1
|
Yan X, Zhang Q, Wang T, Luo Y, Sha X. Evaluation of Different Polysaccharide-Iron Complex Preparations In Vitro and In Vivo. Pharmaceutics 2025; 17:292. [PMID: 40142956 PMCID: PMC11945278 DOI: 10.3390/pharmaceutics17030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Objectives: Iron-deficiency anemia is one of the most common nutritional deficiencies worldwide. Polysaccharide-iron complexes (PICs), as novel organic iron supplements, have garnered increasing attention due to their high bioavailability, minimal gastrointestinal irritation, and favorable tolerability. However, different formulations of PICs can show significant variations in their physicochemical properties and bioavailability. These factors are crucial for clinical efficacy and safety. Methods: This study selected two formulations of polysaccharide-iron complexes: Formulation A (PIC-coated pellets) and Formulation B (PIC powders), with ferrous succinate tablets (Formulation C) used as a control. The focus was on evaluating the molecular weight of the polysaccharides, the levels of free iron, and the dissolution across various dissolution media. Physicochemical properties were compared through particle size analysis, dissolution rate testing, and free iron content determination. Additionally, the pharmacokinetic properties of the two PIC formulations were assessed in a beagle dog model of iron-deficiency anemia. Results: Significant differences were observed in particle appearance and content structure between the two PIC formulations. Formulation A, prepared using pellet technology, exhibited a uniform particle size distribution. Its dissolution rate in acidic environments was significantly lower than that of Formulation B. In simulated gastric fluid, the cumulative iron dissolution rate of Formulation A was less than 15% within two hours, while that of Formulation B exceeded 50%, with substantial batch-to-batch variability. In various dissolution media, Formulation A released 12% of its dissolved iron content in gastric fluid within two hours. In contrast, the absolute free iron content of Formulation B was 8.5 times higher than that of Formulation A in simulated gastric fluid. In the beagle dog model of iron-deficiency anemia, Formulation A showed significantly higher bioavailability, which suggests that the pellet preparation technology improves both the acid resistance and bioavailability of the PIC formulation. Conclusions: The study revealed that Formulation A, prepared using pellet technology, possesses unique quality characteristics. This technology significantly reduces the release of free iron from PICs due to gastric acid action, potentially minimizing gastrointestinal irritation. Moreover, the pellet preparation process improves the acid resistance and bioavailability of PIC formulations, offering a more effective therapeutic option for iron-deficiency anemia. Future research may further explore the potential applications of pellet technology in other iron supplement formulations.
Collapse
Affiliation(s)
| | | | | | | | - Xianyi Sha
- School of Pharmacy, Fudan University, Shanghai 201203, China; (X.Y.); (Q.Z.); (T.W.); (Y.L.)
| |
Collapse
|
2
|
Langguth P, Sharma R, Tulpule S, Hansen M, Auerbach M. Dissimilar ferric derisomaltose formulations - In vitro comparisons between an originator and its intended similars. Eur J Pharm Biopharm 2024; 203:114426. [PMID: 39069010 DOI: 10.1016/j.ejpb.2024.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The complex nature of intravenous (IV) iron formulations makes manufacturing and characterising similars challenging. This study examined whether simple in vitro tests can distinguish the high-dose IV iron formulation, Monofer® (ferric derisomaltose [FDI]), from the first intended copies of FDI, Rapifer® (FDI intended similar A [FDIIS-A]) and Tosiron® (FDI intended similar B [FDIIS-B]), approved in India and Pakistan, respectively. Neither intended similar is available in Europe or the United States. METHODS Iron content, pH, density, non-volatile residue, carbohydrate content, molecular weight distribution, complex robustness (measured using acid hydrolysis half-life [t½]) and free (dialysable) iron content were examined. Mean results from three batches of FDIIS-A were compared with mean values calculated from three batches of Monofer®. Due to product withdrawal, only one batch of FDIIS-B was available for comparison with Monofer®. RESULTS Iron content was similar for all formulations (∼100 mg/mL). The chromatograms (obtained using gel permeation chromatography) of FDIIS-A and FDIIS-B differed from that of Monofer®. FDIIS-A was substantially less robust than Monofer® (t½: 15 h versus 40.3 h); t½ for FDIIS-B was not tested. Free iron content was substantially higher in FDIIS-A (0.091 % w/v) and FDIIS-B (1.0 % w/v) versus Monofer® (<0.003 % w/v). Where tested, remaining parameters varied between the formulations (insufficient sample quantities prevented all tests being conducted for all intended similars). For all tests, greater inter-batch variability was seen for FDIIS-A versus Monofer®. CONCLUSIONS Simple in vitro tests demonstrated that, aside from total iron content, the first intended similars of FDI bear little resemblance to their originator drug. It is clear that the efficacy and safety profile of Monofer® cannot be extrapolated to the two intended similars. The results call for increased regulatory scrutiny of intended IV iron similars.
Collapse
Affiliation(s)
- Peter Langguth
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University of Mainz, Mainz, Germany.
| | - Reetesh Sharma
- Nephrology and Kidney Transplant Medicine, Asian Institute of Medical Sciences, Faridabad, NCR, India.
| | - Sameer Tulpule
- Department of Haematology, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Andheri West, Mumbai, India.
| | | | - Michael Auerbach
- Department of Medicine, Georgetown University School of Medicine, Washington, DC, USA.
| |
Collapse
|
3
|
Digigow R, Burgert M, Luechinger M, Sologubenko A, Rzepiela AJ, Handschin S, Alston AEB, Flühmann B, Philipp E. Nano-scale characterization of iron-carbohydrate complexes by cryogenic scanning transmission electron microscopy: Building the bridge to biorelevant characterization. Heliyon 2024; 10:e36749. [PMID: 39281449 PMCID: PMC11401109 DOI: 10.1016/j.heliyon.2024.e36749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
Iron deficiency and iron deficiency anemia pose significant health challenges worldwide. Iron carbohydrate nanoparticles administered intravenously are a mainstay of treatment to deliver elemental iron safely and effectively. However, despite decades of clinical use, a complete understanding of their physical structure and the significance for their behavior, particularly at the nano-bio interface, is still lacking, underscoring the need to employ more sophisticated characterization methods. Our study used cryogenic Scanning Transmission Electron Microscopy (cryo-STEM) to examine iron carbohydrate nanoparticle morphology. This method builds upon previous research, where direct visualization of the iron cores in these complexes was achieved using cryogenic Transmission Electron Microscopy (cryo-TEM). Our study confirms that the average size of the iron cores within these nanoparticles is approximately 2 nm across all iron-based products studied. Furthermore, our investigation revealed the existence of discernible cluster-like morphologies, not only for ferumoxytol, as previously reported, but also within all the examined iron-carbohydrate products. The application of cryo-STEM for the analyses of product morphologies provides high-contrast and high-resolution images of the nanoparticles, and facilitates the characterization at liquid nitrogen temperature, thereby preserving the structural integrity of these complex samples. The findings from this study offer valuable insights into the physical structure of iron-carbohydrate nanoparticles, a crucial step towards unraveling the intricate relationship between the structure and function of this widely used drug class in treating iron deficiency. Additionally, we developed and utilized the self-supervised machine learning workflow for the image analysis of iron-carbohydrate complexes, which might be further expanded into a useful characterization tool for comparability studies.
Collapse
Affiliation(s)
| | - Michael Burgert
- CSL Vifor, Flughofstrasse 61, CH-8152, Glattbrugg, Switzerland
| | | | - Alla Sologubenko
- Scientific Center for Optical and Electron Microscopy, ScopeM, ETH Zürich, 8093, Zürich, Switzerland
| | - Andrzej J Rzepiela
- Scientific Center for Optical and Electron Microscopy, ScopeM, ETH Zürich, 8093, Zürich, Switzerland
| | - Stephan Handschin
- Scientific Center for Optical and Electron Microscopy, ScopeM, ETH Zürich, 8093, Zürich, Switzerland
| | | | - Beat Flühmann
- CSL Vifor, Flughofstrasse 61, CH-8152, Glattbrugg, Switzerland
| | - Erik Philipp
- CSL Vifor, Flughofstrasse 61, CH-8152, Glattbrugg, Switzerland
| |
Collapse
|
4
|
Bossart J, Rippl A, Barton Alston AE, Flühmann B, Digigow R, Buljan M, Ayala-Nunez V, Wick P. Uncovering the dynamics of cellular responses induced by iron-carbohydrate complexes in human macrophages using quantitative proteomics and phosphoproteomics. Biomed Pharmacother 2023; 166:115404. [PMID: 37657262 DOI: 10.1016/j.biopha.2023.115404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023] Open
Abstract
Iron-carbohydrate complexes are widely used to treat iron deficiencies. Macrophages play a crucial role in the uptake and fate of these nanomedicines, however, how complexed iron carbohydrates are taken up and metabolized by macrophages is still not fully understood. Using a (phospho-)proteomics approach, we assessed differences in protein expression and phosphorylation in M2 macrophages triggered by iron sucrose (IS). Our results show that IS alters the expression of multiple receptors, indicative of a complex entry mechanism. Besides, IS induced an increase in intracellular ferritin, the loss of M2 polarization, protective mechanisms against ferroptosis, and an autophagic response. These data indicate that macrophages can use IS as a source of iron for its storage and later release, however, the excess of iron can cause oxidative stress, which can be successfully regulated by the cells. When comparing IS with ferric carboxymaltose (FCM) and iron isomaltoside-1000 (IIM), complexes with a higher carbohydrate ligand stability, we observed that FCM and IIM are metabolized at a slower rate, and trigger M2 polarization loss to a lower extent. These results indicate that the surface characteristics of the iron-carbohydrate complexes may influence the cell responses. Our data show that the application of (phospho-)proteomics can lead to a better understanding of metabolic processes, including the uptake, biodegradation and bioavailability of nanomedicines.
Collapse
Affiliation(s)
- Jonas Bossart
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, CH-9014 St. Gallen, Switzerland; SIB, Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland; ETH Zurich, Department of Health Sciences and Technology (D-HEST), CH-8093 Zurich, Switzerland
| | - Alexandra Rippl
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, CH-9014 St. Gallen, Switzerland
| | | | | | | | - Marija Buljan
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, CH-9014 St. Gallen, Switzerland; SIB, Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Vanesa Ayala-Nunez
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, CH-9014 St. Gallen, Switzerland.
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, CH-9014 St. Gallen, Switzerland.
| |
Collapse
|
5
|
Krupnik L, Joshi P, Kappler A, Flühmann B, Alston AB, Digigow R, Wick P, Neels A. Critical nanomaterial attributes of iron-carbohydrate nanoparticles: Leveraging orthogonal methods to resolve the 3-dimensional structure. Eur J Pharm Sci 2023; 188:106521. [PMID: 37423578 DOI: 10.1016/j.ejps.2023.106521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Intravenous iron-carbohydrate nanomedicines are widely used to treat iron deficiency and iron deficiency anemia across a wide breadth of patient populations. These colloidal solutions of nanoparticles are complex drugs which inherently makes physicochemical characterization more challenging than small molecule drugs. There have been advancements in physicochemical characterization techniques such as dynamic light scattering and zeta potential measurement, that have provided a better understanding of the physical structure of these drug products in vitro. However, establishment and validation of complementary and orthogonal approaches are necessary to better understand the 3-dimensional physical structure of the iron-carbohydrate complexes, particularly with regard to their physical state in the context of the nanoparticle interaction with biological components such as whole blood (i.e. the nano-bio interface).
Collapse
Affiliation(s)
- Leonard Krupnik
- Laboratory for Particles-Biology Interactions, Materials meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland; Center for X-ray Analytics, Materials meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland; Department of Chemistry, University of Fribourg, Fribourg 1700, Switzerland
| | - Prachi Joshi
- Geomicrobiology, Department of Geosciences, University of Tuebingen, Tuebingen 72076, Germany
| | - Andreas Kappler
- Geomicrobiology, Department of Geosciences, University of Tuebingen, Tuebingen 72076, Germany; Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tuebingen 72076, Germany
| | - Beat Flühmann
- CSL Vifor, Flughofstrasse 61, Glattbrug 8152, Switzerland
| | | | | | - Peter Wick
- Laboratory for Particles-Biology Interactions, Materials meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Antonia Neels
- Center for X-ray Analytics, Materials meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland; Department of Chemistry, University of Fribourg, Fribourg 1700, Switzerland
| |
Collapse
|
6
|
Zuccari G, Alfei S. Development of Phytochemical Delivery Systems by Nano-Suspension and Nano-Emulsion Techniques. Int J Mol Sci 2023; 24:9824. [PMID: 37372971 DOI: 10.3390/ijms24129824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The awareness of the existence of plant bioactive compounds, namely, phytochemicals (PHYs), with health properties is progressively expanding. Therefore, their massive introduction in the normal diet and in food supplements and their use as natural therapeutics to treat several diseases are increasingly emphasized by several sectors. In particular, most PHYs possessing antifungal, antiviral, anti-inflammatory, antibacterial, antiulcer, anti-cholesterol, hypoglycemic, immunomodulatory, and antioxidant properties have been isolated from plants. Additionally, their secondary modification with new functionalities to further improve their intrinsic beneficial effects has been extensively investigated. Unfortunately, although the idea of exploiting PHYs as therapeutics is amazing, its realization is far from simple, and the possibility of employing them as efficient clinically administrable drugs is almost utopic. Most PHYs are insoluble in water, and, especially when introduced orally, they hardly manage to pass through physiological barriers and scarcely reach the site of action in therapeutic concentrations. Their degradation by enzymatic and microbial digestion, as well as their rapid metabolism and excretion, strongly limits their in vivo activity. To overcome these drawbacks, several nanotechnological approaches have been used, and many nanosized PHY-loaded delivery systems have been developed. This paper, by reporting various case studies, reviews the foremost nanosuspension- and nanoemulsion-based techniques developed for formulating the most relevant PHYs into more bioavailable nanoparticles (NPs) that are suitable or promising for clinical application, mainly by oral administration. In addition, the acute and chronic toxic effects due to exposure to NPs reported so far, the possible nanotoxicity that could result from their massive employment, and ongoing actions to improve knowledge in this field are discussed. The state of the art concerning the actual clinical application of both PHYs and the nanotechnologically engineered PHYs is also reviewed.
Collapse
Affiliation(s)
- Guendalina Zuccari
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4, I-16148 Genova, Italy
| | - Silvana Alfei
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4, I-16148 Genova, Italy
| |
Collapse
|
7
|
Uzhytchak M, Smolková B, Lunova M, Frtús A, Jirsa M, Dejneka A, Lunov O. Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Adv Drug Deliv Rev 2023; 197:114828. [PMID: 37075952 DOI: 10.1016/j.addr.2023.114828] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Although several nanomedicines got clinical approval over the past two decades, the clinical translation rate is relatively small so far. There are many post-surveillance withdrawals of nanomedicines caused by various safety issues. For successful clinical advancement of nanotechnology, it is of unmet need to realize cellular and molecular foundation of nanotoxicity. Current data suggest that lysosomal dysfunction caused by nanoparticles is emerging as the most common intracellular trigger of nanotoxicity. This review analyzes prospect mechanisms of lysosomal dysfunction-mediated toxicity induced by nanoparticles. We summarized and critically assessed adverse drug reactions of current clinically approved nanomedicines. Importantly, we show that physicochemical properties have great impact on nanoparticles interaction with cells, excretion route and kinetics, and subsequently on toxicity. We analyzed literature on adverse reactions of current nanomedicines and hypothesized that adverse reactions might be linked with lysosomal dysfunction caused by nanomedicines. Finally, from our analysis it becomes clear that it is unjustifiable to generalize safety and toxicity of nanoparticles, since different particles possess distinct toxicological properties. We propose that the biological mechanism of the disease progression and treatment should be central in the optimization of nanoparticle design.
Collapse
Affiliation(s)
- Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Mariia Lunova
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Adam Frtús
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
8
|
Yilmaz H, Ahmed S, Rodriguez JD, Willett DR. Scanning Electron-Raman Cryomicroscopy for Characterization of Nanoparticle-Albumin Drug Products. Anal Chem 2023; 95:2633-2638. [PMID: 36693238 DOI: 10.1021/acs.analchem.2c03826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nanomaterials have expanded the use of active pharmaceutical ingredients by improving efficacy, decreasing toxicity, and facilitating targeted delivery. To systematically achieve this goal, nanomaterial-containing drugs need to be manufactured with precision in attributes such as size, morphology, surface chemistry, and composition. Their physicochemical characterization is essential as their attributes govern pharmacokinetics yet can be challenging due to the nature of many nanomaterial-based formulations unless advanced sample fixation and in vitro characterization methods are utilized. Here, different cryogenic and other fixation strategies were assessed, and a novel physicochemical characterization method was developed using scanning electron Raman cryo-microscopy (SERCM). A complex nanoparticle albumin bound paclitaxel (nab-paclitaxel) formulation was chosen as a model drug. Plunge freezing (PF), high pressure freezing (HPF), freeze substitution (FS), and membrane filtration were compared for their influence on size and morphology measurements, and formulation-based variations were quantified. SERCM was introduced as a multiattribute physicochemical characterization platform, and the composition of nanoparticles was confirmed as albumin-paclitaxel complexes. By coupling image-based quantitative analysis with chemical analysis, SERCM has the potential to pave the way for the development of comprehensive tools for assessing injectable and ophthalmic nanomaterial-containing drugs in their native-like state.
Collapse
Affiliation(s)
- Huzeyfe Yilmaz
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, St. Louis 63110, Missouri, United States
| | - Snober Ahmed
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, St. Louis 63110, Missouri, United States
| | - Jason D Rodriguez
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, St. Louis 63110, Missouri, United States
| | - Daniel R Willett
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, St. Louis 63110, Missouri, United States
| |
Collapse
|
9
|
Kamisetty MK, Medisetty R, Ramesh B, Pappureddy S, Kashanna J, Govinda V, Kishore R. An Analytical Method for Determination of Total Iron in Pharmaceuticalgrade Intravenous Iron Colloidal Complexes by Redox-Potentiometry. Pharm Nanotechnol 2023; 11:486-492. [PMID: 37151072 DOI: 10.2174/2211738511666230507190224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/18/2023] [Accepted: 03/17/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Iron carbohydrate complexes are colloidal dispersions made up of polynuclear Fe(III)-oxyhydroxide cores surrounded by a carbohydrate shell that stabilizes the complex in iron colloidal formulations. The current study provides an improved method that is precise, accurate, and linear for quantifying total iron in most Iron Carbohydrate Colloid Drug Products. METHODS Redox iodometry with a potentiometric determination is used to evaluate total iron in intravenous formulations. The visual indicator approach is more prone to fluctuations at endpoint calculations. Hence, the voltage potential approach is widely accepted as it is more accurate and sensitive. It tracks the actual change in activity that coincides with the equivalence point that is finally considered an endpoint. The principle is based on the idea that ferric iron in formulation reduces to ferrous iron in the presence of the iodide, which oxidizes to iodine. The released iodine is titrated using sodium thiosulfate. RESULTS The proposed method was precise, with %RSD (relative standard deviation) not more than 1. The method was linear between 80% and 120%, with a linear regression of 0.999. The percent recovery ranged from 98.20 to 99.98 for the concentration ranges of 80-120. The method's robustness was checked by various analysts using different reagent grades. CONCLUSION The proposed potentiometric determination method was precise, accurate, linear, and sensitive. The method was successfully validated, and the total iron content determined for commercial batches agrees with the iron claim on the label. Therefore, this method can be adapted widely for total iron content determination in any Intravenous formulation currently available on the market. The proposed method is more accessible at the Quality Control facilities on an industrial scale.
Collapse
Affiliation(s)
- Madhava Krishna Kamisetty
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, India
| | | | | | | | | | - Varadhi Govinda
- Department of Chemistry, Gayatri Vidya Parishad, College of Engineering, Visakhapatnam, India
| | - Ravada Kishore
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, India
| |
Collapse
|
10
|
Zagalo DM, Simões S, Sousa J. Regulatory Science Approach in Pharmaceutical Development of Follow-On Versions of Non-Biological Complex Drug Products. J Pharm Sci 2022; 111:2687-2713. [PMID: 35901943 DOI: 10.1016/j.xphs.2022.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
Abstract
Scientific and technological breakthroughs in the field of Nanotechnology have been a driving force throughout the development and approval of Non-Biological Complex Drugs (NBCDs). However, the fast-growing expansion of NBCDs and the emergence of their follow-on versions have brought with them several scientific, technological, and regulatory challenges. The definition of NBCDs is still not officially recognized by the regulatory authorities, and there is no dedicated regulatory pathway addressing the particular features of NBCDs and their follow-on versions. The lack of clear and consistent regulatory guidance documents in this field, as well as, the inconsistency across different regulatory agencies, impact negatively on the acceptance and enormous potential of these drug products. Patient access to high-quality NBCDs follow-on versions may be compromised by regulatory uncertainty resulting from the use of different regulatory approaches across the globe, as well as within the same class of products. Accordingly, there is a real need to develop a specific regulatory pathway compliant with the complexity of NBCDs and their follow-on versions or, alternatively, make better use of available regulatory pathways. The main goal of the review is to deeply investigate and provide a critical overview of the regulatory landscape of NBCDs and follow-on versions currently adopted by the regulatory authorities. The dissemination of knowledge and discussion in this field can contribute to clarifying regulations, policies, and regulatory approaches to complex generics, thereby filling regulatory and scientific gaps in the establishment of therapeutic equivalence.
Collapse
Affiliation(s)
- Daniela M Zagalo
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Bluepharma - Indústria Farmacêutica, São Martinho do Bispo, 3045-016 Coimbra, Portugal..
| | - Sérgio Simões
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Bluepharma - Indústria Farmacêutica, São Martinho do Bispo, 3045-016 Coimbra, Portugal
| | - João Sousa
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| |
Collapse
|
11
|
Mast MP, Modh H, Champanhac C, Wang JW, Storm G, Krämer J, Mailänder V, Pastorin G, Wacker MG. Nanomedicine at the crossroads - A quick guide for IVIVC. Adv Drug Deliv Rev 2021; 179:113829. [PMID: 34174332 DOI: 10.1016/j.addr.2021.113829] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/17/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023]
Abstract
For many years, nanomedicine is pushing the boundaries of drug delivery. When applying these novel therapeutics, safety considerations are not only a key concern when entering clinical trials but also an important decision point in product development. Standing at the crossroads, nanomedicine may be able to escape the niche markets and achieve wider acceptance by the pharmaceutical industry. While there is a new generation of drug delivery systems, the extracellular vesicles, standing on the starting line, unresolved issues and new challenges emerge from their translation from bench to bedside. Some key features of injectable nanomedicines contribute to the predictability of the pharmacological and toxicological effects. So far, only a few of the physicochemical attributes of nanomedicines can be justified by a direct mathematical relationship between the in vitro and the in vivo responses. To further develop extracellular vesicles as drug carriers, we have to learn from more than 40 years of clinical experience in liposomal delivery and pass on this knowledge to the next generation. Our quick guide discusses relationships between physicochemical characteristics and the in vivo response, commonly referred to as in vitro-in vivo correlation. Further, we highlight the key role of computational methods, lay open current knowledge gaps, and question the established design strategies. Has the recent progress improved the predictability of targeted delivery or do we need another change in perspective?
Collapse
|
12
|
Brandis JEP, Kihn KC, Taraban MB, Schnorr J, Confer AM, Batelu S, Sun D, Rodriguez JD, Jiang W, Goldberg DP, Langguth P, Stemmler TL, Yu YB, Kane MA, Polli JE, Michel SLJ. Evaluation of the Physicochemical Properties of the Iron Nanoparticle Drug Products: Brand and Generic Sodium Ferric Gluconate. Mol Pharm 2021; 18:1544-1557. [PMID: 33621099 DOI: 10.1021/acs.molpharmaceut.0c00922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Complex iron nanoparticle-based drugs are one of the oldest and most frequently administered classes of nanomedicines. In the US, there are seven FDA-approved iron nanoparticle reference drug products, of which one also has an approved generic drug product (i.e., sodium ferric gluconate (SFG)). These products are indicated for the treatment of iron deficiency anemia and are administered intravenously. On the molecular level, iron nanomedicines are colloids composed of an iron oxide core with a carbohydrate coating. This formulation makes nanomedicines more complex than conventional small molecule drugs. As such, these products are often referred to as nonbiological complex drugs (e.g., by the nonbiological complex drugs (NBCD) working group) or complex drug products (e.g., by the FDA). Herein, we report a comprehensive study of the physiochemical properties of the iron nanoparticle product SFG. SFG is the single drug for which both an innovator (Ferrlecit) and generic product are available in the US, allowing for comparative studies to be performed. Measurements focused on the iron core of SFG included optical spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), X-ray powder diffraction (XRPD), 57Fe Mössbauer spectroscopy, and X-ray absorbance spectroscopy (XAS). The analysis revealed similar ferric-iron-oxide structures. Measurements focused on the carbohydrate shell comprised of the gluconate ligands included forced acid degradation, dynamic light scattering (DLS), analytical ultracentrifugation (AUC), and gel permeation chromatography (GPC). Such analysis revealed differences in composition for the innovator versus the generic SFG. These studies have the potential to contribute to future quality assessment of iron complex products and will inform on a pharmacokinetic study of two therapeutically equivalent iron gluconate products.
Collapse
Affiliation(s)
- Joel E P Brandis
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Kyle C Kihn
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Marc B Taraban
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Julia Schnorr
- Department of Pharmaceutical Technology and Biopharmaceutics, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Alex M Confer
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sharon Batelu
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Dajun Sun
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Jason D Rodriguez
- Division of Pharmaceutical Analysis, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, St. Louis, MO 20903, United States
| | - Wenlei Jiang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Peter Langguth
- Department of Pharmaceutical Technology and Biopharmaceutics, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Timothy L Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Yihua Bruce Yu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - James E Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
13
|
Tabasi O, Razlighi MR, Darbandi MA. An Optimized Process for the Preparation of Aqueous Ferric Carboxymaltose: Synthesis and Structural Characterization. Pharm Nanotechnol 2021; 9:157-163. [PMID: 33459254 DOI: 10.2174/2211738509666210114160941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/08/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ferric carboxymaltose (FCM) formulation consists of iron-carbohydrate nanoparticles where iron-oxyhydroxide as a core is covered by a carbohydrate shell. The present work provides an improved synthesis process of FCM as an intravenous iron, active pharmaceutical ingredient. METHODS Water-soluble FCM complex was prepared from the reaction of ferric hydroxide precipitation with an aqueous solution of oxidized maltodextrin (MD) at optimum temperature and pH conditions. A systematic approach was followed to obtain the optimal weight ratio of the maltodextrin/ ferric chloride for FCM synthesis process with suitable-sized nanoparticles. Physical characterization of newly synthesized ferric carboxymaltose (FCM-NP) was performed to establish its equivalency with the reference product (Ferinject). RESULTS The size distribution of the whole nanoparticles determined by dynamic light scattering (DLS) was in the range of 15-40 nm with an average particle size of 26 ± 6.6 and 25.8 ± 4.9 for FCM-NP and Ferinject, respectively. X-ray diffraction (XRD) results of FCM-NP and Ferinject indicated the Akaganeite structure of iron-oxyhydroxide. The iron content of particles (cores) measured by Atomic absorption spectroscopy (AAS) was almost equal for the two formulations. The Fourier transform infrared (FTIR) spectra of Ferinject and FCM-NP were approximately similar. CONCLUSION Various analytical methods, including FTIR spectroscopy, XRD analysis, DLS technique, TEM, and AAS were employed. It was observed that the specifications of FCM-NP obtained by these analyses were almost identical to those of Ferinject. Accordingly, the two formulations were considered comparable.
Collapse
Affiliation(s)
- Ozra Tabasi
- Research and Development unit, Nafas Zist Pharmed Pharmaceutical Company, Science and Technology Park of Islamic Azad University, Tehran, Iran
| | - Mahdi Roohi Razlighi
- Research and Development unit, Nafas Zist Pharmed Pharmaceutical Company, Science and Technology Park of Islamic Azad University, Tehran, Iran
| | - Mohammad Ali Darbandi
- Research and Development unit, Nafas Zist Pharmed Pharmaceutical Company, Science and Technology Park of Islamic Azad University, Tehran, Iran
| |
Collapse
|
14
|
Nikravesh N, Borchard G, Hofmann H, Philipp E, Flühmann B, Wick P. Factors influencing safety and efficacy of intravenous iron-carbohydrate nanomedicines: From production to clinical practice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 26:102178. [PMID: 32145382 DOI: 10.1016/j.nano.2020.102178] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/06/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Iron deficiency is an important subclinical disease affecting over one billion people worldwide. A growing body of clinical records supports the use of intravenous iron-carbohydrate complexes for patients where iron replenishment is necessary and oral iron supplements are either ineffective or cannot be tolerated by the gastrointestinal tract. A critical characteristic of iron-carbohydrate drugs is the complexity of their core-shell structure, which has led to differences in the efficacy and safety of various iron formulations. This review describes parameters influencing the safety and effectiveness of iron-carbohydrate complexes during production, storage, handling, and clinical application. We summarized the physicochemical and biological assessments of commercially available iron carbohydrate nanomedicines to provide an overview of publicly available data. Further, we reviewed studies that described how subtle differences in the manufacturing process of iron-carbohydrate complexes can impact on the physicochemical, biological, and clinical outcomes of original product versus their intended copies or so-called iron "similar" products.
Collapse
Affiliation(s)
- Niusha Nikravesh
- Laboratory for Particles-Biology interactions, Department of materials meet life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland.
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Heinrich Hofmann
- Institute of Materials, School of Technology and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | - Peter Wick
- Laboratory for Particles-Biology interactions, Department of materials meet life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland.
| |
Collapse
|
15
|
Di Francesco T, Delafontaine L, Philipp E, Lechat E, Borchard G. Iron polymaltose complexes: Could we spot physicochemical differences in medicines sharing the same active pharmaceutical ingredient? Eur J Pharm Sci 2020; 143:105180. [DOI: 10.1016/j.ejps.2019.105180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/20/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
|
16
|
de Vlieger JSB, Crommelin DJA, Tyner K, Drummond DC, Jiang W, McNeil SE, Neervannan S, Crist RM, Shah VP. Report of the AAPS Guidance Forum on the FDA Draft Guidance for Industry: "Drug Products, Including Biological Products, that Contain Nanomaterials". AAPS JOURNAL 2019; 21:56. [PMID: 30997588 PMCID: PMC6470106 DOI: 10.1208/s12248-019-0329-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/05/2019] [Indexed: 11/30/2022]
Abstract
To guide developers of innovative and generic drug products that contain nanomaterials, the U.S. Food and Drug Administration issued the draft guidance for industry titled: "Drug Products, Including Biological Products, that Contain Nanomaterials" in December 2017. During the AAPS Guidance Forum on September 11, 2018, participants from industry, academia, and regulatory bodies discussed this draft guidance in an open setting. Two questions raised by the AAPS membership were discussed in more detail: what is the appropriate regulatory pathway for approval of drug products containing nanomaterials, and how to determine critical quality attributes (CQAs) for nanomaterials? During the meeting, clarification was provided on how the new FDA center-led guidance relates to older, specific nanomaterial class, or specific product-related guidances. The lively discussions concluded with some clear observations and recommendations: (I) Important lessons can be learned from how CQAs were determined for, e.g., biologics. (II) Publication of ongoing scientific discussions on strategies and studies determining CQAs of drug products containing nanomaterials will significantly strengthen the science base on this topic. Furthermore, (III) alignment on a global level on how to address new questions regarding nanomedicine development protocols will add to efficient development and approval of these much needed candidate nanomedicines (innovative and generic). Public meetings such as the AAPS Guidance Forum may serve as the place to have these discussions.
Collapse
Affiliation(s)
| | - Daan J A Crommelin
- Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands
| | - Katherine Tyner
- Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, US Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Wenlei Jiang
- Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Scott E McNeil
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Rachael M Crist
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Vinod P Shah
- VPS Consulting LLC, North Potomac, Maryland, USA
| |
Collapse
|
17
|
Nanomedicines in clinical practice: Are colloidal iron sucrose ready-to-use intravenous solutions interchangeable? Eur J Pharm Sci 2019; 131:69-74. [DOI: 10.1016/j.ejps.2019.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/19/2019] [Accepted: 02/07/2019] [Indexed: 11/20/2022]
|
18
|
Neu HM, Alexishin SA, Brandis JEP, Williams AMC, Li W, Sun D, Zheng N, Jiang W, Zimrin A, Fink JC, Polli JE, Kane MA, Michel SLJ. Snapshots of Iron Speciation: Tracking the Fate of Iron Nanoparticle Drugs via a Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometric Approach. Mol Pharm 2019; 16:1272-1281. [PMID: 30676753 DOI: 10.1021/acs.molpharmaceut.8b01215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nanomedicines are nanoparticle-based therapeutic or diagnostic agents designed for targeted delivery or enhanced stability. Nanotechnology has been successfully employed to develop various drug formulations with improved pharmacokinetic characteristics, and current research efforts are focused on the development of new innovator and generic nanomedicines. Nanomedicines, which are often denoted as complex or nonbiological complex drugs, have inherently different physicochemical and pharmacokinetic properties than conventional small molecule drugs. The tools necessary to fully evaluate nanomedicines in clinical settings are limited, which can hamper their development. One of the most successful families of nanomedicines are iron-carbohydrate nanoparticles, which are administered intravenously (IV) to treat iron-deficiency anemia. In the U.S., the FDA has approved six distinct iron-carbohydrate nanoparticles but only one generic version (sodium ferric gluconate for Ferrlecit). There is significant interest in approving additional generic iron-carbohydrate drugs; however, the lack of a direct method to monitor the fate of the iron nanoparticles in clinical samples has impeded this approval. Herein we report a novel liquid chromatography-inductively coupled plasma-mass spectrometry (LC-ICP-MS) method that allows for the direct quantification of the iron-carbohydrate drugs in clinical samples, while simultaneously measuring the speciation of the iron released from the nanoparticles in biological samples. To our knowledge, this is the first time that iron nanoparticles have been observed in clinical samples, opening the door for direct pharmacokinetic studies of this family of drugs. This method has potential applications not only for iron-nanoparticle drugs but also for any nanomedicine with an inorganic component.
Collapse
Affiliation(s)
- Heather M Neu
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Sergei A Alexishin
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Joel E P Brandis
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Anne M C Williams
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Wenjing Li
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Dajun Sun
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research , U.S. Food and Drug Administration , Silver Spring , Maryland 20993 , United States
| | - Nan Zheng
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research , U.S. Food and Drug Administration , Silver Spring , Maryland 20993 , United States
| | - Wenlei Jiang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research , U.S. Food and Drug Administration , Silver Spring , Maryland 20993 , United States
| | - Ann Zimrin
- Oncology Program , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Jeffrey C Fink
- Department of Medicine , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - James E Polli
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Maureen A Kane
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| |
Collapse
|
19
|
Emily M, Ioanna N, Scott B, Beat F. Reflections on FDA Draft Guidance for Products Containing Nanomaterials: Is the Abbreviated New Drug Application (ANDA) a Suitable Pathway for Nanomedicines? AAPS JOURNAL 2018; 20:92. [DOI: 10.1208/s12248-018-0255-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/12/2018] [Indexed: 01/19/2023]
|
20
|
Regulatory challenges of nanomedicines and their follow-on versions: A generic or similar approach? Adv Drug Deliv Rev 2018; 131:122-131. [PMID: 29966685 DOI: 10.1016/j.addr.2018.06.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
Abstract
Nanomedicines and follow-on versions (also called nanosimilars in the EU) have been on the market partially for decades although without recognition of their nano properties in the beginning; a substantial number is in clinical development. Nanomedicines are typically synthetic and belong to the non-biological complex drugs. They show a high variability in form, structure, and size. Additionally large molecule biologics show nano-characteristics meaning nano-dimension in size (1-100 nm) or specific properties related to these dimensions. The high complexity of nanomedicines with their heterogeneous structures do not allow a full physicochemical quality characterization, challenging the regulatory evaluation especially for follow-on versions upon comparison with the reference product. The generic paradigm with the sameness approach for quality and bioequivalence in blood plasma is not appropriate for nanomedicines where a similar approach is needed. After experiencing non-equivalence of authorized parenteral colloidal iron follow-on versions, EMA and FDA issued reflection papers and draft guidances for industry to present their current thinking on the evaluation of such complex products. A stepwise approach to evaluate the extent of similarity, from quality, including critical quality attributes (CQA) and assessment of nano properties, to a non-clinical biodistribution assay, required in the the EU but not in the US, and to clinical evaluation makes sense. The cumulated totality of evidence for the authorization of nanomedicine follow-on versions goes case-by-case. Interchangeability, or substitutability, is a challenge. However, a defined or even harmonized approval pathway for these follow-versions is still missing and causes potential differences in approval. To progress, a science-based discussion platform among stakeholders and experts in the field is necessary. An agenda has been agreed [5], namely CQA assessment, publication of scientific and clinical findings, consensus on nomenclature and labelling, and regulatory actions on substandard complex drug products. Consensus created in a public private approach will support progress towards a defined and harmonized regulatory pathway for nanomedicines and their follow-on versions. This will provide drug innovation but also larger access to follow-on versions of nanomedicines, both a benefit for the patient.
Collapse
|
21
|
Di Francesco T, Borchard G. A robust and easily reproducible protocol for the determination of size and size distribution of iron sucrose using dynamic light scattering. J Pharm Biomed Anal 2018; 152:89-93. [DOI: 10.1016/j.jpba.2018.01.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/09/2018] [Accepted: 01/15/2018] [Indexed: 11/16/2022]
|
22
|
Sun D, Rouse R, Patel V, Wu Y, Zheng J, Karmakar A, Patri AK, Chitranshi P, Keire D, Ma J, Jiang W. Comparative Evaluation of U.S. Brand and Generic Intravenous Sodium Ferric Gluconate Complex in Sucrose Injection: Physicochemical Characterization. NANOMATERIALS 2018; 8:nano8010025. [PMID: 29303999 PMCID: PMC5791112 DOI: 10.3390/nano8010025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/02/2023]
Abstract
The objective of this study was to evaluate physicochemical equivalence between brand (i.e., Ferrlecit) and generic sodium ferric gluconate (SFG) in sucrose injection by conducting a series of comparative in vitro characterizations using advanced analytical techniques. The elemental iron and carbon content, thermal properties, viscosity, particle size, zeta potential, sedimentation coefficient, and molecular weight were determined. There was no noticeable difference between brand and generic SFG in sucrose injection for the above physical parameters evaluated, except for the sedimentation coefficient determined by sedimentation velocity analytical ultracentrifugation (SV-AUC) and molecular weight by asymmetric field flow fractionation-multi-angle light scattering (AFFF-MALS). In addition, brand and generic SFG complex products showed comparable molecular weight distributions when determined by gel permeation chromatography (GPC). The observed minor differences between brand and generic SFG, such as sedimentation coefficient, do not impact their biological activities in separate studies of in vitro cellular uptake and rat biodistribution. Coupled with the ongoing clinical study comparing the labile iron level in healthy volunteers, the FDA-funded post-market studies intended to illustrate comprehensive surveillance efforts ensuring safety and efficacy profiles of generic SFG complex in sucrose injection, and also to shed new light on the approval standards on generic parenteral iron colloidal products.
Collapse
Affiliation(s)
- Dajun Sun
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Rodney Rouse
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Vikram Patel
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Yong Wu
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Jiwen Zheng
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Alokita Karmakar
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Anil K Patri
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Priyanka Chitranshi
- Division of Pharmaceutical Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Saint Louis, MO 63110, USA.
| | - David Keire
- Division of Pharmaceutical Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Saint Louis, MO 63110, USA.
| | - Jia Ma
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA.
| | - Wenlei Jiang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
23
|
Improving Biopharmaceutical Safety through Verification-Based Quality Control. Trends Biotechnol 2017; 35:1140-1155. [DOI: 10.1016/j.tibtech.2017.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 12/16/2022]
|