1
|
Wilford T, Bartlett PD, Schlag A, Jasaitis L, Pandha H, Pierce AJ, Hughes R. Solving selectivity issues in LBAs: case study using Gyrolab to quantify CB307, a bispecific Humabody in human serum. Bioanalysis 2024; 16:757-769. [PMID: 38957926 PMCID: PMC11389741 DOI: 10.1080/17576180.2024.2365545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
Aim: Endogenous interferents can cause nonselectivity in ligand binding pharmacokinetic assays, leading to inaccurate quantification of drug concentrations. We describe the development of a Gyrolab immunoassay to quantify a new modality, CB307 and discuss strategies implemented to overcome matrix effects and achieve selectivity at the desired sensitivity.Results: Matrix effects were mitigated using strategies including increasing minimum required dilution (MRD) and lower limit of quantification, optimization of antibody orientation, assay buffer and solid phase.Conclusion: The strategies described resulted in a selective method for CB307 in disease state matrix that met bioanalytical method validation (BMV) guidance and is currently used to support clinical pharmacokinetic sample analysis in the first-in-human POTENTIA clinical study (NCT04839991) as a secondary clinical end point.
Collapse
Affiliation(s)
- Thomas Wilford
- Resolian, Fordham, Cambridgeshire CB7 5WW, United Kingdom of Great Britain & Northern Ireland
| | - Phillip D Bartlett
- Crescendo Biologics Limited, Cambridge CB22 3AT, United Kingdom of Great Britain & Northern Ireland
| | - Anna Schlag
- Crescendo Biologics Limited, Cambridge CB22 3AT, United Kingdom of Great Britain & Northern Ireland
| | - Lukas Jasaitis
- Crescendo Biologics Limited, Cambridge CB22 3AT, United Kingdom of Great Britain & Northern Ireland
| | - Hardev Pandha
- University of Surrey, School of Biosciences, Guildford GU2 7XH, Surrey, United Kingdom of Great Britain & Northern Ireland
| | - Andrew J Pierce
- Crescendo Biologics Limited, Cambridge CB22 3AT, United Kingdom of Great Britain & Northern Ireland
| | - Richard Hughes
- Resolian, Fordham, Cambridgeshire CB7 5WW, United Kingdom of Great Britain & Northern Ireland
| |
Collapse
|
2
|
Muntoni F, Byrne BJ, McMillan HJ, Ryan MM, Wong BL, Dukart J, Bansal A, Cosson V, Dreghici R, Guridi M, Rabbia M, Staunton H, Tirucherai GS, Yen K, Yuan X, Wagner KR. The Clinical Development of Taldefgrobep Alfa: An Anti-Myostatin Adnectin for the Treatment of Duchenne Muscular Dystrophy. Neurol Ther 2024; 13:183-219. [PMID: 38190001 PMCID: PMC10787703 DOI: 10.1007/s40120-023-00570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024] Open
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a genetic muscle disorder that manifests during early childhood and is ultimately fatal. Recently approved treatments targeting the genetic cause of DMD are limited to specific subpopulations of patients, highlighting the need for therapies with wider applications. Pharmacologic inhibition of myostatin, an endogenous inhibitor of muscle growth produced almost exclusively in skeletal muscle, has been shown to increase muscle mass in several species, including humans. Taldefgrobep alfa is an anti-myostatin recombinant protein engineered to bind to and block myostatin signaling. Preclinical studies of taldefgrobep alfa demonstrated significant decreases in myostatin and increased lower limb volume in three animal species, including dystrophic mice. METHODS This manuscript reports the cumulative data from three separate clinical trials of taldefgrobep alfa in DMD: a phase 1 study in healthy adult volunteers (NCT02145234), and two randomized, double-blind, placebo-controlled studies in ambulatory boys with DMD-a phase 1b/2 trial assessing safety (NCT02515669) and a phase 2/3 trial including the North Star Ambulatory Assessment (NSAA) as the primary endpoint (NCT03039686). RESULTS In healthy adult volunteers, taldefgrobep alfa was generally well tolerated and resulted in a significant increase in thigh muscle volume. Treatment with taldefgrobep alfa was associated with robust dose-dependent suppression of free myostatin. In the phase 1b/2 trial, myostatin suppression was associated with a positive effect on lean body mass, though effects on muscle mass were modest. The phase 2/3 trial found that the effects of treatment did not meet the primary endpoint pre-specified futility analysis threshold (change from baseline of ≥ 1.5 points on the NSAA total score). CONCLUSIONS The futility analysis demonstrated that taldefgrobep alfa did not result in functional change for boys with DMD. The program was subsequently terminated in 2019. Overall, there were no safety concerns, and no patients were withdrawn from treatment as a result of treatment-related adverse events or serious adverse events. TRIAL REGISTRATION NCT02145234, NCT02515669, NCT03039686.
Collapse
Affiliation(s)
- Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
- NIHR Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London, UK
| | | | - Hugh J McMillan
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Monique M Ryan
- Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne, Australia
| | - Brenda L Wong
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | | | - Roxana Dreghici
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
- Solid Biosciences Inc., Cambridge, MA, USA
| | | | | | | | | | - Karl Yen
- Genentech Inc., South San Francisco, CA, USA
- Sanofi, Paris, France
| | | | - Kathryn R Wagner
- F. Hoffmann-La Roche Ltd, Basel, Switzerland.
- The Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Surface plasmon resonance as a tool for ligand-binding assay reagent characterization in bioanalysis of biotherapeutics. Bioanalysis 2018; 10:559-576. [DOI: 10.4155/bio-2017-0271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ligand-binding assay (LBA) performance depends on quality reagents. Strategic reagent screening and characterization is critical to LBA development, optimization and validation. Application of advanced technologies expedites the reagent screening and assay development process. By evaluating surface plasmon resonance technology that offers high-throughput kinetic information, this article aims to provide perspectives on applying the surface plasmon resonance technology to strategic LBA critical reagent screening and characterization supported by a number of case studies from multiple biotherapeutic programs.
Collapse
|
4
|
Jiang H, Kozhich A, Cummings J, Gambardella J, Zambito F, Titsch C, Haulenbeek J, Phillips K, Fergus R, Myler H. Singlicate Ligand Binding Assay Using an Automated Microfluidic System: a Clinical Case Study. AAPS JOURNAL 2017; 19:1461-1468. [DOI: 10.1208/s12248-017-0105-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/26/2017] [Indexed: 11/30/2022]
|