1
|
Liu S, Liu Z, Lei H, Miao YB, Chen J. Programmable Nanomodulators for Precision Therapy, Engineering Tumor Metabolism to Enhance Therapeutic Efficacy. Adv Healthc Mater 2025; 14:e2403019. [PMID: 39529548 DOI: 10.1002/adhm.202403019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Tumor metabolism is crucial in the continuous advancement and complex growth of cancer. The emerging field of nanotechnology has made significant strides in enhancing the understanding of the complex metabolic intricacies inherent to tumors, offering potential avenues for their strategic manipulation to achieve therapeutic goals. This comprehensive review delves into the interplay between tumor metabolism and various facets of cancer, encompassing its origins, progression, and the formidable challenges posed by metastasis. Simultaneously, it underscores the classification of programmable nanomodulators and their transformative impact on enhancing cancer treatment, particularly when integrated with modalities such as chemotherapy, radiotherapy, and immunotherapy. This review also encapsulates the mechanisms by which nanomodulators modulate tumor metabolism, including the delivery of metabolic inhibitors, regulation of oxidative stress, pH value modulation, nanoenzyme catalysis, nutrient deprivation, and RNA interference technology, among others. Additionally, the review delves into the prospects and challenges of nanomodulators in clinical applications. Finally, the innovative concept of using nanomodulators to reprogram metabolic pathways is introduced, aiming to transform cancer cells back into normal cells. This review underscores the profound impact that tailored nanomodulators can have on tumor metabolic, charting a path toward pioneering precision therapies for cancer.
Collapse
Affiliation(s)
- Siwei Liu
- Women & Children's Molecular Medicine Center, Department of Gynecology, Guangyuan Central Hospital, No. 16, Jingxiangzi, Lizhou District, Guangyuan, 628000, P. R. China
| | - Zhijun Liu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Huajiang Lei
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Jiao Chen
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| |
Collapse
|
2
|
Asadi N, Gharbavi M, Rezaeejam H, Farajollahi A, Johari B. Zinc nanoparticles coated with doxorubicin-conjugated alginate as a radiation sensitizer in triple-negative breast cancer cells. Int J Pharm 2024; 659:124285. [PMID: 38821433 DOI: 10.1016/j.ijpharm.2024.124285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
The main treatment modalities for breast cancer include surgery, chemotherapy, and radiotherapy, and each treatment will bring different side effects. Design and synthesizing a novel nanostructure for chemo-radiotherapy has been proposed as an effective method in consideration to enhance the drug efficiency as well as improve the effect of radiotherapy. This study aimed to synthesize zinc nanoparticles (ZnNPs) coated with alginate conjugated with Doxorubicin (Dox) drug and investigate its effects along with X-irradiation on MDA-MB-231 triple-negative breast cancer cell line. ZnNPs coated with alginate were synthesized and conjugated to Dox by covalent bonding and characterized using various physicochemical tests. A hemolysis test was used to assess blood biocompatibility. The radiosensitization properties and anti-cancer effects of the synthesized nanostructures were tested by cell uptake, cell viability, apoptosis, cell cycle, and scratch assays with and without radiation exposure. The physicochemical characterization results showed that the synthesis of nanostructures was successfully carried out. The obtained results from the cell uptake assay showed the effective absorption of nanostructures by the cells. The Zn@Alg-Dox NPs significantly reduced cell growth, increased apoptosis, inhibited cell migration, and led to the arrest of different cell cycle phases in both conditions with and without X-ray exposure. Coating ZnNPs with alginate and Doxorubicin conjugation leads to an increase the radiation sensitivity in radiotherapy as well as therapeutic efficiency. Therefore, Zn@Alg-Dox NPs can be used as radiosensitizing nanomedicine for in vivo studies in the future.
Collapse
Affiliation(s)
- Niloofar Asadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Gharbavi
- Nanotechnology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Anesthesiology, School of Medicine, Pain Research Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Iran
| | - Hamed Rezaeejam
- Department of Radiation Oncology, Vali-e-Asr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Radiology, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Alireza Farajollahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Radio-oncology Department, Shihid Madani University Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behrooz Johari
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
3
|
Avgoustakis K, Angelopoulou A. Biomaterial-Based Responsive Nanomedicines for Targeting Solid Tumor Microenvironments. Pharmaceutics 2024; 16:179. [PMID: 38399240 PMCID: PMC10892652 DOI: 10.3390/pharmaceutics16020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Solid tumors are composed of a highly complex and heterogenic microenvironment, with increasing metabolic status. This environment plays a crucial role in the clinical therapeutic outcome of conventional treatments and innovative antitumor nanomedicines. Scientists have devoted great efforts to conquering the challenges of the tumor microenvironment (TME), in respect of effective drug accumulation and activity at the tumor site. The main focus is to overcome the obstacles of abnormal vasculature, dense stroma, extracellular matrix, hypoxia, and pH gradient acidosis. In this endeavor, nanomedicines that are targeting distinct features of TME have flourished; these aim to increase site specificity and achieve deep tumor penetration. Recently, research efforts have focused on the immune reprograming of TME in order to promote suppression of cancer stem cells and prevention of metastasis. Thereby, several nanomedicine therapeutics which have shown promise in preclinical studies have entered clinical trials or are already in clinical practice. Various novel strategies were employed in preclinical studies and clinical trials. Among them, nanomedicines based on biomaterials show great promise in improving the therapeutic efficacy, reducing side effects, and promoting synergistic activity for TME responsive targeting. In this review, we focused on the targeting mechanisms of nanomedicines in response to the microenvironment of solid tumors. We describe responsive nanomedicines which take advantage of biomaterials' properties to exploit the features of TME or overcome the obstacles posed by TME. The development of such systems has significantly advanced the application of biomaterials in combinational therapies and in immunotherapies for improved anticancer effectiveness.
Collapse
Affiliation(s)
- Konstantinos Avgoustakis
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
- Clinical Studies Unit, Biomedical Research Foundation Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece
| | - Athina Angelopoulou
- Department of Chemical Engineering, Polytechnic School, University of Patras, 26504 Patras, Greece
| |
Collapse
|
4
|
Yaribeygi H, Maleki M, Jamialahmadi T, Shakhpazyan NK, Kesharwani P, Sahebkar A. Nanoparticles with SGLT2 inhibitory activity: Possible benefits and future. Diabetes Metab Syndr 2023; 17:102869. [PMID: 37778134 DOI: 10.1016/j.dsx.2023.102869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/12/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
AIM Nano-drug delivery is a rapidly growing approach in medicine that helps design and develop newer forms of drugs with more efficacy and lower adverse effects. Sodium-glucose cotransporter-2 inhibitors are an emerging class of antidiabetic agents that reduce the blood glucose levels by damping glucose reabsorption in renal proximal tubules. METHODS AND RESULTS This mechanism might be followed by some adverse effects that could be prevented by nano-drug delivery. Although we have still limited evidence about nanoforms of sodium-glucose cotransporter-2 inhibitors, current knowledge strongly suggests that nanotechnology can help us design more effective drugs with lower side effects. In recent years, several studies have explored the possible benefits of nanoforms of sodium-glucose cotransporter-2 inhibitors. However, clinical trials are yet to be conducted. CONCLUSION In the current review, we present the latest findings on the development and benefits of nanoforms of sodium-glucose cotransporter-2 inhibitors.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nikolay K Shakhpazyan
- Petrovsky National Science Center of Surgery, 2 Abrikosovsky Lane, 119991, Moscow, Russia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Zhang Z, Dalan R, Hu Z, Wang JW, Chew NW, Poh KK, Tan RS, Soong TW, Dai Y, Ye L, Chen X. Reactive Oxygen Species Scavenging Nanomedicine for the Treatment of Ischemic Heart Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202169. [PMID: 35470476 DOI: 10.1002/adma.202202169] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Ischemic heart disease (IHD) is the leading cause of disability and mortality worldwide. Reactive oxygen species (ROS) have been shown to play key roles in the progression of diabetes, hypertension, and hypercholesterolemia, which are independent risk factors that lead to atherosclerosis and the development of IHD. Engineered biomaterial-based nanomedicines are under extensive investigation and exploration, serving as smart and multifunctional nanocarriers for synergistic therapeutic effect. Capitalizing on cell/molecule-targeting drug delivery, nanomedicines present enhanced specificity and safety with favorable pharmacokinetics and pharmacodynamics. Herein, the roles of ROS in both IHD and its risk factors are discussed, highlighting cardiovascular medications that have antioxidant properties, and summarizing the advantages, properties, and recent achievements of nanomedicines that have ROS scavenging capacity for the treatment of diabetes, hypertension, hypercholesterolemia, atherosclerosis, ischemia/reperfusion, and myocardial infarction. Finally, the current challenges of nanomedicines for ROS-scavenging treatment of IHD and possible future directions are discussed from a clinical perspective.
Collapse
Affiliation(s)
- Zhan Zhang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 408433, Singapore
| | - Zhenyu Hu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jiong-Wei Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Nicholas Ws Chew
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Kian-Keong Poh
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore, 119609, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macao, Taipa, Macau SAR, 999078, China
| | - Lei Ye
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
6
|
Papaioannou L, Avgoustakis K. Responsive nanomedicines enhanced by or enhancing physical modalities to treat solid cancer tumors: Preclinical and clinical evidence of safety and efficacy. Adv Drug Deliv Rev 2022; 181:114075. [PMID: 34883140 DOI: 10.1016/j.addr.2021.114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/22/2021] [Accepted: 12/02/2021] [Indexed: 11/28/2022]
Abstract
Nanomedicine has improved cancer treatment but not to the extent anticipated. Responsive nanomedicines enhanced by physical modalities (radiation, ultrasounds, alternating magnetic fields) or enhancing the activity of physical modalities such as radiotherapy to kill cancer represents an important approach in improving the safety and anticancer effectiveness. Importantly, the combined treatments have shown promise for the treatment of difficult to treat tumors, such as tumors that are resistant to chemotherapy (multi drug resistant, MDR) or radiotherapy and hypoxic tumors, and for the prevention of tumor metastasis. In this review, the mechanisms of responsive nanomedicines activity enhancement by physical means and vice versa are presented and preclinical and, most importantly, clinical evidence of the safety and efficacy of nanomedicines enhanced by or enhancing by physical modalities in treating solid tumors are critically discussed.
Collapse
Affiliation(s)
- Ligeri Papaioannou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Konstantinos Avgoustakis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26504 Patras, Greece; Biomedical Research Foundation Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, Athens 11527, Greece.
| |
Collapse
|
7
|
Lau KTK, Ng L, Wong JWH, Loong HHF, Chan WWL, Lee CH, Wong CKH. Repurposing sodium-glucose co-transporter 2 inhibitors (SGLT2i) for cancer treatment - A Review. Rev Endocr Metab Disord 2021; 22:1121-1136. [PMID: 34272645 DOI: 10.1007/s11154-021-09675-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2021] [Indexed: 01/24/2023]
Abstract
Developed as an antidiabetic drug, recent evidence suggests that several sodium-glucose co-transporter 2 inhibitors (SGLT2i), especially canagliflozin and dapagliflozin, may exhibit in vitro and in vivo anticancer activities in selected cancer types, including an inhibition of tumor growth and induction of cell death. When used in combination with chemotherapy or radiotherapy, SGLT2i may offer possible synergistic effects in enhancing their treatment efficacy while alleviating associated side effects. Potential mechanisms include a reduction of glucose uptake into cancer cells, systemic glucose restriction, modulation of multiple signaling pathways, and regulation of different gene and protein expression. Furthermore, preliminary clinical findings have reported potential anticancer properties of canagliflozin and dapagliflozin in patients with liver and colon cancers respectively, with reference to decreases in their tumor marker levels. Given its general tolerability and routine use in diabetes management, SGLT2i may be a good candidate for drug repurposing in cancer treatment and as adjunct to conventional therapies. While current evidence reveals that only certain SGLT2i appear to be effective against selected cancer types, further studies are needed to explore the antitumor abilities of each SGLT2i in various cancers. Moreover, clinical trials are called for to evaluate the safety and feasibility of introducing SGLT2i in the treatment regimen of patients with specific cancers, and to identify the preferred route of drug administration for targeted delivery to selected tumor sites.
Collapse
Affiliation(s)
- Kristy T K Lau
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lui Ng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jason W H Wong
- School of Biomedical Sciences, Faculty of Medicine, Li Ka Shing, The University of Hong Kong, Hong Kong SAR, China
| | - Herbert H F Loong
- Department of Clinical Oncology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wendy W L Chan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chi Ho Lee
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Carlos K H Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Department of Family Medicine and Primary Care, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Perry RJ, Shulman GI. Sodium-glucose cotransporter-2 inhibitors: Understanding the mechanisms for therapeutic promise and persisting risks. J Biol Chem 2020; 295:14379-14390. [PMID: 32796035 DOI: 10.1074/jbc.rev120.008387] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
In a healthy person, the kidney filters nearly 200 g of glucose per day, almost all of which is reabsorbed. The primary transporter responsible for renal glucose reabsorption is sodium-glucose cotransporter-2 (SGLT2). Based on the impact of SGLT2 to prevent renal glucose wasting, SGLT2 inhibitors have been developed to treat diabetes and are the newest class of glucose-lowering agents approved in the United States. By inhibiting glucose reabsorption in the proximal tubule, these agents promote glycosuria, thereby reducing blood glucose concentrations and often resulting in modest weight loss. Recent work in humans and rodents has demonstrated that the clinical utility of these agents may not be limited to diabetes management: SGLT2 inhibitors have also shown therapeutic promise in improving outcomes in heart failure, atrial fibrillation, and, in preclinical studies, certain cancers. Unfortunately, these benefits are not without risk: SGLT2 inhibitors predispose to euglycemic ketoacidosis in those with type 2 diabetes and, largely for this reason, are not approved to treat type 1 diabetes. The mechanism for each of the beneficial and harmful effects of SGLT2 inhibitors-with the exception of their effect to lower plasma glucose concentrations-is an area of active investigation. In this review, we discuss the mechanisms by which these drugs cause euglycemic ketoacidosis and hyperglucagonemia and stimulate hepatic gluconeogenesis as well as their beneficial effects in cardiovascular disease and cancer. In so doing, we aim to highlight the crucial role for selecting patients for SGLT2 inhibitor therapy and highlight several crucial questions that remain unanswered.
Collapse
Affiliation(s)
- Rachel J Perry
- Departments of Cellular and Molecular Physiology and Internal Medicine (Endocrinology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Gerald I Shulman
- Departments of Cellular and Molecular Physiology and Internal Medicine (Endocrinology), Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Santos PCM, Machado TO, Santin JVC, Feuser PE, Córneo ES, Machado‐de‐Ávila RA, Sayer C, Araújo PHH. Superparamagnetic biobased poly(thioether‐ester) via thiol‐ene polymerization in miniemulsion for hyperthermia. J Appl Polym Sci 2020. [DOI: 10.1002/app.49741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Paula C. M. Santos
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina Florianópolis Brazil
| | - Thiago O. Machado
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina Florianópolis Brazil
| | - João V. C. Santin
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina Florianópolis Brazil
| | - Paulo E. Feuser
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina Florianópolis Brazil
| | - Emily S. Córneo
- Postgraduate Program in Health Science University of Southern Santa Catarina Florianópolis Brazil
| | | | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina Florianópolis Brazil
| | - Pedro H. H. Araújo
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina Florianópolis Brazil
| |
Collapse
|
10
|
Alruwaili NK, Zafar A, Imam SS, Alharbi KS, Alshehri S, Elsaman T, Alomar FA, Akhtar S, Fahmy UA, Alhakamy NA, Alshammari MS. Formulation of amorphous ternary solid dispersions of dapagliflozin using PEG 6000 and Poloxamer 188: solid-state characterization, ex vivo study, and molecular simulation assessment. Drug Dev Ind Pharm 2020; 46:1458-1467. [PMID: 32729728 DOI: 10.1080/03639045.2020.1802482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The present study was designed to prepare dapagliflozin (DFG) loaded ternary solid dispersions (SDs) using the carrier blend polyethylene glycol 6000 (PEG 6000) and poloxamer 188 (PLX 188). The prepared DFG-SDs were evaluated for solubility study, physicochemical characterization and molecular simulation study. The prepared DFG-SDs showed significant higher solubility and dissolution vis-a-vis pure DFG and DFG physical mixture. The composition DFG:PEG:PLX (1:2.25:0.75 mM) showed the highest solubility (0.476 ± 0.016 mg/mL). The physicochemical characterization confirms the polymorphic transition of DFG from crystalline state to stable amorphous form. The prepared DFG-SDs showed a significantly higher dissolution (64.78 ± 2.34% to 78.41 ± 2.39%) than pure DFG (15.70 ± 3.54%). DFG-SD2 showed a significantly enhanced drug permeation (p<.05) (58.76 ± 4.65 µg/cm) as compared to pure DFG (14.97 ± 3.32 µg/cm). The molecular docking study result revealed a good hydrophobic interaction of DFG with the used carrier due to the lowest energy pose. The interaction occurs between the methylene bridges and the central hydrophobic chain of polyoxypropylene of the polymer. Therefore, DFG-SDs prepared by microwave irradiation method using hydrophilic carrier blend might be a promising strategy for improving the solubility and in vitro dissolution performance.
Collapse
Affiliation(s)
- Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,College of Pharmacy, Almaarefa University, Riyadh, Saudi Arabia
| | - Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia.,Faculty of Pharmacy, Omdurman Islamic University, Omdurman, Sudan
| | - Fadhel Ahmed Alomar
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics Research, Institute for Research and Medical Consultant, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Usama A Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Salem Alshammari
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
11
|
Angelopoulou A, Kolokithas-Ntoukas A, Fytas C, Avgoustakis K. Folic Acid-Functionalized, Condensed Magnetic Nanoparticles for Targeted Delivery of Doxorubicin to Tumor Cancer Cells Overexpressing the Folate Receptor. ACS OMEGA 2019; 4:22214-22227. [PMID: 31891105 PMCID: PMC6933766 DOI: 10.1021/acsomega.9b03594] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/25/2019] [Indexed: 05/28/2023]
Abstract
This study concerns the development of folic acid (FA)-functionalized iron oxide condensed colloidal magnetic clusters for a more selective delivery of doxorubicin (DOX) to tumor cancer cells overexpressing the folate receptor. Alginate-coated condensed magnetic nanoparticles (co-MIONs) were synthesized via an alkaline precipitation method of an iron precursor in the presence of sodium alginate. Poly(ethylene glycol) (OH-PEG-NH2) was conjugated to the carboxylic acid end group of alginate and folic acid (FA) was conjugated to the hydroxyl terminal group of PEG to produce folate-functionalized, pegylated co-MIONS (Mag-Alg-PEG-FA). The physicochemical properties of nanoparticles were fully characterized. DOX was loaded on the nanoparticles, and the cellular uptake and anticancer efficacy of the nanoparticles were examined in cancer cell lines expressing and not expressing the folate receptor. The biocompatibility of the carrier (blank nanoparticles) was also evaluated by cytocompatibility and hemocompatibility experiments. The nanoparticles exhibited sustained DOX release in aqueous buffers and biorelevant media, which was responsive to pH and external alternating current magnetic fields. The effect of the magnetic field on DOX percentage release appeared to be independent of the timing (onset time) of magnetic field application, providing flexibility to the magnetic control of drug release from the nanoparticles. The blank nanoparticles were not cytotoxic and did not cause hemolysis. The DOX-loaded and FA-functionalized nanoparticles exhibited increased uptake and caused increased apoptosis and cytotoxicity against the MDA-MB-231 cell line, expressing the folate receptor, compared to the MCF-7 cell line, not expressing the folate receptor. The application of a 0.5 T magnetic field during incubation of the nanoparticles with the cancer cells increased the cellular uptake and cytotoxicity of the nanoparticles. The obtained results indicate the potential of the folate-functionalized, pegylated co-MIONS for a more efficacious DOX delivery to cancer cells of solid tumors.
Collapse
Affiliation(s)
- Athina Angelopoulou
- Department
of Pharmacy, School of Health Sciences and Department of Materials Science,
School of Natural Sciences, University of
Patras, Patras 26504, Greece
| | - Argiris Kolokithas-Ntoukas
- Department
of Pharmacy, School of Health Sciences and Department of Materials Science,
School of Natural Sciences, University of
Patras, Patras 26504, Greece
| | - Christos Fytas
- Department
of Pharmacy, School of Health Sciences and Department of Materials Science,
School of Natural Sciences, University of
Patras, Patras 26504, Greece
| | - Konstantinos Avgoustakis
- Department
of Pharmacy, School of Health Sciences and Department of Materials Science,
School of Natural Sciences, University of
Patras, Patras 26504, Greece
- Clinical
Studies Unit, Biomedical Research Foundation
Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, Athens 11527, Greece
| |
Collapse
|
12
|
Angelopoulou A, Kolokithas-Ntoukas A, Papaioannou L, Kakazanis Z, Khoury N, Zoumpourlis V, Papatheodorou S, Kardamakis D, Bakandritsos A, Hatziantoniou S, Avgoustakis K. Canagliflozin-loaded magnetic nanoparticles as potential treatment of hypoxic tumors in combination with radiotherapy. Nanomedicine (Lond) 2018; 13:2435-2454. [PMID: 30311542 DOI: 10.2217/nnm-2018-0145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM To synthesize magnetic nanoparticles loaded with the SGLT2-inhibitor canagliflozin (CANA) and evaluate its anticancer potential under normoxic and hypoxic conditions in combination or not with radiotherapy. MATERIAL & METHODS Iron oxide nanoparticles were synthesized via an alkaline hydrolytic precipitation of iron precursor in the presence of poly(methacrylic acid)-graft-poly(ethyleneglycol methacrylate). CANA was conjugated to the nanoparticles using N-ethyl-N'-(3-dimethyl aminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide chemistry. The anticancer efficacy of the nanoparticles was evaluated in cancer cell lines and in a mouse PDV C57 tumor model. RESULTS In the mouse xenograft cancer model, the combination of CANA-loaded nanoparticles with radiotherapy (in the presence of an external magnetic field at the tumor site) exhibited higher antitumor activity compared with the combination of free CANA with radiotherapy. CONCLUSION The results obtained indicate the potential that the combination of selective delivery of a SGLT2 inhibitor such as CANA with radiotherapy holds as an anticancer treatment.
Collapse
Affiliation(s)
- Athina Angelopoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras 26504, Greece
| | | | - Ligeri Papaioannou
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras 26504, Greece
| | - Zacharias Kakazanis
- Institute of Biology, Medicinal Chemistry & Biotechnology, NHRF, Athens, Greece
| | - Nikolas Khoury
- Institute of Biology, Medicinal Chemistry & Biotechnology, NHRF, Athens, Greece
| | | | | | - Dimitrios Kardamakis
- Department of Radiation Oncology, School of Health Sciences, University of Patras, Patras 26504, Greece
| | - Aristides Bakandritsos
- Department of Physical Chemistry, Faculty of Science, Regional Centre for Advanced Technologies & Materials, Palacky University in Olomouc, 17 listopadu 1192/12, 77146 Olomouc, Czech Republic
| | - Sophia Hatziantoniou
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras 26504, Greece
| | - Konstantinos Avgoustakis
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras 26504, Greece.,Clinical Stidues Unit, Biomedical Research Foundation Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, Athens 11527, Greece
| |
Collapse
|