1
|
Kumar J, Karim A, Sweety UH, Sarma H, Nurunnabi M, Narayan M. Bioinspired Approaches for Central Nervous System Targeted Gene Delivery. ACS APPLIED BIO MATERIALS 2024; 7:4975-4997. [PMID: 38100377 DOI: 10.1021/acsabm.3c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Disorders of the central nervous system (CNS) which include a wide range of neurodegenerative and neurological conditions have become a serious global issue. The presence of CNS barriers poses a significant challenge to the progress of designing effective therapeutic delivery systems, limiting the effectiveness of drugs, genes, and other therapeutic agents. Natural nanocarriers present in biological systems have inspired researchers to design unique delivery systems through biomimicry. As natural resource derived delivery systems are more biocompatible, current research has been focused on the development of delivery systems inspired by bacteria, viruses, fungi, and mammalian cells. Despite their structural potential and extensive physiological function, making them an excellent choice for biomaterial engineering, the delivery of nucleic acids remains challenging due to their instability in biological systems. Similarly, the efficient delivery of genetic material within the tissues of interest remains a hurdle due to a lack of selectivity and targeting ability. Considering that gene therapies are the holy grail for intervention in diseases, including neurodegenerative disorders such as Alzheimer's disease, Parkinson's Disease, and Huntington's disease, this review centers around recent advances in bioinspired approaches to gene delivery for the prevention of CNS disorders.
Collapse
Affiliation(s)
- Jyotish Kumar
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Afroz Karim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Ummy Habiba Sweety
- Environmental Science and Engineering, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, 783370, Kokrajhar (BTR), Assam, India
| | - Md Nurunnabi
- The Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
2
|
He R, Jia B, Peng D, Chen W. Caged Polyprenylated Xanthones in Garcinia hanburyi and the Biological Activities of Them. Drug Des Devel Ther 2023; 17:3625-3660. [PMID: 38076632 PMCID: PMC10710250 DOI: 10.2147/dddt.s426685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
The previous phytochemical analyses of Garcinia hanburyi revealed that the main structural characteristic associated with its biological activity is the caged polyprenylated xanthones with a unique 4-oxatricyclo [4.3.1.03,7] dec-2-one scaffold, which contains a highly substituted tetrahydrofuran ring with three quaternary carbons. Based on the progress in research of the chemical constituents, pharmacological effects and modification methods of the caged polyprenylated xanthones, this paper presents a preliminary predictive analysis of their drug-like properties based on the absorption, distribution, metabolism, excretion and toxicity (ADME/T) properties. It was found out that these compounds have very similar pharmacokinetic properties because they possess the same caged xanthone structure, the 9,10-double bond in a,b-unsaturated ketones are critical for the antitumor activity. The author believes that there is an urgent need to seek new breakthroughs in the study of these caged polyprenylated xanthones. Thus, the research on the route of administration, therapeutic effect, structural modification and development of such active ingredients is of great interest. It is hoped that this paper will provide ideas for researchers to develop and utilize the active ingredients derived from natural products.
Collapse
Affiliation(s)
- Ruixi He
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Buyun Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| |
Collapse
|
3
|
Adick A, Hoheisel W, Schneid S, Mulac D, Azhdari S, Langer K. Challenges of nanoparticle albumin bound (nab™) technology: Comparative study of Abraxane® with a newly developed albumin-stabilized itraconazole nanosuspension. Eur J Pharm Biopharm 2023; 193:129-143. [PMID: 37918678 DOI: 10.1016/j.ejpb.2023.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Nanoparticle albumin bound™ (nab™) technology is an established delivery platform for development of albumin stabilized nanoparticles as drug delivery systems for poorly water-soluble drugs. By using albumin for particle stabilization, nab™ technology does not require solubilizers or emulsifiers for the formulation of poorly water-soluble drugs for intravenous use. Despite the great potential, however, to date only two products based on nab™ technology have been approved by the Food and Drug Administration: Abraxane® (nab™ paclitaxel) and Fyarro® (nab™ rapamycin). In this study, the commercially available product Abraxane® was characterized in comparison to an albumin stabilized nanosuspension for the poorly water-soluble drug itraconazole. The aim of this study was to identify critical product parameters of the nanosuspensions depending on the manufacturing process in order to assess the transferability of nab™ technology to other drugs. The colloidal properties, stabilizing protein composition and particle disintegration behavior were analyzed. In addition, studies were carried out on the impact of the key process step, the high-pressure homogenization, using a design of experiments (DoE) approach. A nanosuspension comprising spherical, stable drug nanoparticles stabilized by a large fraction of dissolved albumin around the nanoparticles were identified. During the manufacturing process, the drug core was coated with a layer of albumin, which was cross-linked to a certain level. The Abraxane® and itraconazole suspensions differed in the analyzed protein fraction, with stronger cross-linking at the particle surface for Abraxane®. Both active pharmaceutical ingredients were present in the amorphous state as nanoparticles. In vitro disintegration studies performed to mimic a strong dilution during intravenous application showed the disintegration of the nanoparticles. All in all, the analysis underlined the transferability of the nab™ technology to selected other poorly water-soluble drugs with the great advantage of eliminating solubilizers and emulsifiers for intravenous applications.
Collapse
Affiliation(s)
- Annika Adick
- Institute of Pharmaceutical Technology and Biopharmacy, University Muenster, Corrensstraße 48, 48149 Muenster, Germany
| | - Werner Hoheisel
- Invite GmbH, Formulation Technology, Chempark, Building W 32, 51368 Leverkusen, Germany
| | - Stefan Schneid
- Bayer AG, Pharmaceuticals, Drug Product Development, Friedrich-Ebert-Straße 475, 42117 Wuppertal, Germany
| | - Dennis Mulac
- Institute of Pharmaceutical Technology and Biopharmacy, University Muenster, Corrensstraße 48, 48149 Muenster, Germany
| | - Suna Azhdari
- Institute of Physical Chemistry, University Muenster, Corrensstraße 28/30, 48149 Muenster, Germany
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University Muenster, Corrensstraße 48, 48149 Muenster, Germany.
| |
Collapse
|
4
|
Fatima M, Sheikh A, Almalki WH, Talegaonkar S, Dubey SK, Amin MCIM, Sahebkar A, Kesharwani P. Recent advancement on albumin nanoparticles in treating lung carcinoma. J Drug Target 2023; 31:486-499. [PMID: 37125741 DOI: 10.1080/1061186x.2023.2205609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
With the advancement of nanotechnology, many different forms of nanoparticles (NPs) are created, which specifically enhance anticancer drug delivery to tumor cells. Albumin bio-macromolecule is a flexible protein carrier for the delivery of drugs that is biodegradable, biocompatible, and non-toxic. As a result, it presents itself as an ideal material for developing nanoparticles for anticancer drug delivery. Toxicological investigations demonstrated that this novel drug delivery technique is safe for use in the human population. Furthermore, drug compatibility with the albumin nanoparticle is remarkable. The robust structure of the nanoparticle, high drug encapsulation, and customizable drug release make it a promising carrier option for the treatment of lung cancer. In this review, we summarize human serum albumin and bovine serum albumin in the targeted delivery of anticancer drugs to lung cancer cells.
Collapse
Affiliation(s)
- Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, Indi
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| |
Collapse
|
5
|
Ke Z, Shi J, Cheng Z, Cheng X, Wang H, Wang M, Wu J, Sun Y, Li C. Design and characterization of gambogic acid-loaded mixed micelles system for enhanced oral bioavailability. Pharm Dev Technol 2022; 27:695-701. [PMID: 35899462 DOI: 10.1080/10837450.2022.2107012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The aim of this study was to develop a gambogic acid-loaded mixed micelles (GA-M) system, using Kolliphor HS15 and lecithin, for enhancement of oral bioavailability. GA-M was prepared using the thin film hydration method, and particle size and zeta potential indexes were used to determine the optimized formulation was optimized with taking particle size, zeta potential as indexes. The optimal GA-M system had a mean particle size in the nanometer range (87.22 ± 0.68 nm) and zeta potential greater than 20 mV in magnitude (-21.63 ± 1.69 mV) at a 1:1 proportion of HS15: lecithin. Additionally, the carriers had a high entrapment efficiency (98.32 ± 3.52%) and drug loading (4.68 ± 0.17%). Furthermore, the in vitro GA release characteristics followed first-order kinetics, suggesting that release of the molecule was achieved both by medium diffusion and structural erosion. Transport elucidation in Caco-2 cells demonstrated that the efflux ratio of encapsulated GA was dramatically decreased from 1.42 to 0.76, and pharmacokinetic studies showed that the oral bioavailability of GA-M was 2.3 times higher than that of free GA, indicating that HS15/lecithin mixed micelles could promote absorption in the gastrointestinal tract. Overall, these results present a micelle system suitable for oral delivery, with increased solubility and oral bioavailability of GA.
Collapse
Affiliation(s)
- Zhongcheng Ke
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, 245041, China.,Xin'an Chinese medicine technology innovation center, Huangshan, Anhui, 245041.,College of pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jianjun Shi
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, 245041, China.,Xin'an Chinese medicine technology innovation center, Huangshan, Anhui, 245041
| | - Ziyang Cheng
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, 245041, China.,Xin'an Chinese medicine technology innovation center, Huangshan, Anhui, 245041
| | - Xiaoling Cheng
- Health Supervision Institute, Tunxi District Health Bureau, Huangshan, Anhui, 245000, China
| | - Huan Wang
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, 245041, China.,Xin'an Chinese medicine technology innovation center, Huangshan, Anhui, 245041
| | - Meng Wang
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, 245041, China.,Xin'an Chinese medicine technology innovation center, Huangshan, Anhui, 245041
| | - Jingjing Wu
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, 245041, China.,Xin'an Chinese medicine technology innovation center, Huangshan, Anhui, 245041
| | - Yinyu Sun
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, 245041, China.,Xin'an Chinese medicine technology innovation center, Huangshan, Anhui, 245041
| | - Changjiang Li
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, 245041, China.,Xin'an Chinese medicine technology innovation center, Huangshan, Anhui, 245041
| |
Collapse
|
6
|
Hatami E, Nagesh PKB, Chauhan N, Jaggi M, Chauhan SC, Yallapu MM. In Situ Nanoparticle Self-Assembly for Combination Delivery of Therapeutics to Non-Small Cell Lung Cancer. ACS APPLIED BIO MATERIALS 2022; 5:1104-1119. [PMID: 35179871 DOI: 10.1021/acsabm.1c01158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemotherapy often experiences several challenges including severe systemic toxicity and adverse effects. The combination chemotherapy arose as an effective clinical practice aimed at reducing doses of drugs to achieve synergistic actions with low toxicity. Our recent efforts demonstrated a synergistic therapeutic benefit of gambogic acid (GA) and gemcitabine (Gem) against lung cancer. However, simultaneous delivery of these two drugs at the tumor site is highly challenging. Therefore, the development of an injectable formulation that can effectively deliver both hydrophobic (GA) and hydrophilic (Gem) drugs in one formulation is a clinically unmet need. Herein, this study reports an in situ human serum albumin (HSA)- and tannic acid (TA)-mediated complexed GA and Gem nanoparticles (G-G@HTA NPs). G-G@HTA NP formation was confirmed by the particle size, Fourier transform infrared spectroscopy, and 1H NMR spectroscopy. The superior therapeutic activity of G-G@HTA NPs was demonstrated by multiple in vitro functional assays. Additionally, G-G@HTA NPs revealed an obvious and precise targeting of tumors in vivo. The promoted and more synergistic anti-tumor efficacy of G-G@HTA NPs was attained than that of combined treatments and single drug treatments. These events have resulted in no apparent systemic and organ toxicities. Together, this study suggests that in situ HSA-TA-based combinatorial treatment strategy is a suitable approach for application in lung cancer treatment.
Collapse
Affiliation(s)
- Elham Hatami
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Prashanth K B Nagesh
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States.,Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Neeraj Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| |
Collapse
|
7
|
Nguyen A, Böttger R, Ong CY, Chao PH, Wu J, Rouhollahi E, Chen Y, Li SD. Interplay Between the Linker and Polymer Molecular Weight of a Self-Assembling Prodrug on the Pharmacokinetics and Therapeutic Efficacy. Biomater Sci 2022; 10:3122-3136. [DOI: 10.1039/d1bm01947c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poorly water-soluble small hydrophobic compounds can be conjugated to a hydrophilic polymer such as methoxypolyethylene glycol (mPEG) to form amphiphilic prodrugs that can self-assemble into nanoparticles (NPs) with increased aqueous...
Collapse
|
8
|
Drug-induced hierarchical self-assembly of poly(amino acid) for efficient intracellular drug delivery. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Spada A, Emami J, Tuszynski JA, Lavasanifar A. The Uniqueness of Albumin as a Carrier in Nanodrug Delivery. Mol Pharm 2021; 18:1862-1894. [PMID: 33787270 DOI: 10.1021/acs.molpharmaceut.1c00046] [Citation(s) in RCA: 274] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Albumin is an appealing carrier in nanomedicine because of its unique features. First, it is the most abundant protein in plasma, endowing high biocompatibility, biodegradability, nonimmunogenicity, and safety for its clinical application. Second, albumin chemical structure and conformation allows interaction with many different drugs, potentially protecting them from elimination and metabolism in vivo, thus improving their pharmacokinetic properties. Finally, albumin can interact with receptors overexpressed in many diseased tissues and cells, providing a unique feature for active targeting of the disease site without the addition of specific ligands to the nanocarrier. For this reason, albumin, characterized by an extended serum half-life of around 19 days, has the potential of promoting half-life extension and targeted delivery of drugs. Therefore, this article focuses on the importance of albumin as a nanodrug delivery carrier for hydrophobic drugs, taking advantage of the passive as well as active targeting potential of this nanocarrier. Particular attention is paid to the breakthrough NAB-Technology, with emphasis on the advantages of Nab-Paclitaxel (Abraxane), compared to the solvent-based formulations of Paclitaxel, i.e., CrEL-paclitaxel (Taxol) in a clinical setting. Finally, the role of albumin in carrying anticancer compounds is depicted, with a particular focus on the albumin-based formulations that are currently undergoing clinical trials. The article sheds light on the power of an endogenous substance, such as albumin, as a drug delivery system, signifies the importance of the drug vehicle in drug performance in the biological systems, and highlights the possible future trends in the use of this drug delivery system.
Collapse
Affiliation(s)
- Alessandra Spada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada.,DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jaber Emami
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.,Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jack A Tuszynski
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada.,DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
10
|
Zhang D, Wang W, Hou T, Pang Y, Wang C, Wu S, Wang Q. New Delivery Route of Gambogic Acid Via Skin for Topical Targeted Therapy of Cutaneous Melanoma and Reduction of Systemic Toxicity. J Pharm Sci 2020; 110:2167-2176. [PMID: 33373608 DOI: 10.1016/j.xphs.2020.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Cutaneous melanoma is the deadliest form of skin cancer, and gambogic acid (GA) exhibits potent anti-melanoma activity. However, clinical application of GA via intravenous injection and oral administration is limited by systemic toxicity and rapid metabolism in the blood. Here, we developed a new, topical route of GA delivery for anti-melanoma activity and reduction of systemic toxicity. The results indicated that the barrier of the stratum corneum (SC) and low diffusion of GA in the hydrophilic viable skin (epidermis and dermis) limited the GA penetration through intact skin. The combination of azone (AZ) and propylene glycol (PG) showed obvious synergistic effects on skin penetration by GA via improving the permeability of the SC and greatly increasing the skin accumulation of GA, thereby forming a high drug concentration in the skin and achieving a topical targeted treatment of melanoma. In addition, GA (AZ-PG) achieved the same anti-melanoma effect via topical delivery as via intravenous injection. Intravenous injection and oral administration of GA induced remarkable pathological changes in various organs in mice, whereas GA was not toxic to various organs or to the skin via topical delivery. These findings indicated that topical administration of GA is an alternative route for melanoma treatment.
Collapse
Affiliation(s)
- Ding Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Wei Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Tao Hou
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yanjun Pang
- Liaoning Institute for Drug Control, Shenyang, Liaoning 110036, China
| | - Chao Wang
- Liaoning Institute for Drug Control, Shenyang, Liaoning 110036, China
| | - Shuai Wu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Qing Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China.
| |
Collapse
|
11
|
Liu Y, Chen Y, Lin L, Li H. Gambogic Acid as a Candidate for Cancer Therapy: A Review. Int J Nanomedicine 2020; 15:10385-10399. [PMID: 33376327 PMCID: PMC7764553 DOI: 10.2147/ijn.s277645] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Gambogic acid (GA), a kind of dry resin secreted by the Garcinia hanburyi tree, is a natural active ingredient with various biological activities, such as anti-cancer, anti-inflammatory, antioxidant, anti-bacterial effects, etc. An increasing amount of evidence indicates that GA has obvious anti-cancer effects via various molecular mechanisms, including the induction of apoptosis, autophagy, cell cycle arrest and the inhibition of invasion, metastasis, angiogenesis. In order to improve the efficacy in cancer treatment, nanometer drug delivery systems have been employed to load GA and form micelles, nanoparticles, nanofibers, and so on. In this review, we aim to offer a summary of chemical structure and properties, anti-cancer activities, drug delivery systems and combination therapy of GA, which might provide a reference to promote the development and clinical application of GA.
Collapse
Affiliation(s)
- Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yingchong Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, People’s Republic of China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
12
|
Srivastava A, Prajapati A. Albumin and functionalized albumin nanoparticles: production strategies, characterization, and target indications. ASIAN BIOMED 2020; 14:217-242. [PMID: 37551304 PMCID: PMC10373404 DOI: 10.1515/abm-2020-0032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The inherent properties of albumin facilitate its effective use as a raw material to prepare a nanosized drug delivery vehicles. Because of the enhanced surface area, biocompatibility, and extended half-life of albumin nanoparticles, a number of drugs have been incorporated in albumin matrices in recent years. Furthermore, its ability to be conjugated to various receptor ligands makes albumin an ideal candidate for the increased delivery of drugs to specific sites. The present review provides an in-depth discussion of production strategies for the preparation of albumin and conjugated albumin nanoparticles and for the targeting of these formulations to specific organs and cancer cells. This review also provides insights into drug loading, release patterns, and cytotoxicity of various drug-loaded albumin nanoparticles.
Collapse
Affiliation(s)
- Abhishek Srivastava
- Department of Chemistry, GLA University, Chaumuhan, Mathura, Uttar Pradesh281406, India
| | - Anjali Prajapati
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh281406, India
| |
Collapse
|
13
|
Georgilis E, Abdelghani M, Pille J, Aydinlioglu E, van Hest JC, Lecommandoux S, Garanger E. Nanoparticles based on natural, engineered or synthetic proteins and polypeptides for drug delivery applications. Int J Pharm 2020; 586:119537. [DOI: 10.1016/j.ijpharm.2020.119537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
|
14
|
Xu Q, Chu CC. Development of ROS-responsive amino acid-based poly(ester amide) nanoparticle for anticancer drug delivery. J Biomed Mater Res A 2020; 109:524-537. [PMID: 32529749 DOI: 10.1002/jbm.a.37035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 05/01/2020] [Accepted: 05/10/2020] [Indexed: 01/27/2023]
Abstract
Reactive oxygen species (ROS) play an important role in cellular metabolism and many oxidative stress related diseases. Oxidative stress results from toxic effects of ROS and plays a critical role in the pathogenesis of a variety of diseases like cancers and many important biological processes. It is known that the unique feature of high intracellular ROS level in cancer cells can be considered as target and utilized as a useful cancer-related stimulus to mediate intracellular drug delivery. Therefore, biomaterials responsive to excess level of ROS are of great importance in biomedical applications. In this study, a novel ROS-responsive polymer based on L-methionine poly(ester amide) (Met-PEA-PEG) was designed, synthesized, characterized and self-assembled into nano-micellar-type nanoparticles (NP). The Met-PEA-PEG NP exhibited responsiveness to an oxidative environment. The size and morphology of the nanoparticle changed rapidly in the presence of H2 O2 . The Nile Red dye was loaded into the Met-PEA-PEG NP to demonstrate a H2 O2 concentration induced time-dependent release behavior. The Met-PEA-PEG NP was sensitive to high intracellular ROS level of PC3 prostate cancer cells. Furthermore, the Met-PEA-PEG NP was investigated as a carrier of a Chinese medicine-based anticancer component, gambogic acid (GA). Compared to free GA, the GA-loaded nanocomplex (GA-NP) showed enhanced cytotoxicity toward PC3 and HeLa cells. The GA-NP also induced a higher level of apoptosis and mitochondrial depolarization in PC3 cells than free GA. The Met-PEA-PEG NP improved the therapeutic effect of GA and may serve as a potential carrier for anticancer drug delivery.
Collapse
Affiliation(s)
- Qinghua Xu
- Biomedical Engineering Field, and Fiber Science Program, Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York, USA
| | - Chih-Chang Chu
- Biomedical Engineering Field, and Fiber Science Program, Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York, USA
| |
Collapse
|
15
|
Hatami E, Jaggi M, Chauhan SC, Yallapu MM. Gambogic acid: A shining natural compound to nanomedicine for cancer therapeutics. Biochim Biophys Acta Rev Cancer 2020; 1874:188381. [PMID: 32492470 DOI: 10.1016/j.bbcan.2020.188381] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023]
Abstract
The United States Food and Drug Administration has permitted number of therapeutic agents for cancer treatment. Most of them are expensive and have some degree of systemic toxicity which makes overbearing in clinical settings. Although advanced research continuously applied in cancer therapeutics, but drug resistance, metastasis, and recurrence remain unanswerable. These accounts to an urgent clinical need to discover natural compounds with precisely safe and highly efficient for the cancer prevention and cancer therapy. Gambogic acid (GA) is the principle bioactive and caged xanthone component, a brownish gamboge resin secreted from the of Garcinia hanburyi tree. This molecule showed a spectrum of biological and clinical benefits against various cancers. In this review, we document distinct biological characteristics of GA as a novel anti-cancer agent. This review also delineates specific molecular mechanism(s) of GA that are involved in anti-cancer, anti-metastasis, anti-angiogenesis, and chemo-/radiation sensitizer activities. Furthermore, recent evidence, development, and implementation of various nanoformulations of gambogic acid (nanomedicine) have been described.
Collapse
Affiliation(s)
- Elham Hatami
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.
| |
Collapse
|
16
|
Zhang D, Chu Y, Qian H, Qian L, Shao J, Xu Q, Yu L, Li R, Zhang Q, Wu F, Liu B, Liu Q. Antitumor Activity of Thermosensitive Hydrogels Packaging Gambogic Acid Nanoparticles and Tumor-Penetrating Peptide iRGD Against Gastric Cancer. Int J Nanomedicine 2020; 15:735-747. [PMID: 32099362 PMCID: PMC6999774 DOI: 10.2147/ijn.s231448] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Gambogic acid (GA) is proved to have anti-tumor effects on gastric cancer. Due to poor solubility, non-specific biological distribution, toxicity to normal tissues and short half-life, it is hard to be applied into the clinic. To overcome these issues, we developed a thermosensitive and injectable hydrogel composed of hydroxypropyl cellulose, silk fibroin and glycerol, with short gelling time, good compatibility and sustained release, and demonstrated that the hydrogel packaged with gambogic acid nanoparticles (GA-NPs) and tumor-penetrating peptide iRGD could improve the anti-tumor activity. Methods The Gelling time and micropore size of the hydrogels were regulated through different concentrations of glycerol. Controlled release characteristics of the hydrogels were evaluated with a real-time near-infrared fluorescence imaging system. Location of nanoparticles from different carriers was traced by confocal laser scanning microscopy. The in vivo antitumor activity of the hydrogels packaging GA-NPs and iRGD was evaluated by investigating tumor volume and tumor size. Results The thermo-sensitive properties of hydrogels were characterized by 3-4 min, 37°C, when glycerol concentration was 20%. The hydrogels physically packaged with GA-NPs and iRGD showed higher fluorescence intensity than other groups. The in vivo study indicated that the co-administration of GA-NPs and iRGD by hydrogels had higher antitumor activity than the GA-loaded hydrogels and free GA combining with iRGD. Free GA group showed few antitumor effects. Compared with the control group, the body weight in other groups had no obvious change, and the count of leukocytes and hemoglobin was slightly decreased. Discussion The hydrogel constructed iRGD and GA-NPs exerted an effective anti-tumor effect possibly due to retention effect, local administration and continuous sustained release of iRGD promoting the penetration of nanoparticles into a deep part of tumors. The delivery system showed little systemic toxicity and would provide a promising strategy to improve anti-gastric cancer efficacy.
Collapse
Affiliation(s)
- Dinghu Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China.,Department of Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yanhong Chu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Hanqing Qian
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Lingyu Qian
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Jie Shao
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Qiuping Xu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Rutian Li
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Quanan Zhang
- Department of Oncology, Jiangning Hospital, Nanjing, People's Republic of China
| | - Fenglei Wu
- Department of Oncology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, People's Republic of China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Qin Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
17
|
Nguyen A, Ando H, Böttger R, DurgaRao Viswanadham KK, Rouhollahi E, Ishida T, Li SD. Utilization of click chemistry to study the effect of poly(ethylene)glycol molecular weight on the self-assembly of PEGylated gambogic acid nanoparticles for the treatment of rheumatoid arthritis. Biomater Sci 2020; 8:4626-4637. [DOI: 10.1039/d0bm00711k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Click chemistry was used to study the effect of varied PEG molecular weights on the self-assembly of PEG-gambogic acid (GA) conjugates into nanoparticles.
Collapse
Affiliation(s)
- Anne Nguyen
- Faculty of Pharmaceutical Sciences
- University of British Columbia
- Vancouver
- Canada
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics
- Subdivision of Biopharmaceutical Sciences
- Institute of Health Biosciences
- The University of Tokushima
- Tokushima
| | - Roland Böttger
- Faculty of Pharmaceutical Sciences
- University of British Columbia
- Vancouver
- Canada
| | | | - Elham Rouhollahi
- Faculty of Pharmaceutical Sciences
- University of British Columbia
- Vancouver
- Canada
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics
- Subdivision of Biopharmaceutical Sciences
- Institute of Health Biosciences
- The University of Tokushima
- Tokushima
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
18
|
Kebebe D, Wu Y, Zhang B, Yang J, Liu Y, Li X, Ma Z, Lu P, Liu Z, Li J. Dimeric c(RGD) peptide conjugated nanostructured lipid carriers for efficient delivery of Gambogic acid to breast cancer. Int J Nanomedicine 2019; 14:6179-6195. [PMID: 31447559 PMCID: PMC6683963 DOI: 10.2147/ijn.s202424] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/06/2019] [Indexed: 01/28/2023] Open
Abstract
Background and purpose: Gambogic acid (GA) is a natural compound that exhibited a promising multi-target antitumor activity against several types of cancer. However, the clinical application of this drug is limited due to its poor solubility and low tumor cell-specific delivery. In this study, the monomeric and dimeric Cyclo (Arg-Gly-Asp) c(RGD) tumor targeting peptides (c(RGDfK) and E-[c(RGDfK)2]) were used to modify GA loaded nanostructured lipid carriers (NLC) to reduce the limitations associated with GA and improve its antitumor activity. Methods: GA-NLC was prepared by emulsification and solvent evaporation methods and the surface of the NLC was conjugated with the c(RGD) peptides via an amide bond. The formulations were characterized for particle size, morphology and zeta potential, encapsulation efficiency and drug loading. The in-vitro cytotoxicity and cell uptake studies were conducted using 4T1 cell. Furthermore, the in-vivo antitumor activity and bio-distribution study were performed on female BALB/c nude mice. Results: The c(RGD) peptides modified GA-NLC was successfully prepared with the particles size about 20 nm. The HPLC analysis, FT-IR and 1H-NMR spectra confirmed the successful conjugation of the peptides with the NLC. The in-vitro cytotoxicity study on 4T1 cells revealed that c(RGD) peptides modified GA-NLCs showed significantly higher cytotoxicity at 0.25 and 0.5 µg/mL as compared to unmodified GA-NLC. Furthermore, the cell uptake study demonstrated that better accumulation of E-[c(RGDfK)2] peptides modified NLC in 4T1 cell after 12 h incubation. Moreover, the in-vivo study showed that c(RGD)s functionalized GA-NLC exhibited better accumulation in tumor tissue and tumor growth inhibition. In contrast to the monomeric c(RGD) peptide, the dimeric c(RGD) peptide (E-[c(RGDfK)2]) conjugated GA-NLC showed the improved antitumor activity and tumor targeting ability of GA-NLC. Conclusion: These data provide further support for the potential clinical applications of E-[c(RGDfK)2]-GA-NLC in breast cancer therapy.
Collapse
Affiliation(s)
- Dereje Kebebe
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
, Tianjin301617, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine
, Tianjin301617, People’s Republic of China
- Department of Pharmaceutics, School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Yumei Wu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
, Tianjin301617, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine
, Tianjin301617, People’s Republic of China
| | - Bing Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
, Tianjin301617, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine
, Tianjin301617, People’s Republic of China
| | - Jian Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
, Tianjin301617, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine
, Tianjin301617, People’s Republic of China
| | - Yuanyuan Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
, Tianjin301617, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine
, Tianjin301617, People’s Republic of China
| | - Xinyue Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
, Tianjin301617, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine
, Tianjin301617, People’s Republic of China
| | - Zhe Ma
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
, Tianjin301617, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine
, Tianjin301617, People’s Republic of China
| | - Peng Lu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
, Tianjin301617, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine
, Tianjin301617, People’s Republic of China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
, Tianjin301617, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine
, Tianjin301617, People’s Republic of China
| | - Jiawei Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
, Tianjin301617, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine
, Tianjin301617, People’s Republic of China
| |
Collapse
|
19
|
A Comprehensive Preclinical Evaluation of Intravenous Etoposide Lipid Emulsion. Pharm Res 2019; 36:96. [DOI: 10.1007/s11095-019-2637-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
|
20
|
Zhang C, Liu J, Tao F, Lu Y, He Q, Zhao L, Ou R, Xu Y, Li W. Retracted Article: The nuclear export of TR3 mediated gambogic acid-induced apoptosis in cervical cancer cells through mitochondrial dysfunction. RSC Adv 2019; 9:11855-11864. [PMID: 35516982 PMCID: PMC9063542 DOI: 10.1039/c8ra10542a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/29/2019] [Indexed: 12/02/2022] Open
Abstract
At present, chemotherapy is still the main treatment for cervical cancer. However, the drug resistance of chemotherapy drugs seriously restricts its use, so it is urgent to develop new drugs for cervical cancer. Some studies have shown that gambogic acid has a strong anti-tumor effect, while the anti-tumor effect and molecular mechanism of gambogic acid on cervical cancer need to be studied. Our study confirms that the cytotoxic effect of gambogic acid on cervical cancer cells depends on the expression of TR3 protein. Moreover, gambogic acid-induced apoptosis requires TR3 expression. In the mechanism, gambogic acid promoted nuclear export of TR3, resulting in up-regulation of p53, which leads to the decrease of mitochondrial membrane potential, eventually inducing apoptosis. These results suggest that the nuclear export of TR3 mediated gambogic acid-induced apoptosis through a p53-dependent apoptosis pathway.
Collapse
Affiliation(s)
- Chunhong Zhang
- Department of Pharmacy, The First Affliated Hospital of Wenzhou Medical University Wenzhou Zhejiang Province China
| | - Jia Liu
- Department of Dermatovenereology, The First Affliated Hospital of Wenzhou Medical University Nanbaixiang Street Wenzhou Zhejiang Province China
- Plastic and Cosmetic Center, The Affiliated Eye Hospital of Wenzhou Medical University Wenzhou Zhejiang Province China
| | - Fengxing Tao
- Department of Dermatovenereology, The First Affliated Hospital of Wenzhou Medical University Nanbaixiang Street Wenzhou Zhejiang Province China
| | - Yiyi Lu
- Department of Dermatovenereology, The First Affliated Hospital of Wenzhou Medical University Nanbaixiang Street Wenzhou Zhejiang Province China
| | - Qin He
- Department of Dermatovenereology, The First Affliated Hospital of Wenzhou Medical University Nanbaixiang Street Wenzhou Zhejiang Province China
| | - Liang Zhao
- Laboratory for Advanced Interdisciplinary Research, Institute of Translational Medicine, The First Affliated Hospital of Wenzhou Medical University Nanbaixiang Street Wenzhou Zhejiang Province China
| | - Rongying Ou
- Department of Gynaecology and Obstetrics, The First Affliated Hospital of Wenzhou Medical University Wenzhou Zhejiang Province China
| | - Yunsheng Xu
- Department of Dermatovenereology, The First Affliated Hospital of Wenzhou Medical University Nanbaixiang Street Wenzhou Zhejiang Province China
| | - Wenfeng Li
- Laboratory for Advanced Interdisciplinary Research, Institute of Translational Medicine, The First Affliated Hospital of Wenzhou Medical University Nanbaixiang Street Wenzhou Zhejiang Province China
| |
Collapse
|
21
|
Henkin JM, Ren Y, Soejarto DD, Kinghorn AD. The Search for Anticancer Agents from Tropical Plants. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2018; 107:1-94. [PMID: 30178270 PMCID: PMC11840880 DOI: 10.1007/978-3-319-93506-5_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many of the clinically used anticancer agents in Western medicine are derived from secondary metabolites found in terrestrial microbes, marine organisms, and higher plants, with additional compounds of this type being currently in clinical trials. If plants are taken specifically, it is generally agreed that the prospects of encountering enhanced small organic-molecule chemical diversity are better if tropical rather than temperate species are investigated in drug discovery efforts. Plant collection in tropical source countries requires considerable preparation and organization to conduct in a responsible manner that abides by the provisions of the 1992 Rio Convention of Biological Diversity and the 2010 Nagoya Protocol on Access to Genetic Resources. Correct taxonomic identifications and enhanced procedures for processing and documenting plant samples when collected in often difficult terrain are required. Phytochemical aspects of the work involve solvent fractionation, known compound dereplication, preliminary in vitro testing, and prioritization, leading to "activity-guided fractionation", compound structure determination, and analog development. Further evaluation of lead compounds requires solubility, formulation, preliminary pharmacokinetics, and in vivo testing in suitable models. Covering the work of the authors carried out in two sequential multidisciplinary, multi-institutional research projects, examples of very promising compounds discovered from plants acquired from Africa, Southeast Asia, the Americas, and the Caribbean region, and with potential anticancer activity will be mentioned. These include plant secondary metabolites of the diphyllin lignan, cyclopenta[b]benzofuran, triterpenoid, and tropane alkaloid types.
Collapse
Affiliation(s)
- Joshua M Henkin
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Yulin Ren
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Djaja Djendoel Soejarto
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - A Douglas Kinghorn
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
22
|
Feng Z, Wang Z, Yang Y, Du Y, Cui S, Zhang Y, Tong Y, Song Z, Zeng H, Zou Q, Peng L, Sun H. Development of a safety and efficacy nanoemulsion delivery system encapsulated gambogic acid for acute myeloid leukemia in vitro and in vivo. Eur J Pharm Sci 2018; 125:172-180. [DOI: 10.1016/j.ejps.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/12/2018] [Accepted: 10/01/2018] [Indexed: 01/07/2023]
|
23
|
Ke Z, Yang L, Wu H, Li Z, Jia X, Zhang Z. Evaluation of in vitro and in vivo antitumor effects of gambogic acid-loaded layer-by-layer self-assembled micelles. Int J Pharm 2018; 545:306-317. [DOI: 10.1016/j.ijpharm.2018.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 01/01/2023]
|
24
|
Rizwanullah M, Amin S, Mir SR, Fakhri KU, Rizvi MMA. Phytochemical based nanomedicines against cancer: current status and future prospects. J Drug Target 2017; 26:731-752. [DOI: 10.1080/1061186x.2017.1408115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Md. Rizwanullah
- Formulation Research Laboratory, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Saima Amin
- Formulation Research Laboratory, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Showkat Rasool Mir
- Phytopharmaceutical Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Khalid Umar Fakhri
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | |
Collapse
|
25
|
Shetty A, Venkatesh T, Suresh PS, Tsutsumi R. Exploration of acute genotoxic effects and antigenotoxic potential of gambogic acid using Allium cepa assay. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:643-652. [PMID: 28806720 DOI: 10.1016/j.plaphy.2017.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
The plant derived xanthanoid gambogic acid (GA) is well known for its anticancer activity. To date, biological actions of GA on plant system have not been reported. In the present study, we evaluated the potential acute genotoxic activity of GA, and its antigenotoxic potential against H2O2 induced genetic damage using Allium cepa root chromosomal aberration assay under hydroponic conditions. There was a significant decrease in the percentage of mitotic index/prophase index with the increase in clastogenicity percentage in a dose and time-dependent manner when Allium cepa bulbs were exposed to GA at 0.1 mM and 1 mM concentration for 1 h, 2 h, and 4 h. Total genomic DNA integrity analyzed by agarose gel electrophoresis and cell viability revealed pronounced DNA degradation and loss of viability when treated with 1 mM GA for 4 h. In situ histochemical localization by Schiff's staining and 3, 3-diaminobenzidine confirmed increased levels of lipid peroxide and H2O2 in GA treated roots respectively. Scanning electron microscopy and FT-IR suggested surface damage and biomolecular intervention of GA in root cells. In addition, possible antigenotoxic effect of GA at lower concentration was explored by employing standard assays using H2O2. We observed a higher percentage of nuclear lesions upon treatment with 3% H2O2 (97.21 ± 0.76) that reduced significantly after modulatory treatment with 0.01 mM GA (70.44 ± 4.42). The results suggest that GA is a Janus-faced compound as it demonstrates a genotoxic activity at higher doses and genoprotective action at lower precise doses.
Collapse
Affiliation(s)
- Abhishek Shetty
- Department of Biosciences, Mangalore University, Mangalagangothri, 574199, India
| | - Thejaswini Venkatesh
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasaragod, India
| | - Padmanaban S Suresh
- Department of Biosciences, Mangalore University, Mangalagangothri, 574199, India.
| | - Rie Tsutsumi
- Division of Nutrition and Metabolism, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| |
Collapse
|
26
|
Dua K, Shukla SD, de Jesus Andreoli Pinto T, Hansbro PM. Nanotechnology: Advancing the translational respiratory research. Interv Med Appl Sci 2017; 9:39-41. [PMID: 28932494 PMCID: PMC5598120 DOI: 10.1556/1646.9.2017.1.02] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Considering the various limitations associated with the conventional dosage forms, nanotechnology is gaining increased attention in drug delivery particularly in respiratory medicine and research because of its advantages like targeting effects, improved pharmacotherapy, and patient compliance. This paper provides a quick snapshot about the recent trends and applications of nanotechnology to various translational and formulation scientists working on various respiratory diseases, which can help paving a new path in developing effective drug delivery system.
Collapse
Affiliation(s)
- Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Shakti Dhar Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | | | - Philip Michael Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|