1
|
Wang Z, Felstead HR, Troup RI, Linclau B, Williamson PTF. Lipophilicity Modulations by Fluorination Correlate with Membrane Partitioning. Angew Chem Int Ed Engl 2023; 62:e202301077. [PMID: 36932824 PMCID: PMC10946813 DOI: 10.1002/anie.202301077] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Bioactive compounds generally need to cross membranes to arrive at their site of action. The octanol-water partition coefficient (lipophilicity, logPOW ) has proven to be an excellent proxy for membrane permeability. In modern drug discovery, logPOW and bioactivity are optimized simultaneously, for which fluorination is one of the relevant strategies. The question arises as to which extent the often subtle logP modifications resulting from different aliphatic fluorine-motif introductions also lead to concomitant membrane permeability changes, given the difference in molecular environment between octanol and (anisotropic) membranes. It was found that for a given compound class, there is excellent correlation between logPOW values with the corresponding membrane molar partitioning coefficients (logKp ); a study enabled by novel solid-state 19 F NMR MAS methodology using lipid vesicles. Our results show that the factors that cause modulation of octanol-water partition coefficients similarly affect membrane permeability.
Collapse
Affiliation(s)
- Zhong Wang
- School of ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
| | - Hannah R. Felstead
- School of ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
| | - Robert I. Troup
- School of ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
| | - Bruno Linclau
- School of ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
- Department of Organic and Macromolecular ChemistryGhent University Campus SterreKrijgslaan 281-S49000GhentBelgium
| | | |
Collapse
|
2
|
Rajaji U, Raghu MS, Yogesh Kumar K, Almutairi TM, Mohammed AA, Juang RS, Liu TY. A sonochemical synthesis of SrTiO 3 supported N-doped graphene oxide as a highly efficient electrocatalyst for electrochemical reduction of a chemotherapeutic drug. ULTRASONICS SONOCHEMISTRY 2023; 93:106293. [PMID: 36638650 PMCID: PMC9852652 DOI: 10.1016/j.ultsonch.2023.106293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 06/03/2023]
Abstract
A sonochemical based green synthesis method playa powerful role in nanomaterials and composite development. In this work, we developed a perovskite type of strontium titanate via sonochemical process. SrTiO3 particles were incorporated with nitrogen doped graphene oxide through simple ultrasonic irradiation method. The SrTiO3/NGO was characterized by various analytical methods. The nanocomposite of SrTiO3/NGO was modified with laser-induced graphene electrode (LIGE). The SrTiO3/NGO/LIGE was applied for electrochemical sensor towards chemotherapeutic drug detection (nilutamide). Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques have been used to examine the electrochemical performance of nilutamide (anti-cancer drug). DPV was found to be more sensitive and found to exhibit a sensitivity 8.627 µA µM-1 cm-2 for SrTiO3/NGO/LIGE with a wide linear range (0.02-892 µM) and low Limit of detection (LOD: 1.16 µM). SrTiO3/NGO/LIGE has been examined for the detection of nilutamide in blood serum and urine samples and obtained a good recovery in the range of 97.2-99.72 %. The enhanced stability and selectivity and practical application results indicates the suitability of SrTiO3/NGO/LIGE towards the detection of nilutamide drug in pharmaceutical industries.
Collapse
Affiliation(s)
- Umamaheswari Rajaji
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - M S Raghu
- Department of Chemistry, New Horizon College of Engineering, Outer Ring Road, Bangalore 560103, India
| | - K Yogesh Kumar
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Bangalore 562112, India; Korea University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Cheonan-si, Republic of Korea
| | - Tahani M Almutairi
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - AbdallahA A Mohammed
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ruey-Shin Juang
- Department of Chemical and Materials Engineering, Chang Gung University 259 Wenhua First Road Guishan, Taoyuan 33302, Taiwan; Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, Taishan, New Taipei City 243303, Taiwan.
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Research Center for Intelligent Medical Devices, Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City 243303, Taiwan.
| |
Collapse
|
3
|
Takegami S, Konishi A, Okazaki S, Fujiwara M, Kitade T. Effects of mono- and dialkylglucosides on the characterisation and blood circulation of lipid nanoemulsions. J Microencapsul 2019; 36:738-746. [PMID: 31573357 DOI: 10.1080/02652048.2019.1671909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Aim: Effects of two cosurfactants, n-alkylglycosides with mono- or disaccharide groups - N-nonyl β-D-glucopyranoside (N-Glu) and N-decyl β-D-maltoside (D-Mal) - were studied to the stability in saline solution, interaction with serum albumin, and blood circulation of the lipid nanoemulsion (LNE).Methods: The LNEs composed of soybean oil, phosphatidylcholine, and sodium palmitate were prepared without (Control-LNE) and with N-Glu or D-Mal (NG-LNE and DM-LNE, respectively).Results: In saline solution, NG-LNE exhibited a smaller droplet size than Control-LNE, while the size of DM-LNE was significantly increased compared with the other LNEs. The fluorescence resonance energy transfer method showed that the order of albumin interaction was DM-LNE > NG-LNE > Control-LNE. In vivo blood circulation in mice, showed greater fractions of both NG-LNE and DM-LNE remaining in blood over time compared with Control-LNE.Conclusions: The nature of high stability in saline solution and high affinity for serum albumin led to the prolonged circulation of LNE.
Collapse
Affiliation(s)
- Shigehiko Takegami
- Department of Analytical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Atsuko Konishi
- Department of Analytical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Shizuno Okazaki
- Department of Analytical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Mai Fujiwara
- Department of Analytical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tatsuya Kitade
- Department of Analytical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
4
|
Rejinold NS, Cherukula K, Ha JH, Park I, Kim Y. Olive Oil‐Based Ultrafine Theranostic Photo Nanoemulsions: A Versatile Tumor Maneuvering Nanoplatform for Precise Controlled Drug Release in Tumor and Complete Tumor Eradication Mediated by Photo‐Chemotherapy. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- N. Sanoj Rejinold
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology Daejeon 305‐701 Republic of Korea
| | - Kondareddy Cherukula
- Department of Biomedical Science and BK21 PLUS Centre for Creative Biomedical ScientistsChonnam National University Medical School 160 Baekseo‐ro Gwangju 61469 Republic of Korea
| | - Jong Hoon Ha
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology Daejeon 305‐701 Republic of Korea
| | - In‐Kyu Park
- Department of Biomedical Science and BK21 PLUS Centre for Creative Biomedical ScientistsChonnam National University Medical School 160 Baekseo‐ro Gwangju 61469 Republic of Korea
| | - Yeu‐Chun Kim
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology Daejeon 305‐701 Republic of Korea
| |
Collapse
|
5
|
Iima R, Takegami S, Konishi A, Tajima S, Minematsu N, Kitade T. Thermal Behavior of 19F Nuclear Magnetic Resonance Signal of 19F-Containing Compound in Lipid Nano-Emulsion for Potential Tumor Diagnosis. AAPS PharmSciTech 2018; 19:2679-2686. [PMID: 29943279 DOI: 10.1208/s12249-018-1102-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/07/2018] [Indexed: 11/30/2022] Open
Abstract
We developed carriers of a 19F magnetic resonance imaging (19F MRI) agent, capable of responding to the temperature difference for cancer diagnosis. The carriers were based on high melting point (mp) neutral lipids, namely, tripalmitin (TPT) and tristearin (TSR) and triarachidin (TAC). Lipid nano-emulsions (LNEs) containing a fluorine compound, i.e., a modified α-tocopherol (19F-TP), were respectively prepared as TPT-LNE, TSR-LNE, TAC-LNE1, and TAC-LNE2 and studied by 19F NMR spectroscopy. In LNE prepared with soybean oil as a control, the full width at half maximum (FWHM) values of the 19F NMR signal of 19F-TP remained constant at 25, 37, and 42°C, while those of the LNEs prepared from a neutral lipid with a high mp showed a sharp decrease between 25 and 37°C. The magnitude of the decrease followed the order: TPT-LNE < TSR-LNE < TAC-LNE1. However, TAC-LNE2, for which the amount of encapsulated 19F-TP was one third less than that of TAC-LNE1, showed a sharp decline in the FWHM between 37 and 42°C. To examine these changes, the 19F spin-lattice (T1) and spin-spin (T2) relaxation times of 19F-TP were measured. TAC-LNE2 in particular showed a substantial change in its T2 value between 37 and 42°C compared with the change of its T1 value. This result was attributed to activation of the molecular motion of 19F-TP in TAC-LNE2 from 37 to 42°C. Thus, TAC-LNE showed potential for use as a carrier for cancer diagnosis using 19F MRI.
Collapse
|
6
|
Combination of 1H nuclear magnetic resonance spectroscopy and principal component analysis to evaluate the lipid fluidity of flutamide-encapsulated lipid nanoemulsions. Anal Bioanal Chem 2018; 410:5033-5042. [DOI: 10.1007/s00216-018-1154-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 10/14/2022]
|
7
|
Ijaz H, Qureshi J, Tulain UR, Iqbal F, Danish Z, Fayyaz A, Sethi A. Lipid particulate drug delivery systems: a review. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2018. [DOI: 10.1680/jbibn.16.00039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hira Ijaz
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Junaid Qureshi
- Department of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Furqan Iqbal
- Department of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Zeeshan Danish
- University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Ahad Fayyaz
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Ayesha Sethi
- College of Pharmacy, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
8
|
Wang X, Patil SM, Keire DA, Xu X, Chen K. Application of Ultra-Centrifugation and Bench-Top 19F NMR for Measuring Drug Phase Partitioning for the Ophthalmic Oil-in-Water Emulsion Products. AAPS PharmSciTech 2018; 19:1647-1651. [PMID: 29500761 DOI: 10.1208/s12249-018-0973-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/11/2018] [Indexed: 11/30/2022] Open
Abstract
Generic drug products are expected to have the same active pharmaceutical ingredient (API) (Q1) with the same content (Q2) and microstructure arrangement (Q3) as the innovator product. In complex oil-in-water emulsion drugs, the hydrophobic API is mainly formulated in oil droplets stabilized by surfactant and micelles composed of extra surfactant molecules. The API phase partition in oil and water (mainly micelle) is a critical quality attribute (CQA) of emulsion product in demonstrating physicochemical equivalence using difluprednate (DFPN) emulsion product Durezol® as a model, we developed a novel low-field benchtop NMR method to demonstrate its applicability in measuring DFPN phase partition for ophthalmic oil-in-water emulsion products. Low-field 19F spectra were collected for DFPN in formulation, in water phase and oil phase after separation from ultra-centrifugation. The NMR data showed the mass balance of DFPN before and after phase separation. The average water phase content of different Durezol® lots was 32 ± 3% with 1% variation from method reproducibility test. The partition results were 52 ± 2% for the in-house control products prepared in Q1/Q2 equivalence to Durezol® but by a different process. The significant difference in DFPN-phase partition between Durezol® and the in-house formulation demonstrated manufacture difference readily changed the API partition. The newly developed ultra-centrifugation and 19F NMR by benchtop instrument is a simple, robust, and sensitive analytical method for ophthalmic emulsion drug product development and control.
Collapse
|
9
|
Application of Heteronuclear NMR Spectroscopy to Bioinorganic and Medicinal Chemistry ☆. REFERENCE MODULE IN CHEMISTRY, MOLECULAR SCIENCES AND CHEMICAL ENGINEERING 2018. [PMCID: PMC7157447 DOI: 10.1016/b978-0-12-409547-2.10947-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|