in hypoxia were pretreated with menadione to increase superoxide production. Apocynin decreased 2-HE formation, and attenuated LPS-induced FPAEC apoptosis under normoxic conditions. We conclude that ambient oxygen concentration modulates the severity of LPS-mediated injury in FPAEC by regulating superoxide levels produced in response to LPS.
Collapse
Affiliation(s)
- Venkatesh Sampath
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Choi CW, Kim BI, Hong JS, Kim EK, Kim HS, Choi JH. Bronchopulmonary dysplasia in a rat model induced by intra-amniotic inflammation and postnatal hyperoxia: morphometric aspects. Pediatr Res 2009; 65:323-7. [PMID: 19391205 DOI: 10.1203/pdr.0b013e318193f165] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Antenatal inflammation is a known risk factor of bronchopulmonary dysplasia. The authors hypothesized that lipopolysaccharide (LPS) administration amplifies hyperoxia-induced lung injury in neonatal rats. LPS (0.5 or 1.0 microg) or normal saline was injected into the amniotic sacs of pregnant rats at 20 d gestation (term 22.5 d). After birth, rats were exposed to 85% oxygen or room air for 1 or 2 wk. Morphometric analysis of lungs was performed on 14 d. One week of hyperoxia without LPS administration resulted in modest lung injury. LPS at 0.5 microg alone did not alter lung morphology, but amplified the effect of 1 wk of hyperoxia resulting in marked inhibition of alveolarization (airspaces were enlarged and alveolar surface areas further reduced). LPS at 1.0 microg independently induced modest lung injury and also amplified the effect of 1 wk of hyperoxia. However, this sensitizing effect of LPS was not observed in rats subjected to 2 wks of hyperoxia, which in itself caused extensive lung injury (possibly masking the effect of LPS). The authors concluded that intra-amniotic LPS sensitizes neonatal rat lungs, and thus, amplifies the hyperoxia-induced inhibition of alveolarization.
Collapse
Affiliation(s)
- Chang Won Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 110-769, Korea
| | | | | | | | | | | |
Collapse
|
20
|
Degan S, Lopez GY, Kevill K, Sunday ME. Gastrin-releasing peptide, immune responses, and lung disease. Ann N Y Acad Sci 2009; 1144:136-47. [PMID: 19076373 DOI: 10.1196/annals.1418.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Gastrin-releasing peptide (GRP) is produced by pulmonary neuroendocrine cells (PNECs), with highest numbers of GRP-positive cells present in fetal lung. Normally GRP-positive PNECs are relatively infrequent after birth, but PNEC hyperplasia is frequently associated with chronic lung diseases. To address the hypothesis that GRP mediates chronic lung injury, we present the cumulative evidence implicating GRP in bronchopulmonary dysplasia (BPD), the chronic lung disease of premature infants who survive acute respiratory distress syndrome. The availability of well-characterized animal models of BPD was a critical tool for demonstrating that GRP plays a direct role in the early pathogenesis of this disease. Potential mechanisms by which GRP contributes to injury are analyzed, with the main focus on innate immunity. Autoreactive T cells may contribute to lung injury late in the course of disease. A working model is proposed with GRP triggering multiple cell types in both the innate and adaptive immune systems, promoting cascades culminating in chronic lung disease. These observations represent a paradigm shift in the understanding of the early pathogenesis of BPD, and suggest that GRP blockade could be a novel treatment to prevent this lung disease in premature infants.
Collapse
Affiliation(s)
- Simone Degan
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
21
|
Abstract
INTRODUCTION Antenatal inflammation in utero may be associated with lung injury and subsequent aberrant lung development resulting in bronchopulmonary dysplasia (BPD). BPD has become a developmental disease with a uniform arrest in lung development. STUDY DESIGN The role of antenatal inflammation in the induction of lung injury was explored in a sheep model suitable for the study of lung development with respect to human development. Chorioamnionitis was induced by a single injection of endotoxin into the amniotic cavity under ultrasound guidance. RESULT Endotoxin-induced chorioamnionitis caused a cascade of lung injury, pulmonary inflammation and remodeling in the fetal lung similar to lung injury previously described in adult animal models. The structural changes in the fetal lung after chorioamnionitis showed little to no fibrosis and alveolar/microvascular simplification similar to new BPD. The identified cytokine networks and regulators may explain the absence of fibrosis and lung simplification after strictly intra-uterine inflammation. CONCLUSION The mechanisms of antenatal inflammation in the fetal lung were multifactorial and could be antenatally modulated. Fetal pulmonary inflammation was temporarily suppressed by maternal glucocorticoid therapy. However, pulmonary inflammation could be augmented postnatally by resuscitation, oxygen toxicity, mechanical ventilation and pulmonary and systemic infection, which opens a broad window of clinical options.
Collapse
|
22
|
McCurnin D, Seidner S, Chang LY, Waleh N, Ikegami M, Petershack J, Yoder B, Giavedoni L, Albertine KH, Dahl MJ, Wang ZM, Clyman RI. Ibuprofen-induced patent ductus arteriosus closure: physiologic, histologic, and biochemical effects on the premature lung. Pediatrics 2008; 121:945-56. [PMID: 18450898 PMCID: PMC11790498 DOI: 10.1542/peds.2007-2051] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE The goal was to study the pulmonary, biochemical, and morphologic effects of a persistent patent ductus arteriosus in a preterm baboon model of bronchopulmonary dysplasia. METHODS Preterm baboons (treated prenatally with glucocorticoids) were delivered at 125 days of gestation (term: 185 days), given surfactant, and ventilated for 14 days. Twenty-four hours after birth, newborns were randomly assigned to receive either ibuprofen (to close the patent ductus arteriosus; n = 8) or no drug (control; n = 13). RESULTS After treatment was started, the ibuprofen group had significantly lower pulmonary/systemic flow ratio, higher systemic blood pressure, and lower left ventricular end diastolic diameter, compared with the control group. There were no differences in cardiac performance indices between the groups. Ventilation index and dynamic compliance were significantly improved with ibuprofen. The improved pulmonary mechanics in ibuprofen-treated newborns were not attributable to changes in levels of surfactant protein B, C, or D, saturated phosphatidylcholine, or surfactant inhibitory proteins. There were no differences in tracheal concentrations of cytokines commonly associated with the development of bronchopulmonary dysplasia. The groups had similar messenger RNA expression of genes that regulate inflammation and remodeling in the lung. Lungs from ibuprofen-treated newborns were significantly drier (lower wet/dry ratio) and expressed 2.5 times more epithelial sodium channel protein than did control lungs. By 14 days after delivery, control newborns had morphologic features of arrested alveolar development (decreased alveolar surface area and complexity), compared with age-matched fetuses. In contrast, there was no evidence of alveolar arrest in the ibuprofen-treated newborns. CONCLUSIONS Ibuprofen-induced patent ductus arteriosus closure improved pulmonary mechanics, decreased total lung water, increased epithelial sodium channel expression, and decreased the detrimental effects of preterm birth on alveolarization.
Collapse
Affiliation(s)
- Donald McCurnin
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, Texas
| | - Steven Seidner
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, Texas
| | - Ling-Yi Chang
- Department of Medicine, National Jewish Medical and Research Center, Denver, Colorado
| | - Nahid Waleh
- Pharmaceutical Discovery Division, SRI International, Menlo Park, California
| | - Machiko Ikegami
- Pulmonary Biology, Cincinnati Children’s Hospital, University of Cincinnati, Cincinnati, Ohio
| | - Jean Petershack
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, Texas
| | - Brad Yoder
- Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Luis Giavedoni
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas
| | | | - Mar Janna Dahl
- Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Zheng-ming Wang
- Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Ronald I. Clyman
- Cardiovascular Research Institute, University of California, San Francisco, California
- Department of Pediatrics, University of California, San Francisco, California
| |
Collapse
|
23
|
Chang LY, McCurnin D, Yoder B, Shaul PW, Clyman RI. Ductus arteriosus ligation and alveolar growth in preterm baboons with a patent ductus arteriosus. Pediatr Res 2008; 63:299-302. [PMID: 18287969 DOI: 10.1203/pdr.0b013e318163a8e4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Premature newborn baboons [125 d (67%) gestation], exposed to a moderate-size patent ductus arteriosus (PDA) [pulmonary-to-systemic blood-flow-ratio (Qp/Qs) = 1.8] for 14 d, have impaired pulmonary function and arrested alveolar development and surface area when compared with age matched fetuses (140 d gestation). Pharmacologic closure of the PDA reduces the detrimental effects of preterm delivery on pulmonary function and surface area. We used preterm baboons (delivered at 125 d gestation and ventilated for 14 d) to study the effects of surgical PDA ligation on pulmonary function and alveolar surface area. After ligation (on day of life 6), ligated animals had lower Qp/Qs ratios [Qp/Qs (ligated, n = 10) = 1.00 +/- 0.04; (nonligated, n = 12) = 2.05 +/- 0.17; mean +/- SD] and higher systemic blood pressures than nonligated control animals. Ventilation and oxygenation indices did not differ between the groups, during either the pre- or postoperative periods. Alveolar surface area measurements were made by digital image analysis and compared with measurements made from fetal lungs at 125 d (n = 6) and 140 d (n = 7) gestation. PDA ligation failed to improve the postnatal arrest in alveolar surface area. In contrast with pharmacologic closure of the PDA, surgical closure failed to improve either pulmonary function or alveolar surface area in baboons with a moderate PDA shunt.
Collapse
Affiliation(s)
- Ling Yi Chang
- Department of Medicine, University of Colorado, Denver, Colorado 80204, USA
| | | | | | | | | |
Collapse
|
24
|
Walsh M, Laptook A, Kazzi SN, Engle WA, Yao Q, Rasmussen M, Buchter S, Heldt G, Rhine W, Higgins R, Poole K. A cluster-randomized trial of benchmarking and multimodal quality improvement to improve rates of survival free of bronchopulmonary dysplasia for infants with birth weights of less than 1250 grams. Pediatrics 2007; 119:876-90. [PMID: 17473087 DOI: 10.1542/peds.2006-2656] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE We tested whether NICU teams trained in benchmarking and quality improvement would change practices and improve rates of survival without bronchopulmonary dysplasia in inborn neonates with birth weights of <1250 g. METHODS A cluster-randomized trial enrolled 4093 inborn neonates with birth weights of <1250 g at 17 centers of the National Institute of Child Health and Human Development Neonatal Research Network. Three centers were selected as best performers, and the remaining 14 centers were randomized to intervention or control. Changes in rates of survival free of bronchopulmonary dysplasia were compared between study year 1 and year 3. RESULTS Intervention centers implemented potentially better practices successfully; changes included reduced oxygen saturation targets and reduced exposure to mechanical ventilation. Five of 7 intervention centers and 2 of 7 control centers implemented use of high-saturation alarms to reduce oxygen exposure. Lower oxygen saturation targets reduced oxygen levels in the first week of life. Despite these changes, rates of survival free of bronchopulmonary dysplasia were all similar between intervention and control groups and remained significantly less than the rate achieved in the best-performing centers (73.3%). CONCLUSIONS In this cluster-randomized trial, benchmarking and multimodal quality improvement changed practices but did not reduce bronchopulmonary dysplasia rates.
Collapse
Affiliation(s)
- Michele Walsh
- Department of Pediatrics, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, Ohio 44106-6010, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sosenko IRS, Kallapur SG, Nitsos I, Moss TJM, Newnham JP, Ikegami M, Jobe AH. IL-1 alpha causes lung inflammation and maturation by direct effects on preterm fetal lamb lungs. Pediatr Res 2006; 60:294-8. [PMID: 16857758 DOI: 10.1203/01.pdr.0000233115.51309.d3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intra-amniotic endotoxin induces IL-1, causes chorioamnionitis, lung inflammation, lung injury and lung maturation in preterm lambs. Intra-amniotic IL-1alpha also causes chorioamnionitis, lung inflammation and lung maturation. We asked if IL-1alpha effects on the preterm lung are mediated by direct signaling to the lung rather than by indirect effects from the chorioamnionitis. To study IL-1 effects independently of chorioamnionitis, the lungs and the amniotic fluid were surgically separated in fetal sheep by diverting fetal lung fluid via a tracheostomy tube to a sialastic bag. A mini-osmotic pump delivered an intratracheal infusion of recombinant sheep IL-1alpha (10 microg) or saline (control) over 24 h. Preterm lambs were delivered 1d or 7d after the start of the infusion at 124d gestational age (Term = 150d). IL-1alpha recruited inflammatory cells and increased pro-inflammatory cytokine mRNA expression in the fetal lungs. Compared with controls, IL-1alpha did not alter lung antioxidant enzyme activity or alveolar numbers. IL-1alpha had minimal effects on the mRNA or protein expression of proteins essential for vascular development. IL-1alpha induced large increases in alveolar surfactant saturated phosphatidylcholine and increased lung gas volumes. Lung inflammation and maturation result from direct exposure of the fetal lung to a single cytokine - IL-1alpha.
Collapse
Affiliation(s)
- Ilene R S Sosenko
- Department of Pediatrics, University of Miami School of Medicine, Miami, FL 33106, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Ikegami M, Carter K, Bishop K, Yadav A, Masterjohn E, Brondyk W, Scheule RK, Whitsett JA. Intratracheal recombinant surfactant protein d prevents endotoxin shock in the newborn preterm lamb. Am J Respir Crit Care Med 2006; 173:1342-7. [PMID: 16556693 PMCID: PMC2662974 DOI: 10.1164/rccm.200509-1485oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The susceptibility of neonates to pulmonary and systemic infection has been associated with the immaturity of both lung structure and the immune system. Surfactant protein (SP) D is a member of the collectin family of innate immune molecules that plays an important role in innate host defense of the lung. OBJECTIVES We tested whether treatment with recombinant human SP-D influenced the response of the lung and systemic circulation to intratracheally administered Escherichia coli lipopolysaccharides. METHODS After intratracheal lipopolysaccharide instillation, preterm newborn lambs were treated with surfactant and ventilated for 5 h. MEASUREMENT Survival rate, physiologic lung function, lung and systemic inflammation, and endotoxin level in plasma were evaluated. MAIN RESULTS In control lambs, intratracheal lipopolysaccharides caused septic shock and death associated with increased endotoxin in plasma. In contrast, all lambs treated with recombinant human SP-D were physiologically stable and survived. Leakage of lipopolysaccharides from the lungs to the systemic circulation was prevented by intratracheal recombinant human SP-D. Recombinant human SP-D prevented systemic inflammation and decreased the expression of IL-1beta, IL-8, and IL-6 in the spleen and liver. Likewise, recombinant human SP-D decreased IL-1beta and IL-6 in the lung and IL-8 in the plasma. Recombinant human SP-D did not alter pulmonary mechanics following endotoxin exposure. Recombinant human SP-D was readily detected in the lung 5 h after intratracheal instillation. CONCLUSIONS Intratracheal recombinant human SP-D prevented shock caused by endotoxin released from the lung during ventilation in the premature newborn.
Collapse
Affiliation(s)
- Machiko Ikegami
- Cincinnati Children's Hospital, Division of Pulmonary Biology, 3333 Burnet Avenue, University of Cincinnati, Ohio 45229-3039, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Inflammation interferes with lung development in model systems and is present chronically in the lungs of preterm infants who develop bronchopulmonary dysplasia (BPD). Antenatal inflammation is very commonly associated with preterm deliveries, but there is generally minimal information about the duration, intensity, or organisms associated with chorioamnionitis. In preterm lamb models, chorioamnionitis causes a lung injury similar to BPD and also causes clinical lung maturation. Continuous exposure of the developing lung before and after delivery to inflammation may be central to the development of BPD.
Collapse
Affiliation(s)
- S G Kallapur
- Cincinnati Children's Hospital, Division of Pulmonary Biology, University of Cincinnati, OH 45229-3039, USA.
| | | |
Collapse
|
28
|
Choi CW, Kim BI, Park JD, Koh YY, Choi JH, Choi JY. Risk factors for the different types of chronic lung diseases of prematurity according to the preceding respiratory distress syndrome. Pediatr Int 2005; 47:417-23. [PMID: 16091080 DOI: 10.1111/j.1442-200x.2005.02081.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Recently, atypical chronic lung disease (CLD) of prematurity that develops in the absence of preceding respiratory distress syndrome (RDS) have been observed frequently. The specific risk factors for atypical CLD that are presumed to be different from those for classical CLD that develops following RDS were assessed. METHODS Prospective cohort analysis was done from 115 very low-birthweight infants who were born in Seoul National University Hospital, Seoul, Korea, and survived more than 36 weeks postmenstrual age or 28 days of life. All subjects were classified into either a preceding RDS group (n = 35) or a non-RDS group (n = 80). Logistic regression analysis was done for the multivariate assessment of specific risk factors for CLD in both groups. RESULTS The analysis showed that short gestational age (GA; relative risk [RR], 3.1 per 1 week decrement; 95% confidence intervals [CI], 2.7-3.4), of the male gender (RR, 9.8; CI, 0.9-112), and poor response to surfactant (RR, 14; CI, 1.2-156) were significant risk factors for CLD in the preceding RDS group. In the non-RDS group, chorioamnionitis was one of the significant risk factors for CLD (RR, 4.8; CI, 1.1-21) along with short GA and high mean airway pressure (MAP) during the first 3 days of life. CONCLUSION Chorioamnionitis was a risk factor for atypical CLD in addition to short GA and high MAP during the early postnatal period, and poor response to surfactant was a risk factor for classical CLD in addition to short GA and being male. Therefore, CLD is considered to have type-specific risk factors.
Collapse
Affiliation(s)
- Chang Won Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
29
|
Ankermann T, Reisner A, Wiemann T, Krams M, Köhler H, Krause MF. Topical inhibition of nuclear factor-κB enhances reduction in lung edema by surfactant in a piglet model of airway lavage. Crit Care Med 2005; 33:1384-91. [PMID: 15942360 DOI: 10.1097/01.ccm.0000166371.18066.5e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Acute respiratory distress syndrome is occasionally seen in newborn infants due to a severe inflammatory process in the lungs that affects capillary-alveolar permeability, epithelial integrity, and type I and II pneumocyte function. The aim of this study was to investigate the effect of a topically applied nuclear factor-kappaB inhibitor (IkappaB kinase-NF-kappaB essential modulator binding domain [IKK-NBD] peptide) on gas exchange, lung function, lung fluids, and inflammation in a piglet model of repeated airway lavage that is characterized by surfactant deficiency, lung edema, and an inflammatory response. DESIGN Prospective, randomized, controlled animal study. SETTING Research laboratory of a university children's hospital. SUBJECTS A total of 24 anesthetized, mechanically ventilated newborn piglets. INTERVENTIONS Repeated airway lavage was carried out until both the Pao2 decreased to approximately 40 mm Hg, while ventilating the piglets with an Fio2 of 0.6, and a peak inspiratory pressure of >/=18 cm H2O was needed to maintain tidal volume at 6 mL/kg. One group of piglets served as a control (n = 8), a second group (S, n = 8) received a porcine surfactant preparation (Curosurf), and a third group received IKK-NBD peptide admixed to surfactant (S+IN, n = 8). MEASUREMENTS AND MAIN RESULTS After 6 hrs of mechanical ventilation after intervention, S+IN group piglets showed decreased extravascular lung water (S+IN vs. S, 20 +/- 3 vs. 28 +/- 10 mL/kg; p < .05) and a lesser protein content in the epithelial lining fluid (S+IN vs. S, 38 +/- 5 vs. 50 +/- 5 mg/L; p < .05). Functional residual capacity (S+IN vs. S, 16.7 +/- 6.3 vs. 12.2 +/- 4.3 mL/kg; p < .05), alveolar volume (S+IN vs. S, 5.4 +/- 1.8 vs. 4.6 +/- 1.5 mL/kg; p < .05), and lung mechanics were improved. Bronchoalveolar lavage showed a lesser percentage of polymorphonuclear leukocytes (S+IN vs. S, 70% +/- 6% vs. 82% +/- 3%; p < .01) and a reduction in the chemokine leukotriene B4 (S+IN vs. S, 2.0 +/- 0.6 vs. 3.5 +/- 1.4 pg/mL; p < .01). CONCLUSIONS A topically applied nuclear factor-kappaB inhibitor improves lung edema and lung volumes and reduces inflammation in this newborn piglet model of airway lavage.
Collapse
Affiliation(s)
- Tobias Ankermann
- Department of Pediatrics, Christian-Albrechts-University, Kiel, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Koenig JM, Stegner JJ, Schmeck AC, Saxonhouse MA, Kenigsberg LE. Neonatal neutrophils with prolonged survival exhibit enhanced inflammatory and cytotoxic responsiveness. Pediatr Res 2005; 57:424-9. [PMID: 15635048 DOI: 10.1203/01.pdr.0000153945.49022.96] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Apoptosis is critical to the resolution of inflammation, as it promotes the removal of neutrophils (PMN) by the reticuloendothelial system. In contrast, PMN persistence characterizes the early stages of chronic inflammation. Adult PMN with delayed senescence retain some functionality, although this has not been described for neonatal PMN. We hypothesized that neonatal PMN with prolonged survival retain cytotoxic and inflammatory function. To test one aspect of inflammatory function, we determined surface CD11b expression on 0-h and 24-h PMN after chemotactic formyl-methionine-leucine-phenylalanine (fMLP) stimulation. Although fMLP induced a greater percentage up-regulation of CD11b on 0-h adult PMN, this was similar between nonapoptotic cord blood and adult PMN at 24 h. Furthermore, percentage up-regulation of CD11b was more robust for 24-h than for 0-h cord blood PMN. In contrast, there was no difference in responsiveness between 0-h and 24-h adult PMN. In studies of cytotoxic potential, we determined the expression of reactive oxygen intermediates (ROI) in phorbol 12-myristate 13-acetate-stimulated cord blood and adult PMN at 0 h and in 24-h nonapoptotic PMN, using the dihydrorhodamine 123 assay. Stimulated cord blood PMN generated more ROI than did adult PMN at both 0 h and 24 h; in addition, ROI levels in 24-h cord blood PMN were similar to those of 0-h adult PMN. We conclude that PMN with prolonged survival retain specific cytotoxic and inflammatory functions, and these are enhanced in cord blood PMN. We speculate that neonatal PMN with prolonged survival have the functional capacity to contribute to the pathogenesis of inflammatory disorders.
Collapse
Affiliation(s)
- Joyce M Koenig
- University of Florida College of Medicine, Department of Pediatrics, Division of Neonatology, Gainesville, FL 32610, USA.
| | | | | | | | | |
Collapse
|
31
|
Kallapur SG, Nitsos I, Moss TJM, Kramer BW, Newnham JP, Ikegami M, Jobe AH. Chronic endotoxin exposure does not cause sustained structural abnormalities in the fetal sheep lungs. Am J Physiol Lung Cell Mol Physiol 2005; 288:L966-74. [PMID: 15640284 DOI: 10.1152/ajplung.00389.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic early gestational chorioamnionitis is associated with development of bronchopulmonary dysplasia in preterm infants. A single intra-amniotic exposure to endotoxin decreased alveolarization and reduced expression of endothelial proteins in 125-day gestational age preterm lambs. We hypothesized that prolonged exposure to intra-amniotic endotoxin would cause progressive lung inflammation and inhibit alveolar and pulmonary vascular development. Endotoxin (1 mg/day) or saline was administered via an intra-amniotic osmotic pump from 80 to 108 days of gestational age (continuous pump) or by four weekly 10-mg intra-amniotic endotoxin injections starting at 100 days of gestational age (multiple dose). Lung morphometry, lung inflammation, vascular effects, and lung maturation were measured at delivery. The continuous pump lambs delivered at 100 days (approximately 70% of total endotoxin exposure) had lung inflammation, fewer saccules, and decreased endothelial proteins endothelial nitric oxide synthase and VEGF receptor 2 expression compared with controls. The continuous pump (delivered at 138 days) and multiple dose lambs (delivered at 130 and 145 days) had mild persistent lung inflammation and no significant differences in lung morphometry or expression of endothelial proteins compared with controls. Surfactant saturated phosphatidylcholine pool sizes were increased in all endotoxin-exposed groups, but lung function was not changed relative to controls. Contrary to our hypothesis, a prolonged fetal exposure to intra-amniotic endotoxin caused mild persistent inflammation but did not lead to progressive structural abnormalities in lungs of near-term gestation lambs.
Collapse
Affiliation(s)
- Suhas G Kallapur
- Cincinnati Children's Hospital Medical Center, Div. of Pulmonary Biology, University of Cincinnati College of Medicine, OH 45229-3039, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Kramer BW, Ikegami M, Moss TJM, Nitsos I, Newnham JP, Jobe AH. Endotoxin-induced Chorioamnionitis Modulates Innate Immunity of Monocytes in Preterm Sheep. Am J Respir Crit Care Med 2005; 171:73-7. [PMID: 15466254 DOI: 10.1164/rccm.200406-745oc] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The preterm fetus is immune naive and has immature innate immune function. Although the preterm fetus is frequently exposed to chorioamnionitis, the effects of exposure of the fetal lung to inflammation on innate immune responses are unknown. Using the fetal sheep model of chorioamnionitis, cord blood monocytes were isolated from preterm lambs 1 to 14 days after intra-amniotic endotoxin injection, cultured for approximately 16 hours, and challenged with endotoxin in vitro. Compared with monocytes from adult sheep, the preterm monocytes produced less H(2)O(2) and interleukin-6, and toll-like receptor 4 expression was decreased. Three days after intra-amniotic endotoxin exposure, preterm monocyte responses to in vitro endotoxin challenge demonstrated decreased H(2)O(2) and interleukin-6 production and decreased CD14 and major histocompatibility complex class II expression. Preterm monocyte responses 7 to 14 days after endotoxin tended to exceed those of adults and preterm control animals indicating augmented function. In contrast, a second intra-amniotic endotoxin injection 7 days after the initial endotoxin exposure suppressed monocyte function at 14 days. The fetal monocytes demonstrated patterns of responses consistent with endotoxin tolerance (immune paralysis) as well as maturation of function. Modulation of fetal innate immune responses by exposure to inflammation may alter subsequent immune adaptation after birth.
Collapse
Affiliation(s)
- Boris W Kramer
- University Children's Hospital, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Kramer BW, Ikegami M, Moss TJM, Nitsos I, Newnham JP, Jobe AH. Antenatal betamethasone changes cord blood monocyte responses to endotoxin in preterm lambs. Pediatr Res 2004; 55:764-8. [PMID: 14973182 DOI: 10.1203/01.pdr.0000120678.72485.19] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Corticosteroids are routinely administered to women at risk for preterm delivery to induce fetal lung maturation. Antenatal corticosteroids have immunomodulatory effects on fetal immune cells that are poorly understood. We hypothesized that maternal betamethasone would alter in fetal monocytes both the initiation of inflammation in response to pro-inflammatory stimuli and the resolution of inflammation by phagocytosis of apoptotic neutrophils. Preterm lambs at 124 d gestation were delivered 15 h, 1 d, 2 d, or 7 d after 0.5 mg/kg maternal intramuscular betamethasone. Monocytes from cord blood were isolated and cultured and results were compared with monocytes from preterm lambs exposed to maternal saline or monocytes from adult sheep. Phagocytosis of Escherichia coli was not changed, however, phagocytosis of apoptotic neutrophils was low in fetal monocytes but increased after 7 d exposure to maternal betamethasone to the level found in adult monocytes. Hydrogen peroxide production after endotoxin stimulus was significantly reduced to 7.1 +/- 2.2 micromol at 5 h, 8.7 +/- 2.9 micromol at 24 h, and 4.1 +/- 1.9 micromol at 48 h versus 16.4 +/- 3.6 micromol in control animals; at 7 d, the hydrogen peroxide production increased to 74.3 +/- 19.7 micromol (p < 0.05, per 10(6) monocytes). IL-6 production was reduced at 15 h after maternal betamethasone but at no other time point. Maternal betamethasone initially suppressed several fetal monocyte functions, however, at 7 d, measurements of initiation and resolution of inflammation were increased to levels similar to monocytes from adult sheep. The time-dependent changes in maternal betamethasone modulation of the responses of fetal monocytes may influence immune function of the preterm lamb after delivery.
Collapse
Affiliation(s)
- Boris W Kramer
- University Children's Hospital, 97080 Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Ikegami M, Kallapur SG, Jobe AH. Initial responses to ventilation of premature lambs exposed to intra-amniotic endotoxin 4 days before delivery. Am J Physiol Lung Cell Mol Physiol 2004; 286:L573-9. [PMID: 14617517 DOI: 10.1152/ajplung.00211.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Preterm delivery is frequently preceded by chorioamnionitis, resulting in exposure of the fetal lung to inflammation. We hypothesized that ventilation of the antenatally inflamed lung would result in amplification of the lung injury. Therefore, we induced fetal lung inflammation with intra-amniotic endotoxin (10 mg of Escherichia coli 055:B5) 4 days before premature delivery at 130 days of gestation. Lung function and lung inflammation after surfactant treatment and 4 h of mechanical ventilation were evaluated. Inflammatory cell numbers in amniotic fluid were increased >10-fold by antenatal endotoxin exposure. Antenatal endotoxin exposure had minimal effects on blood pressure, heart rate, lung compliance, and blood gas values. The endotoxin-exposed lungs required higher ventilation pressures. Ventilation did not increase the number of inflammatory cells or the protein in bronchoalveolar lavage fluid of the endotoxin-exposed animals above that measured in endotoxin-exposed fetuses that were not ventilated. IL-1β, IL-6, and IL-8 mRNA in cells from bronchoalveolar lavage fluid were increased by antenatal endotoxin exposure but not changed by ventilation. IL-1β and IL-8 protein was increased in lung tissue by 4 h of ventilation. Very little inflammation was induced by ventilation in this premature lamb model of surfactant treatment and gentle ventilation. After lung inflammation was induced by intra-amniotic endotoxin injection, ventilation did not increase lung injury.
Collapse
Affiliation(s)
- Machiko Ikegami
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA.
| | | | | |
Collapse
|
35
|
Ikegami M, Moss TJM, Kallapur SG, Mulrooney N, Kramer BW, Nitsos I, Bachurski CJ, Newnham JP, Jobe AH. Minimal lung and systemic responses to TNF-alpha in preterm sheep. Am J Physiol Lung Cell Mol Physiol 2003; 285:L121-9. [PMID: 12611817 DOI: 10.1152/ajplung.00393.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
TNF-alpha has been associated with chorioamnionitis and the subsequent development of bronchopulmonary dysplasia in preterm infants. We asked whether bioactive recombinant ovine TNF-alpha could induce chorioamnionitis, lung inflammation, lung maturation, and systemic effects in fetal sheep. We compared the responses to IL-1alpha, a cytokine known to induce these responses in preterm sheep. Intra-amniotic TNF-alpha caused no chorioamnionitis, no lung maturation, and a very small increase in inflammatory cells in the fetal lung after 5 h, 2 days (d), and 7 d. In contrast, IL-1alpha induced inflammation and lung maturation. TNF-alpha given into the airways at birth increased granulocytes in the bronchoalveolar lavage fluid of ventilated preterm lungs and decreased the mRNA for surfactant protein C but did not adversely effect postnatal lung function. An intravascular injection of IL-1alpha caused a systemic inflammatory response in fetal sheep, whereas there was no fetal response to intravascular TNF-alpha. Fetal and newborn preterm sheep are minimally responsive to TNF-alpha. Therefore, the presence of a mediator such as TNF-alpha in a developing animal does not necessarily mean that it is causing the responses anticipated from previous results in adult animals.
Collapse
Affiliation(s)
- Machiko Ikegami
- Cincinnati Children's Hospital Medical Center, Division of Pulmonary Biology, 3333 Burnet Ave., Cincinnati, OH 45229-3039, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kallapur SG, Kramer BW, Moss TJM, Newnham JP, Jobe AH, Ikegami M, Bachurski CJ. Maternal glucocorticoids increase endotoxin-induced lung inflammation in preterm lambs. Am J Physiol Lung Cell Mol Physiol 2003; 284:L633-42. [PMID: 12471018 DOI: 10.1152/ajplung.00344.2002] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Antenatal betamethasone (Beta) is widely used in women with asymptomatic chorioamnionitis at risk for preterm delivery, but its effects on fetal inflammation are unstudied. Groups of ewes at 109 +/- 1 days of gestation received the following treatments: intra-amniotic (IA) saline (control), 0.5 mg/kg intramuscular Beta, 10 mg IA endotoxin (Endo), and Beta + 2 h later Endo (Beta + Endo). Beta suppressed Endo-induced lung inflammation at 1 day. However, compared with Endo 5 days after treatment, Beta + Endo lambs had increased alveolar neutrophils, proinflammatory cytokine mRNA expression, and serum amyloid A3 (SAA3) mRNA expression. IL-1beta mRNA expression was localized to the inflammatory cells, whereas SAA3 mRNA expression was induced in the bronchial epithelium and the inflammatory cells. Compared with Endo, Beta + Endo lambs had increased lung inflammation but equivalent lung volumes 15 days after treatment. The late increase in inflammation in the Beta + Endo animals suggests that glucocorticoids impair the ability of the preterm lung to downregulate Endo-induced inflammation after fetal clearance of the glucocorticoids. These results have implications for lung inflammation and bronchopulmonary dysplasia in preterm infants exposed to chorioamnionitis and maternal glucocorticoids.
Collapse
Affiliation(s)
- Suhas G Kallapur
- Cincinnati Children's Hospital Medical Center, Division of Pulmonary Biology, Ohio 45229-3039, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Jobe AH. Antenatal factors and the development of bronchopulmonary dysplasia. SEMINARS IN NEONATOLOGY : SN 2003; 8:9-17. [PMID: 12667826 DOI: 10.1016/s1084-2756(02)00188-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The lung of the preterm fetus is often exposed to antenatal glucocorticoids, and histologic chorioamnionitis is frequent. Clinically and experimentally, antenatal glucocorticoids and/or chorioamnionitis are associated with early lung maturation, but in experimental models, both glucocorticoids and intra-uterine inflammation decrease alveolarization. Experimental chorioamnionitis also can amplify the inflammatory response of the preterm lung to mechanical ventilation. In this article, the hypothesis developed is that bronchopulmonary dysplasia occurs because of repetitive adverse lung exposures, or hits, and that the initial hits may be antenatal glucocorticoid exposure and/or antenatal inflammation.
Collapse
Affiliation(s)
- Alan H Jobe
- Division of Pulmonary Biology, Cincinnati Children's Hospital, 3333 Burnet Avenue, 45229-3039, Cincinnati,OH, USA.
| |
Collapse
|