1
|
Freitas-Oliveira R, Lima-Ribeiro MS, Terribile LC. No evidence for niche competition in the extinction of the South American saber-tooth species. NPJ BIODIVERSITY 2024; 3:11. [PMID: 39242707 PMCID: PMC11332042 DOI: 10.1038/s44185-024-00045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/22/2024] [Indexed: 09/09/2024]
Abstract
The end of South American isolation during the Great American Biotic Interchange (GABI) promoted the contact between South and North American saber-tooth forms that evolved in isolation. This contact may have driven saber-tooth species to a competitive interaction, resulting in the extinction of the South American saber-tooth form. Here, we used paleoclimatic data to compare the climatic niche of the saber-tooth forms Thylacosmilus atrox (from South America), Smilodon fatalis, and Smilodon populator (both originally from North America). We evaluated niche width, overlap, and similarity to infer potential geographic distribution overlap and competition between these North and South American predators. To do so, we obtained the climatic variables from sites where occurrence fossil records were available. Our results suggest that T. atrox had a narrower climatic niche compared to Smilodon species. Although we found a significant climatic niche overlap and similarity between S. fatalis and T. atrox, it seems unlikely that both species have co-occurred. Low niche overlap and similarity between T. atrox and S. populator dismiss competitive interaction between them. Moreover, climatic niche and low tolerance for environmental changes may have been the cause of the South American saber-tooth extinction.
Collapse
Affiliation(s)
- Roniel Freitas-Oliveira
- Programa de Pós-Graduação em Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil.
- Laboratório de Macroecologia, Universidade Federal de Jataí, UFJ, Jataí, GO, Brazil.
| | - Matheus S Lima-Ribeiro
- National Institute for Science and Technology (INCT) in Ecology, Evolution and Biodiversity Conservation, Goiânia, Goiás, Brazil
| | | |
Collapse
|
2
|
Gaillard C, MacPhee RDE, Forasiepi AM. Seeing through the eyes of the sabertooth Thylacosmilus atrox (Metatheria, Sparassodonta). Commun Biol 2023; 6:257. [PMID: 36944801 PMCID: PMC10030895 DOI: 10.1038/s42003-023-04624-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
The evolution of mammalian vision is difficult to study because the actual receptor organs-the eyes-are not preserved in the fossil record. Orbital orientation and size are the traditional proxies for inferring aspects of ocular function, such as stereoscopy. Adaptations for good stereopsis have evolved in living predaceous mammals, and it is reasonable to infer that fossil representatives would follow the same pattern. This applies to the sparassodonts, an extinct group of South American hypercarnivores related to marsupials, with one exception. In the sabertooth Thylacosmilus atrox, the bony orbits were notably divergent, like those of a cow or a horse, and thus radically differing from conditions in any other known mammalian predator. Orbital convergence alone, however, does not determine presence of stereopsis; frontation and verticality of the orbits also play a role. We show that the orbits of Thylacosmilus were frontated and verticalized in a way that favored some degree of stereopsis and compensated for limited convergence in orbital orientation. The forcing function behind these morphological tradeoffs was the extraordinary growth of its rootless canines, which affected skull shape in Thylacosmilus in numerous ways, including relative orbital displacement.
Collapse
Affiliation(s)
- Charlène Gaillard
- Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CCT-CONICET Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, CP5500, Mendoza, Argentina.
| | - Ross D E MacPhee
- Department of Mammalogy, American Museum of Natural History, 200 Central Park West, 10024-5102, New York, NY, USA
| | - Analía M Forasiepi
- Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CCT-CONICET Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, CP5500, Mendoza, Argentina
| |
Collapse
|
4
|
MacPhee R, Del Pino SH, Kramarz A, Forasiepi AM, Bond M, Sulser RB. Cranial Morphology and Phylogenetic Relationships of Trigonostylops wortmani, an Eocene South American Native Ungulate. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2021. [DOI: 10.1206/0003-0090.449.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- R.D.E. MacPhee
- Department of Mammalogy/Vertebrate Zoology and Richard Gilder Graduate School, American Museum of Natural History
| | | | - Alejandro Kramarz
- Sección Paleontología de Vertebrados, Museo Argentino de Ciencias Naturales Bernardino Rivadavia, CONICET, Buenos Aires, Argentina
| | | | - Mariano Bond
- Departamento Científico de Paleontología Vertebrados, Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina
| | - R. Benjamin Sulser
- Department of Mammalogy/Vertebrate Zoology and Richard Gilder Graduate School, American Museum of Natural History
| |
Collapse
|
5
|
Smaers JB, Rothman RS, Hudson DR, Balanoff AM, Beatty B, Dechmann DKN, de Vries D, Dunn JC, Fleagle JG, Gilbert CC, Goswami A, Iwaniuk AN, Jungers WL, Kerney M, Ksepka DT, Manger PR, Mongle CS, Rohlf FJ, Smith NA, Soligo C, Weisbecker V, Safi K. The evolution of mammalian brain size. SCIENCE ADVANCES 2021; 7:7/18/eabe2101. [PMID: 33910907 PMCID: PMC8081360 DOI: 10.1126/sciadv.abe2101] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/10/2021] [Indexed: 05/08/2023]
Abstract
Relative brain size has long been considered a reflection of cognitive capacities and has played a fundamental role in developing core theories in the life sciences. Yet, the notion that relative brain size validly represents selection on brain size relies on the untested assumptions that brain-body allometry is restrained to a stable scaling relationship across species and that any deviation from this slope is due to selection on brain size. Using the largest fossil and extant dataset yet assembled, we find that shifts in allometric slope underpin major transitions in mammalian evolution and are often primarily characterized by marked changes in body size. Our results reveal that the largest-brained mammals achieved large relative brain sizes by highly divergent paths. These findings prompt a reevaluation of the traditional paradigm of relative brain size and open new opportunities to improve our understanding of the genetic and developmental mechanisms that influence brain size.
Collapse
Affiliation(s)
- J B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA.
- Division of Anthropology, American Museum of Natural History, New York, NY 10024, USA
| | - R S Rothman
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - D R Hudson
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - A M Balanoff
- Department of Psychological and Brain Sciences Johns Hopkins University, Baltimore, MD 21218, USA
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
| | - B Beatty
- NYIT College of Osteopathic Medicine, Old Westbury, NY 11568, USA
- United States National Museum, Smithsonian Institution, Washington, DC 20560, USA
| | - D K N Dechmann
- Department of Migration, Max-Planck Institute of Animal Behavior, 78315 Radolfzell, Germany
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - D de Vries
- Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester M5 4WX, UK
| | - J C Dunn
- Division of Biological Anthropology, University of Cambridge, Cambridge CB2 3QG, UK
- Behavioral Ecology Research Group, Anglia Ruskin University, Cambridge CB1 1PT, UK
- Department of Cognitive Biology, University of Vienna, Vienna 1090, Austria
| | - J G Fleagle
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - C C Gilbert
- NYIT College of Osteopathic Medicine, Old Westbury, NY 11568, USA
- Department of Anthropology, Hunter College, New York, NY 10065, USA
- PhD Program in Anthropology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- New York Consortium in Evolutionary Primatology, New York, NY 10065, USA
| | - A Goswami
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - A N Iwaniuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K-3M4, Canada
| | - W L Jungers
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Association Vahatra, BP 3972, Antananarivo 101, Madagascar
| | - M Kerney
- Behavioral Ecology Research Group, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - D T Ksepka
- Bruce Museum, Greenwich, CT 06830, USA
- Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA
- Division of Science and Education, Field Museum of Natural History, Chicago, IL 60605, USA
- Department of Paleobiology, Smithsonian Institution, Washington, DC 20013, USA
| | - P R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - C S Mongle
- Division of Anthropology, American Museum of Natural History, New York, NY 10024, USA
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794, USA
| | - F J Rohlf
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA
| | - N A Smith
- Division of Science and Education, Field Museum of Natural History, Chicago, IL 60605, USA
- Campbell Geology Museum, Clemson University, Clemson, SC 29634, USA
| | - C Soligo
- Department of Anthropology, University College London, London WC1H 0BW, UK
| | - V Weisbecker
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - K Safi
- Department of Migration, Max-Planck Institute of Animal Behavior, 78315 Radolfzell, Germany
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
7
|
M Janis C, Figueirido B, DeSantis L, Lautenschlager S. An eye for a tooth: Thylacosmilus was not a marsupial "saber-tooth predator". PeerJ 2020; 8:e9346. [PMID: 32617190 PMCID: PMC7323715 DOI: 10.7717/peerj.9346] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/21/2020] [Indexed: 11/20/2022] Open
Abstract
Background Saber-toothed mammals, now all extinct, were cats or “cat-like” forms with enlarged, blade-like upper canines, proposed as specialists in taking large prey. During the last 66 Ma, the saber-tooth ecomorph has evolved convergently at least in five different mammalian lineages across both marsupials and placentals. Indeed, Thylacosmilus atrox, the so-called “marsupial saber-tooth,” is often considered as a classic example of convergence with placental saber-tooth cats such as Smilodon fatalis. However, despite its superficial similarity to saber-toothed placentals, T. atrox lacks many of the critical anatomical features related to their inferred predatory behavior—that of employing their enlarged canines in a killing head strike. Methods Here we follow a multi-proxy approach using canonical correspondence analysis of discrete traits, biomechanical models of skull function using Finite Element Analysis, and 3D dental microwear texture analysis of upper and lower postcanine teeth, to investigate the degree of evolutionary convergence between T. atrox and placental saber-tooths, including S. fatalis. Results Correspondence analysis shows that the craniodental features of T. atrox are divergent from those of placental saber-tooths. Biomechanical analyses indicate a superior ability of T. atrox to placental saber-tooths in pulling back with the canines, with the unique lateral ridge of the canines adding strength to this function. The dental microwear of T. atrox indicates a soft diet, resembling that of the meat-specializing cheetah, but its blunted gross dental wear is not indicative of shearing meat. Conclusions Our results indicate that despite its impressive canines, the “marsupial saber-tooth” was not the ecological analogue of placental saber-tooths, and likely did not use its canines to dispatch its prey. This oft-cited example of convergence requires reconsideration, and T. atrox may have had a unique type of ecology among mammals.
Collapse
Affiliation(s)
- Christine M Janis
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom.,Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States of America
| | - Borja Figueirido
- Departamento de Ecología y Geología, Universidad de Málaga, Málaga, Spain
| | - Larisa DeSantis
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States of America.,Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN, United States of America
| | - Stephan Lautenschlager
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|