1
|
Chen S, Kiguchi T, Nagata Y, Tamai Y, Ikeda T, Kajiya R, Ono T, Sugiyama D, Nishikawa H, Akatsuka Y. A simple method to distinguish residual elotuzumab from monoclonal paraprotein in immunofixation assays for multiple myeloma patients. Int J Hematol 2021; 113:473-479. [PMID: 33507526 DOI: 10.1007/s12185-021-03088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/24/2022]
Abstract
Negative immunofixation electrophoresis (IFE) of serum and/or urine is a diagnostic marker for determining a complete response (CR) after immunotherapy for multiple myeloma (MM). However, residual therapeutic antibodies such as elotuzumab (IgG-κ), can compromise IFE evaluation when the affected immunoglobulins belong to the same IgG-κ subclass. We thus sought to develop a simple and rapid method to treat patient serum before IFE to distinguish the residual elotuzumab. Serum samples from patients receiving elotuzumab were treated with a predetermined amount of soluble signaling lymphocyte activation molecule F7 (SLAMF7) protein and then subjected to conventional IFE testing. We tested our method in samples from 12 patients. The IgG-κ band in IFE disappeared or shifted after elotuzumab treatment in four patients with no bone marrow minimal residual disease and normalized free light chain, whereas seven patients with any sign of residual MM showed a remaining IgG-κ band after treatment. One-hour incubation of samples with 6-9 molar excess soluble SLAMF7 before IFE was sufficient to distinguish residual elotuzumab in 11 of 12 samples. This simple method does not require special reagents, can be performed in most clinical laboratories, and enables differentiation between patients with a CR and those requiring further treatment.
Collapse
Affiliation(s)
- Shurui Chen
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Toru Kiguchi
- Department of Hematology, Chugoku Central Hospital, Fukuyama, Japan
| | - Yasuyuki Nagata
- Division of Hematology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yotaro Tamai
- Division of Hematology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Takeshi Ikeda
- Division of Hematology and Stem Cell Transplantation, Shizuoka Cancer Center, Shizuoka, Japan
| | - Ryoko Kajiya
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Takaaki Ono
- Division of Hematology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Daisuke Sugiyama
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yoshiki Akatsuka
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
2
|
Meyers S, Henning C, Swift R, Eades B, Spektor TM, Berenson JR. Treatment With Elotuzumab in Combination With Dexamethasone Achieves a Complete Remission in a Previously Treated Patient With Multiple Myeloma: A Case Report. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:e801-e804. [PMID: 32682685 DOI: 10.1016/j.clml.2020.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 11/19/2022]
Affiliation(s)
| | | | | | | | | | - James R Berenson
- James R. Berenson, MD, Inc, West Hollywood, CA; Oncotherapeutics, West Hollywood, CA; Institute for Myeloma and Bone Cancer Research, West Hollywood, CA.
| |
Collapse
|
3
|
Shah N, Aiello J, Avigan DE, Berdeja JG, Borrello IM, Chari A, Cohen AD, Ganapathi K, Gray L, Green D, Krishnan A, Lin Y, Manasanch E, Munshi NC, Nooka AK, Rapoport AP, Smith EL, Vij R, Dhodapkar M. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of multiple myeloma. J Immunother Cancer 2020; 8:e000734. [PMID: 32661116 PMCID: PMC7359060 DOI: 10.1136/jitc-2020-000734] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2020] [Indexed: 12/24/2022] Open
Abstract
Outcomes in multiple myeloma (MM) have improved dramatically in the last two decades with the advent of novel therapies including immunomodulatory agents (IMiDs), proteasome inhibitors and monoclonal antibodies. In recent years, immunotherapy for the treatment of MM has advanced rapidly, with the approval of new targeted agents and monoclonal antibodies directed against myeloma cell-surface antigens, as well as maturing data from late stage trials of chimeric antigen receptor CAR T cells. Therapies that engage the immune system to treat myeloma offer significant clinical benefits with durable responses and manageable toxicity profiles, however, the appropriate use of these immunotherapy agents can present unique challenges for practicing physicians. Therefore, the Society for Immunotherapy of Cancer convened an expert panel, which met to consider the current role of approved and emerging immunotherapy agents in MM and provide guidance to the oncology community by developing consensus recommendations. As immunotherapy evolves as a therapeutic option for the treatment of MM, these guidelines will be updated.
Collapse
Affiliation(s)
- Nina Shah
- Division of Hematology-Oncology, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jack Aiello
- Patient Empowerment Network, San Jose, California, USA
| | - David E Avigan
- Division of Hematology and Hematologic Malignancies, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jesus G Berdeja
- Department of Medicine, Sarah Cannon Research Institute, Nashville, Tennessee, USA
| | - Ivan M Borrello
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center of Johns Hopkins, Baltimore, Maryland, USA
| | - Ajai Chari
- Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adam D Cohen
- Department of Medicine, Abramson Cancer Center at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karthik Ganapathi
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Lissa Gray
- University of California San Francisco, San Francisco, CA, USA
| | - Damian Green
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Amrita Krishnan
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Multiple Myeloma Center for Clinical Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Yi Lin
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Elisabet Manasanch
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nikhil C Munshi
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ajay K Nooka
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia, USA
| | - Aaron P Rapoport
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Eric L Smith
- Myeloma Service and Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ravi Vij
- Division of Medical Oncology, Siteman Cancer Center, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Madhav Dhodapkar
- School of Medicine, Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Suzuki A, Kakugawa S, Miyoshi M, Hori M, Suzuki K, Furukawa Y, Ohta K. Soluble SLAMF7 is a predictive biomarker for elotuzumab therapy. Leukemia 2020; 34:3088-3090. [PMID: 32398792 DOI: 10.1038/s41375-020-0860-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/30/2020] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Mitsuo Hori
- Department of Hematology, Ibaraki Prefectural Central Hospital, Kasama, Japan
| | - Kenshi Suzuki
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Yusuke Furukawa
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Kensuke Ohta
- Hematology Ohta Clinic, Shinsaibashi, Osaka, Japan
| |
Collapse
|
5
|
Chen S, Li D, Wang Y, Li Q, Dong Z. Regulation of MHC class I-independent NK cell education by SLAM family receptors. Adv Immunol 2019; 145:159-185. [PMID: 32081197 DOI: 10.1016/bs.ai.2019.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Seven members of signaling lymphocytic activation molecule (SLAM) family receptors (SFRs) are ubiquitously expressed on hematopoietic cells and they play critical roles in immune cell differentiation and activation. The engagement of these receptors transmits intracellular signaling mainly by recruiting SLAM-associated protein (SAP) and its related adaptors, EWS-FLI1-activated transcript-2 (EAT-2) and EAT-2-related transducer (ERT). The critical roles of SFRs and SAP-family adaptors are highlighted by the discovery that SAP is mutated in human X-linked lymphoproliferative (XLP1) disease in which the contact between T and B cells in germinal center and cytotoxic lymphocytes (NK cells and CD8+ T cells) function are severely compromised. These immune defects are closely associated with the defective antibody production and the high incidence of lymphoma in the patients with XLP1. In addition to these well-known functions, SLAM-SAP family is involved in NK cell education, a process describing NK cell functional competence. In this chapter, we will mainly discuss these unappreciated roles of SAP-dependent and SAP-independent SFR signaling in regulating MHC-I-independent NK cell education.
Collapse
Affiliation(s)
- Shasha Chen
- School of Medicine and Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China.
| | - Dan Li
- School of Medicine and Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Yuande Wang
- School of Medicine and Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Qiaozhen Li
- School of Medicine and Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Zhongjun Dong
- School of Medicine and Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China.
| |
Collapse
|
6
|
Soluble SLAMF7 promotes the growth of myeloma cells via homophilic interaction with surface SLAMF7. Leukemia 2019; 34:180-195. [PMID: 31358854 DOI: 10.1038/s41375-019-0525-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/24/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022]
Abstract
SLAMF7 is expressed mainly on multiple myeloma (MM) cells and considered an ideal target for immunotherapeutic approaches. Indeed, elotuzumab, an anti-SLAMF7 antibody, is used for the treatment of MM in combination with immunomodulatory drugs. SLAMF7 is cleaved via unknown mechanisms and detected as a soluble form (sSLAMF7) exclusively in the serum of MM patients; however, little is known about the role of sSLAMF7 in MM biology. In this study, we found that sSLAMF7 enhanced the growth of MM cells via homophilic interaction with surface SLAMF7 and subsequent activation of the SHP-2 and ERK signaling pathways. Elotuzumab suppressed sSLAMF7-induced MM cell growth both in vitro and in vivo. Promoter analyses identified IKZF1 (Ikaros) as a pivotal transcriptional activator of the SLAMF7 gene. Pharmacological targeting of Ikaros by lenalidomide and its analog pomalidomide downregulated SLAMF7 expression and ameliorated the response of MM cells to sSLAMF7. Elotuzumab blocked the growth-promoting function of sSLAMF7 when combined with lenalidomide in a murine xenograft model. Neutralization of sSLAMF7 is a novel antimyeloma mechanism of elotuzumab, which is enhanced by immunomodulatory drugs via downregulation of surface SLAMF7 expression on MM cells. These findings may provide important information for the optimal use of elotuzumab in MM treatment.
Collapse
|
7
|
Trudel S, Moreau P, Touzeau C. Update on elotuzumab for the treatment of relapsed/refractory multiple myeloma: patients' selection and perspective. Onco Targets Ther 2019; 12:5813-5822. [PMID: 31410026 PMCID: PMC6645600 DOI: 10.2147/ott.s174640] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/31/2019] [Indexed: 11/23/2022] Open
Abstract
Monoclonal antibodies (mAbs) targeting antigens expressed by plasma cells demonstrated major clinical activity in multiple myeloma patients and therefore became a new major class of drug for these patients. Elotuzumab is a humanized mAb targeting the cell surface signaling lymphocytic activation molecule family member 7, a glycoprotein highly expressed on plasma cells, that is the second mAb approved for the treatment of myeloma patients. The mechanism of action of elotuzumab includes natural killer cell (NK) mediated antibody-dependent cellular cytotoxicity and direct activation of NK-cells. Elotuzumab has been approved in combination with lenalidomide and dexamethasone (Elo-Rd) and pomalidomide and dexamethasone (Elo-Pd) for the treatment of relapsed myeloma patients. The present review will focus on elotuzumab, providing a summary of the mechanism of action, efficacy and safety and taking into consideration patients’ selection.
Collapse
Affiliation(s)
- Sabrina Trudel
- Hematology Department, University Hospital, Nantes, France
| | - Philippe Moreau
- Hematology Department, University Hospital, Nantes, France.,Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université d'Angers, Université de Nantes, Nantes, France.,Site de Recherche Intégrée sur le Cancer (SIRIC), Imaging and Longitudinal Investigations to Ameliorate Decision-making (ILIAD), Nantes, France
| | - Cyrille Touzeau
- Hematology Department, University Hospital, Nantes, France.,Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université d'Angers, Université de Nantes, Nantes, France.,Site de Recherche Intégrée sur le Cancer (SIRIC), Imaging and Longitudinal Investigations to Ameliorate Decision-making (ILIAD), Nantes, France
| |
Collapse
|
8
|
Ishibashi M, Soeda S, Sasaki M, Handa H, Imai Y, Tanaka N, Tanosaki S, Ito S, Odajima T, Sugimori H, Asayama T, Sunakawa M, Kaito Y, Kinoshita R, Kuribayashi Y, Onodera A, Moriya K, Tanaka J, Tsukune Y, Komatsu N, Inokuchi K, Tamura H. Clinical impact of serum soluble SLAMF7 in multiple myeloma. Oncotarget 2018; 9:34784-34793. [PMID: 30410677 PMCID: PMC6205184 DOI: 10.18632/oncotarget.26196] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/17/2018] [Indexed: 11/25/2022] Open
Abstract
The signaling lymphocytic activation molecule family (SLAMF7; also known as CS1 or CD319) is highly expressed on plasma cells from multiple myeloma (MM) as well as natural killer (NK) cells and is a well-known therapeutic target of elotuzumab. The objective of this study was to evaluate the clinical significance of serum soluble SLAMF7 (sSLAMF7) levels in patients with MM (n=103) and furthermore the impact of sSLMF7 on the antitumor activity of anti-SLAMF7 antibody. Thirty-one percent of MM patients, but not patients with monoclonal gammopathy of undetermined significance and healthy controls, had detectable levels of serum sSLAMF7, which were significantly increased in advanced MM patients. Further, MM in sSLAMF7-postive patients exhibited aggressive clinical characteristics with shorter progression-free survival times in comparison with sSLAMF7-negative patients. In responders to MM therapy, the levels of sSLAMF7 were undetectable or decreased compared with those before treatment. In addition, the anti-SLAMF7 antibody-mediated antibody-dependent cellular cytotoxicity of NK cells against MM cell lines was inhibited by recombinant SLAMF7 protein. Thus, our findings suggest that high concentrations of sSLAMF7, which could transiently suppress the therapeutic effects of elotuzumab, may be a useful indicator of disease progression in MM patients.
Collapse
Affiliation(s)
- Mariko Ishibashi
- Department of Hematology, Nippon Medical School, Tokyo, Japan.,Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Saori Soeda
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Makoto Sasaki
- Division of Hematology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroshi Handa
- Department of Hematology, Gunma University, Gunma, Japan
| | - Yoichi Imai
- Department of Hematology and Oncology, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Norina Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Sakae Tanosaki
- Department of Hematology, The Fraternity Memorial Hospital, Tokyo, Japan
| | - Shigeki Ito
- Department of Clinical Oncology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Takeshi Odajima
- Faculty of Health Science, Daito Bunka University Graduate School of Sports and Health Science, Tokyo, Japan
| | - Hiroki Sugimori
- Department of Preventive Medicine, Daito Bunka University Graduate School of Sports and Health Science, Saitama, Japan
| | - Toshio Asayama
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Mika Sunakawa
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Yuta Kaito
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | | | | | - Asaka Onodera
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Keiichi Moriya
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yutaka Tsukune
- Division of Hematology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Norio Komatsu
- Division of Hematology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Koiti Inokuchi
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Hideto Tamura
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|