1
|
Gkartziou F, Plota M, Kypraiou C, Gauttam I, Kolonitsiou F, Klepetsanis P, Spiliopoulou I, Antimisiaris SG. Daptomycin Liposomes Exhibit Enhanced Activity against Staphylococci Biofilms Compared to Free Drug. Pharmaceutics 2024; 16:459. [PMID: 38675120 PMCID: PMC11054717 DOI: 10.3390/pharmaceutics16040459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The purpose of the present study was to investigate the anti-staphylococcal activity of liposomal daptomycin against four biofilm-producing S. aureus and S. epidermidis clinical strains, three of which are methicillin-resistant. Neutral and negatively charged daptomycin-loaded liposomes were prepared using three methods, namely, thin-film hydration (TFH), a dehydration-rehydration vesicle (DRV) method, and microfluidic mixing (MM); moreover, they were characterized for drug encapsulation (EE%), size distribution, zeta-potential, vesicle stability, drug release, and drug integrity. Interestingly, whilst drug loading in THF and DRV nanosized (by extrusion) vesicles was around 30-35, very low loading (~4%) was possible in MM vesicles, requiring further explanatory investigations. Liposomal encapsulation protected daptomycin from degradation and preserved its bioactivity. Biofilm mass (crystal violet, CV), biofilm viability (MTT), and growth curve (GC) assays evaluated the antimicrobial activity of neutral and negatively charged daptomycin-liposomes towards planktonic bacteria and biofilms. Neutral liposomes exhibited dramatically enhanced inhibition of bacterial growth (compared to the free drug) for all species studied, while negatively charged liposomes were totally inactive. Biofilm prevention and treatment studies revealed high antibiofilm activity of liposomal daptomycin. Neutral liposomes were more active for prevention and negative charge ones for treating established biofilms. Planktonic bacteria as well as the matured biofilms of low daptomycin-susceptible, methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE) strains were almost completely eradicated by liposomal-daptomycin, indicating the need for their further exploration as antimicrobial therapeutics.
Collapse
Affiliation(s)
- Foteini Gkartziou
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece; (C.K.)
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Platani, 26504 Patras, Greece
| | - Maria Plota
- Department of Microbiology, School of Medicine, University of Patras, 26504 Patras, Greece; (M.P.); (F.K.)
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Charikleia Kypraiou
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece; (C.K.)
| | - Iti Gauttam
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece; (C.K.)
| | - Fevronia Kolonitsiou
- Department of Microbiology, School of Medicine, University of Patras, 26504 Patras, Greece; (M.P.); (F.K.)
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Pavlos Klepetsanis
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece; (C.K.)
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Platani, 26504 Patras, Greece
| | - Iris Spiliopoulou
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Sophia G. Antimisiaris
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece; (C.K.)
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Platani, 26504 Patras, Greece
| |
Collapse
|
2
|
Sousa A, Borøy V, Bæverud A, Julin K, Bayer A, Strøm M, Johannessen M, Škalko-Basnet N, Obuobi S. Polymyxin B stabilized DNA micelles for sustained antibacterial and antibiofilm activity against P. aeruginosa. J Mater Chem B 2023; 11:7972-7985. [PMID: 37505112 DOI: 10.1039/d3tb00704a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Nucleic acid-based materials showcase an increasing potential for antimicrobial drug delivery. Although numerous reports on drug-loaded DNA nanoparticles outline their pivotal antibacterial activities, their potential as drug delivery systems against bacterial biofilms awaits further studies. Among different oligonucleotide structures, micellar nanocarriers derived from amphiphilic DNA strands are of particular interest due to their spontaneous self-assembly and high biocompatibility. However, their clinical use is hampered by structural instability upon cation depletion. In this work, we used a cationic amphiphilic antibiotic (polymyxin B) to stabilize DNA micelles destined to penetrate P. aeruginosa biofilms and exhibit antibacterial/antibiofilm properties. Our study highlights how the strong affinity of this antibiotic enhances the stability of the micelles and confirms that antibacterial activity of the novel micelles remains intact. Additionally, we show that PMB micelles can penetrate P. aeruginosa biofilms and impact their metabolic activity. Finally, PMB micelles were highly safe and biocompatible, highlighting their possible application against P. aeruginosa biofilm-colonized skin wounds.
Collapse
Affiliation(s)
- Alexandra Sousa
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway.
| | - Vegard Borøy
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway.
| | - Agnethe Bæverud
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway.
| | - Kjersti Julin
- Host Microbe Interaction Research Group, Department of Medical Biology, UIT The Arctic University of Norway, Tromsø, Norway
| | - Annette Bayer
- Department of Chemistry, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, N-9037 Tromsø, Norway
| | - Morten Strøm
- Natural Products and Medicinal Chemistry Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, N-9037 Tromsø, Norway
| | - Mona Johannessen
- Host Microbe Interaction Research Group, Department of Medical Biology, UIT The Arctic University of Norway, Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway.
| | - Sybil Obuobi
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
3
|
Gaálová-Radochová B, Kendra S, Jordao L, Kursawe L, Kikhney J, Moter A, Bujdáková H. Effect of Quorum Sensing Molecule Farnesol on Mixed Biofilms of Candida albicans and Staphylococcus aureus. Antibiotics (Basel) 2023; 12:antibiotics12030441. [PMID: 36978309 PMCID: PMC10044556 DOI: 10.3390/antibiotics12030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The natural bioactive molecule farnesol (FAR) is widely studied mainly for its antibiofilm and antimicrobial properties. In addition, it increases the effectiveness of some antimicrobial substances, which makes it interesting for the development of combined therapy. In the present work, the effect of FAR either alone or in combination with oxacillin (OXA) on mixed biofilms formed by clinically relevant pathogens, Candida albicans and Staphylococcus aureus, was studied. S. aureus isolates used for biofilm formation originated from blood cultures and central venous catheters (CVC) were characterized in terms of antimicrobial resistance. The minimal biofilm inhibitory concentration (MBIC50) for FAR of 48 h mixed biofilms formed by the C. albicans and methicillin-sensitive S. aureus (MSSA) was determined to be 125 μM, and for the mixed biofilms with methicillin-resistant S. aureus (MRSA) was determined to be 250 μM. Treatment of mixed biofilms with OXA (2 mg/mL) showed ≤4% inhibition; however, the combination of OXA (2 mg/mL) and FAR (300 μM) resulted in 80% inhibition of biofilms. In addition, planktonic cells of S. aureus exhibited an increased susceptibility to OXA, cefoxitin and kanamycin in the presence of FAR (150 and 300 μM). Scanning electron microscopy (SEM) micrographs confirmed patchy biofilm and lack of candidal hyphae in the samples treated with FAR and FAR/OXA in comparison to control and mixed biofilms treated only with OXA. Intriguingly, in a pilot experiment using fluorescence in situ hybridization (FISH), considerable differences in activity (as indicated by ribosome content) of staphylococcal cells were detected. While the activity rate of the staphylococci in mixed biofilms treated with FAR was high, no FISH-positive signal for staphylococcal cells was found in the biofilm treated with FAR/OXA.
Collapse
Affiliation(s)
- Barbora Gaálová-Radochová
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-9014-9480
| | - Samuel Kendra
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Luisa Jordao
- Department of Environmental Health, Research and Development Unit, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisboa, Portugal
| | - Laura Kursawe
- Biofilmcenter, Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- MoKi Analytics GmbH, Charité-Universitätsmedizin Berlin, Hindenburdamm 30, 12203 Berlin, Germany
| | - Judith Kikhney
- Biofilmcenter, Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- MoKi Analytics GmbH, Charité-Universitätsmedizin Berlin, Hindenburdamm 30, 12203 Berlin, Germany
| | - Annette Moter
- Biofilmcenter, Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- MoKi Analytics GmbH, Charité-Universitätsmedizin Berlin, Hindenburdamm 30, 12203 Berlin, Germany
- Moter Diagnostics, Marienplatz 9, 12207 Berlin, Germany
| | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
4
|
Trends in the Design and Evaluation of Polymeric Nanocarriers: The In Vitro Nano-Bio Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:19-41. [PMID: 35583639 DOI: 10.1007/978-3-030-88071-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Different types of natural and synthetic polymeric nanocarriers are being tested for diverse biomedical applications ranging from drug/gene delivery vehicles to imaging probes. The development of such innovative nanoparticulate systems (NPs) should include in the very beginning of their conception a comprehensive evaluation of the nano-bio interactions. Specifically, intrinsic physicochemical properties as size, surface charge and shape may have an impact on cellular uptake, intracellular trafficking, exocytosis and cyto- or genocompatibility. Those properties can be tuned for effectiveness purposes such as targeting intracellular organelles, but at the same time inducing unforeseen adverse nanotoxicological effects. Further, those properties may change due to the adsorption of biological components (e.g. proteins) with a tremendous impact on the cellular response. The evaluation of these NPs is highly challenging and has produced some controversial results. Future research work should focus on the standardization of analytical or computational methodologies, aiming the identification of toxicity trends and the generation of a useful meta-analysis database on polymeric nanocarriers.This chapter covers all the aforementioned aspects, emphasizing the importance of the in vitro cellular studies in the first stages of polymeric nanocarriers development.
Collapse
|
5
|
dos Santos J, da Silva GS, Velho MC, Beck RCR. Eudragit ®: A Versatile Family of Polymers for Hot Melt Extrusion and 3D Printing Processes in Pharmaceutics. Pharmaceutics 2021; 13:1424. [PMID: 34575500 PMCID: PMC8471576 DOI: 10.3390/pharmaceutics13091424] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022] Open
Abstract
Eudragit® polymers are polymethacrylates highly used in pharmaceutics for the development of modified drug delivery systems. They are widely known due to their versatility with regards to chemical composition, solubility, and swelling properties. Moreover, Eudragit polymers are thermoplastic, and their use has been boosted in some production processes, such as hot melt extrusion (HME) and fused deposition modelling 3D printing, among other 3D printing techniques. Therefore, this review covers the studies using Eudragit polymers in the development of drug delivery systems produced by HME and 3D printing techniques over the last 10 years. Eudragit E has been the most used among them, mostly to formulate immediate release systems or as a taste-masker agent. On the other hand, Eudragit RS and Eudragit L100-55 have mainly been used to produce controlled and delayed release systems, respectively. The use of Eudragit polymers in these processes has frequently been devoted to producing solid dispersions and/or to prepare filaments to be 3D printed in different dosage forms. In this review, we highlight the countless possibilities offered by Eudragit polymers in HME and 3D printing, whether alone or in blends, discussing their prominence in the development of innovative modified drug release systems.
Collapse
Affiliation(s)
- Juliana dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-900, Brazil; (J.d.S.); (M.C.V.)
| | - Guilherme Silveira da Silva
- Departamento de Produção e Controle de Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-900, Brazil;
| | - Maiara Callegaro Velho
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-900, Brazil; (J.d.S.); (M.C.V.)
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-900, Brazil; (J.d.S.); (M.C.V.)
- Departamento de Produção e Controle de Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-900, Brazil;
| |
Collapse
|
6
|
Spindler N, Moter A, Wiessner A, Gradistanac T, Borger M, Rodloff AC, Langer S, Kikhney J. Fluorescence in situ Hybridization (FISH) in the Microbiological Diagnostic of Deep Sternal Wound Infection (DSWI). Infect Drug Resist 2021; 14:2309-2319. [PMID: 34188497 PMCID: PMC8232876 DOI: 10.2147/idr.s310139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/04/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose Postoperative mediastinitis after cardiac surgery is still a devastating complication. Insufficient microbiological specimens obtained by superficial swabbing may only detect bacteria on the surface, but pathogens that are localized in the deep tissue may be missed. The aim of this study was to analyze deep sternal wound infection (DSWI) samples by conventional microbiological procedures and fluorescence in situ hybridization (FISH) in order to discuss a diagnostic benefit of the culture-independent methods and to map spatial organization of pathogens and microbial biofilms in the wounds. Methods Samples from 12 patients were collected and analyzed using classic microbiological culture and FISH in combination with molecular nucleic acid amplification techniques (FISHseq). Frequency of and the time to occurrence of a DSWI was recorded, previous operative interventions, complications, as well as individual risk factors and the microbiologic results were documented. Results Tissue samples were taken from 12 patients suffering from DSWI. Classical microbiological culture resulted in the growth of microorganisms in the specimens of five patients (42%), including bacteria and in one case Candida. FISHseq gave additional diagnostic information in five cases (41%) and confirmed culture results in seven cases (59%). Conclusion Microbial biofilms are not always present in DSWI wounds, but microorganisms are distributed in a “patchy” pattern in the tissue. Therefore, a deep excision of the wound has to be performed to control the infection. We recommend to analyze at least two wound samples from different locations by culture and in difficult to interpret cases, additional molecular biological analysis by FISHseq.
Collapse
Affiliation(s)
- Nick Spindler
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Annette Moter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Institute of Microbiology, Infectious Diseases and Immunology, Biofilmcenter, Berlin, Germany.,MoKi Analytics GmbH, Berlin, Germany
| | - Alexandra Wiessner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Institute of Microbiology, Infectious Diseases and Immunology, Biofilmcenter, Berlin, Germany.,MoKi Analytics GmbH, Berlin, Germany
| | - Tanja Gradistanac
- Department of Pathology, University Clinic Leipzig, Leipzig, Germany
| | - Michael Borger
- Department of Cardiac Surgery, Leipzig Heart Center, University of Leipzig, Leipzig, Germany
| | - Arne C Rodloff
- Institute of Microbiology and Epidemiology of Infectious Diseases, University Hospital Leipzig, Leipzig, Germany
| | - Stefan Langer
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Judith Kikhney
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Institute of Microbiology, Infectious Diseases and Immunology, Biofilmcenter, Berlin, Germany.,MoKi Analytics GmbH, Berlin, Germany
| |
Collapse
|
7
|
Di Bonaventura G, Pompilio A. In Vitro Antimicrobial Susceptibility Testing of Biofilm-Growing Bacteria: Current and Emerging Methods. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1369:33-51. [PMID: 33963526 DOI: 10.1007/5584_2021_641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The antibiotic susceptibility of bacterial pathogens is typically determined based on planktonic cells, as recommended by several international guidelines. However, most of chronic infections - such as those established in wounds, cystic fibrosis lung, and onto indwelling devices - are associated to the formation of biofilms, communities of clustered bacteria attached onto a surface, abiotic or biotic, and embedded in an extracellular matrix produced by the bacteria and complexed with molecules from the host. Sessile microorganisms show significantly increased tolerance/resistance to antibiotics compared with planktonic counterparts. Consequently, antibiotic concentrations used in standard antimicrobial susceptibility tests, although effective against planktonic bacteria in vitro, are not predictive of the concentrations required to eradicate biofilm-related infections, thus leading to treatment failure, chronicization and removal of material in patients with indwelling medical devices.Meeting the need for the in vitro evaluation of biofilm susceptibility to antibiotics, here we reviewed several methods proposed in literature highlighting their advantages and limitations to guide scientists towards an appropriate choice.
Collapse
Affiliation(s)
- Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy. .,Laboratory of Clinical Microbiology, Chieti, Italy.
| | - Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Laboratory of Clinical Microbiology, Chieti, Italy
| |
Collapse
|
8
|
Rao H, Choo S, Rajeswari Mahalingam SR, Adisuri DS, Madhavan P, Md. Akim A, Chong PP. Approaches for Mitigating Microbial Biofilm-Related Drug Resistance: A Focus on Micro- and Nanotechnologies. Molecules 2021; 26:1870. [PMID: 33810292 PMCID: PMC8036581 DOI: 10.3390/molecules26071870] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Biofilms play an essential role in chronic and healthcare-associated infections and are more resistant to antimicrobials compared to their planktonic counterparts due to their (1) physiological state, (2) cell density, (3) quorum sensing abilities, (4) presence of extracellular matrix, (5) upregulation of drug efflux pumps, (6) point mutation and overexpression of resistance genes, and (7) presence of persister cells. The genes involved and their implications in antimicrobial resistance are well defined for bacterial biofilms but are understudied in fungal biofilms. Potential therapeutics for biofilm mitigation that have been reported include (1) antimicrobial photodynamic therapy, (2) antimicrobial lock therapy, (3) antimicrobial peptides, (4) electrical methods, and (5) antimicrobial coatings. These approaches exhibit promising characteristics for addressing the impending crisis of antimicrobial resistance (AMR). Recently, advances in the micro- and nanotechnology field have propelled the development of novel biomaterials and approaches to combat biofilms either independently, in combination or as antimicrobial delivery systems. In this review, we will summarize the general principles of clinically important microbial biofilm formation with a focus on fungal biofilms. We will delve into the details of some novel micro- and nanotechnology approaches that have been developed to combat biofilms and the possibility of utilizing them in a clinical setting.
Collapse
Affiliation(s)
- Harinash Rao
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Sulin Choo
- School of Biosciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
| | | | - Diajeng Sekar Adisuri
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Priya Madhavan
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Abdah Md. Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
| |
Collapse
|
9
|
Lau WK, Dharmasena D, Horsley H, Jafari NV, Malone-Lee J, Stride E, Edirisinghe M, Rohn JL. Novel antibiotic-loaded particles conferring eradication of deep tissue bacterial reservoirs for the treatment of chronic urinary tract infection. J Control Release 2020; 328:490-502. [PMID: 32882271 DOI: 10.1016/j.jconrel.2020.08.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/09/2020] [Accepted: 08/24/2020] [Indexed: 11/24/2022]
Abstract
A significant proportion of urinary tract infection (UTI) patients experience recurrent episodes, due to deep tissue infection and treatment-resistant bacterial reservoirs. Direct bladder instillation of antibiotics has proved disappointing in treating UTI, likely due to the failure of infused antibiotics to penetrate the bladder epithelium and accumulate to high enough levels to kill intracellular bacteria. This work investigates the use of nitrofurantoin loaded poly(lactic-co-glycolic acid) (PLGA) particles to improve delivery to intracellular targets for the treatment of chronic UTI. Using electrohydrodynamic atomisation, we produced particles with an average diameter of 2.8 μm. In broth culture experiments, the biodegradable particles were effective against a number of UTI-relevant bacterial strains. Dye-loaded particles demonstrated that intracellular delivery was achieved in all cells in 2D cultures of a human bladder epithelial progenitor cell line in a dose-dependent manner, achieving far higher efficiency and concentration than equivalent quantities of free drug. Time-lapse video microscopy confirmed that delivery occurred within 30 min of administration, to 100% of cells. Moreover, the particles were able to deliver the drug to cells through multiple layers of a 3D human bladder organoid model causing minimal cell toxicity, displaying superior killing of bacterial reservoirs harboured within bladder cells compared with unencapsulated drug. The particles were also able to kill bacterial biofilms more effectively than the free drug. These results illustrate the potential for using antibiotic-loaded microparticles to effectively treat chronic UTIs. Such a delivery method could be extrapolated to other clinical indications where robust intracellular delivery is required, such as oncology and gene therapy.
Collapse
Affiliation(s)
- Wai K Lau
- Department of Mechanical Engineering, University College London, London, UK
| | - Dhanuson Dharmasena
- Department of Renal Medicine, Division of Medicine, University College London, London, UK
| | - Harry Horsley
- Department of Renal Medicine, Division of Medicine, University College London, London, UK
| | - Nazila V Jafari
- Department of Renal Medicine, Division of Medicine, University College London, London, UK
| | - James Malone-Lee
- Department of Renal Medicine, Division of Medicine, University College London, London, UK
| | - Eleanor Stride
- The Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London, UK
| | - Jennifer L Rohn
- Department of Renal Medicine, Division of Medicine, University College London, London, UK.
| |
Collapse
|
10
|
Lauten A, Martinović M, Kursawe L, Kikhney J, Affeld K, Kertzscher U, Falk V, Moter A. Bacterial biofilms in infective endocarditis: an in vitro model to investigate emerging technologies of antimicrobial cardiovascular device coatings. Clin Res Cardiol 2020; 110:323-331. [PMID: 32444905 PMCID: PMC7907033 DOI: 10.1007/s00392-020-01669-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 05/08/2020] [Indexed: 12/01/2022]
Abstract
Objective In spite of the progress in antimicrobial and surgical therapy, infective endocarditis (IE) is still associated with a high morbidity and mortality. IE is characterized by bacterial biofilms of the endocardium, especially of the aortic and mitral valve leading to their destruction. About one quarter of patients with formal surgery indication cannot undergo surgery. This group of patients needs further options of therapy, but due to a lack of models for IE prospects of research are low. Therefore, the purpose of this project was to establish an in vitro model of infective endocarditis to allow growth of bacterial biofilms on porcine aortic valves, serving as baseline for further research. Methods and results A pulsatile two-chamber circulation model was constructed that kept native porcine aortic valves under sterile, physiologic hemodynamic and temperature conditions. To create biofilms on porcine aortic valves the system was inoculated with Staphylococcus epidermidis PIA 8400. Aortic roots were incubated in the model for increasing periods of time (24 h and 40 h) and bacterial titration (1.5 × 104 CFU/mL and 1.5 × 105 CFU/mL) with 5 L cardiac output per minute. After incubation, tissue sections were analysed by fluorescence in situ hybridization (FISH) for direct visualization of the biofilms. Pilot tests for biofilm growth showed monospecies colonization consisting of cocci with time- and inocula-dependent increase after 24 h and 40 h (n = 4). In n = 3 experiments for 24 h, with the same inocula, FISH visualized biofilms with ribosome-containing, and thus metabolic active cocci, tissue infiltration and similar colonization pattern as observed by the FISH in human IE heart valves infected by S. epidermidis. Conclusion These results demonstrate the establishment of a novel in vitro model for bacterial biofilm growth on porcine aortic roots mimicking IE. The model will allow to identify predilection sites of valves for bacterial adhesion and biofilm growth and it may serve as baseline for further research on IE therapy and prevention, e.g. the development of antimicrobial transcatheter approaches to IE. Graphic abstract ![]()
Collapse
Affiliation(s)
- Alexander Lauten
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Standort Berlin, Berlin, Germany. .,Department of Cardiology, Charité, Universitaetsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany. .,Department of General and Interventional Cardiology and Rhythmology, HELIOS Klinikum Erfurt, Erfurt, Germany. .,Devie Medical GmbH, Bachstr. 18, 7743, Jena, Deutschland.
| | - Marc Martinović
- Department of Cardiology, Charité, Universitaetsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Laura Kursawe
- Biofilmcenter, Department of Microbiology, Infectious Diseases and Immunology, Charité, Universitaetsmedizin Berlin, Berlin, Germany
| | - Judith Kikhney
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Standort Berlin, Berlin, Germany.,Biofilmcenter, Department of Microbiology, Infectious Diseases and Immunology, Charité, Universitaetsmedizin Berlin, Berlin, Germany
| | - Klaus Affeld
- Institute for Cardiovascular Computer-Assisted Medicine, Labor für Biofluidmechanik, Charité, Universitaetsmedizin Berlin, Berlin, Germany
| | - Ulrich Kertzscher
- Institute for Cardiovascular Computer-Assisted Medicine, Labor für Biofluidmechanik, Charité, Universitaetsmedizin Berlin, Berlin, Germany
| | - Volkmar Falk
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Standort Berlin, Berlin, Germany.,Department of Cardiology, Charité, Universitaetsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.,Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| | - Annette Moter
- Biofilmcenter, Department of Microbiology, Infectious Diseases and Immunology, Charité, Universitaetsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Elmowafy E, Cespi M, Bonacucina G, Soliman ME. In situ composite ion-triggered gellan gum gel incorporating amino methacrylate copolymer microparticles: a therapeutic modality for buccal applicability. Pharm Dev Technol 2019; 24:1258-1271. [PMID: 31437077 DOI: 10.1080/10837450.2019.1659314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of the current investigation is to delineate the buccal applicability of an in situ composite gel containing aceclofenac (AC) amino methacrylate copolymer microparticles (MPs), surmounting limitations of oral existing conventional therapy. AC Eudragit RL100 MPs were fabricated and statistically optimized using 2241 factorial design. Better buccal applicability and enhanced localization were achieved by combining the optimum MPs with in situ ion-activated gellan gum gel. The crosslinking and gelation of in situ gel were investigated by morphological and solid state characterizations. Suitability for buccal delivery and in vivo therapeutic efficacy in inflammation model of rats were also assessed. Results showed that the best performing formula displayed particle size (PS) of 51.00 µm and high entrapment efficiency (EE%) of 94.73%. MPs were successfully entrapped inside the gel network of the composite system. Gelation tendency, pH, shear-thinning properties and mucoadhesivity of the prepared in situ composite gel guaranteed its buccal suitability. Sustained AC release features and promising in vitro anti-arthritic response were also demonstrated. Moreover, consistent and prolonged in vivo anti-inflammatory effect was achieved, relative to standard AC. Taken together; this study proves the potential of in situ composite gel as an appropriate therapeutic proposal for AC buccal delivery.
Collapse
Affiliation(s)
- Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University , Cairo , Egypt
| | - Marco Cespi
- School of Pharmacy, University of Camerino , Camerino , Italy
| | | | - Mahmoud E Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University , Cairo , Egypt
| |
Collapse
|
12
|
Isothermal microcalorimetry for thermal viable count of microorganisms in pure cultures and stabilized formulations. BMC Microbiol 2019; 19:65. [PMID: 30898089 PMCID: PMC6429831 DOI: 10.1186/s12866-019-1432-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 03/06/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Quantification of viable microorganisms is an important step in microbiological research as well as in microbial product formulation to develop biological control products or probiotics. Often, the efficiency of the resulting product is dependent on the microbial cell density and their viability, which may decrease over time. Commonly, the number of viable cells is determined by serial dilution and plating techniques or flow cytometry. In 2017, we developed a mathematical model for isothermal microcalorimetry (IMC) data analysis and showed that the new method allows for a more rapid quantification of viable fresh and freeze-dried anaerobic Lactobacillus reuteri cells than traditional viable count methods. RESULTS This study developed the new method further by applying it to well-known aerophilic plant-beneficial microbial species (Pseudomonas brassicacearum, Bacillus amyloliquefaciens subsp. plantarum and Clonostachys rosea) used in biological control products. We utilized IMC to quantify viable cells in microbial pure cultures as well as when coated onto wheat seeds. The results from this study confirmed that thermal viable count methods are more rapid and sensitive than traditional viable count techniques. Most interestingly, a thermal viable count method was able to quantify microbes coated on seeds despite the presence of the natural microbiota of the seeds. Our results also showed that, in contrast to plating techniques for which clustered cells skew the results, IMC does not require single cells for accurate viable counts. CONCLUSIONS Thermal viable count methods are novel methods for the rapid quantification of divergent bacterial and fungal species and enhance the speed, sensitivity, and accuracy of routine viable counts of pure cultures and controlled microbiomes such as plant seed coatings.
Collapse
|
13
|
Sweeney E, Lovering A, Bowker K, MacGowan A, Nelson S. Anin vitrobiofilm model ofStaphylococcus aureusinfection of bone. Lett Appl Microbiol 2019; 68:294-302. [PMID: 30770577 DOI: 10.1111/lam.13131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/15/2019] [Accepted: 02/07/2019] [Indexed: 12/18/2022]
Affiliation(s)
- E. Sweeney
- School of Life Sciences University of Warwick Coventry UK
| | - A.M. Lovering
- Bristol Centre for Antimicrobial Research & Evaluation North Bristol NHS Trust Department of Infection Sciences Southmead Hospital Westbury‐on‐Trym Bristol UK
| | - K.E. Bowker
- Bristol Centre for Antimicrobial Research & Evaluation North Bristol NHS Trust Department of Infection Sciences Southmead Hospital Westbury‐on‐Trym Bristol UK
| | - A.P. MacGowan
- Bristol Centre for Antimicrobial Research & Evaluation North Bristol NHS Trust Department of Infection Sciences Southmead Hospital Westbury‐on‐Trym Bristol UK
| | - S.M. Nelson
- Department of Applied Sciences University of the West of England Bristol UK
| |
Collapse
|
14
|
Moriarty TF, Harris LG, Mooney RA, Wenke JC, Riool M, Zaat SAJ, Moter A, Schaer TP, Khanna N, Kuehl R, Alt V, Montali A, Liu J, Zeiter S, Busscher HJ, Grainger DW, Richards RG. Recommendations for design and conduct of preclinical in vivo studies of orthopedic device-related infection. J Orthop Res 2019; 37:271-287. [PMID: 30667561 DOI: 10.1002/jor.24230] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/06/2018] [Indexed: 02/04/2023]
Abstract
Orthopedic device-related infection (ODRI), including both fracture-related infection (FRI) and periprosthetic joint infection (PJI), remain among the most challenging complications in orthopedic and musculoskeletal trauma surgery. ODRI has been convincingly shown to delay healing, worsen functional outcome and incur significant socio-economic costs. To address this clinical problem, ever more sophisticated technologies targeting the prevention and/or treatment of ODRI are being developed and tested in vitro and in vivo. Among the most commonly described innovations are antimicrobial-coated orthopedic devices, antimicrobial-loaded bone cements and void fillers, and dual osteo-inductive/antimicrobial biomaterials. Unfortunately, translation of these technologies to the clinic has been limited, at least partially due to the challenging and still evolving regulatory environment for antimicrobial drug-device combination products, and a lack of clarity in the burden of proof required in preclinical studies. Preclinical in vivo testing (i.e. animal studies) represents a critical phase of the multidisciplinary effort to design, produce and reliably test both safety and efficacy of any new antimicrobial device. Nonetheless, current in vivo testing protocols, procedures, models, and assessments are highly disparate, irregularly conducted and reported, and without standardization and validation. The purpose of the present opinion piece is to discuss best practices in preclinical in vivo testing of antimicrobial interventions targeting ODRI. By sharing these experience-driven views, we aim to aid others in conducting such studies both for fundamental biomedical research, but also for regulatory and clinical evaluation. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:271-287, 2019.
Collapse
Affiliation(s)
- T Fintan Moriarty
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
| | - Llinos G Harris
- Microbiology and Infectious Diseases, Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Robert A Mooney
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Joseph C Wenke
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, JBSA-Fort Sam Houston, Texas
| | - Martijn Riool
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Sebastian A J Zaat
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Annette Moter
- Institute of Microbiology and Infection Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas P Schaer
- Department of Clinical Studies New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania
| | - Nina Khanna
- Infection Biology Laboratory, Department of Biomedicine, University Hospital of Basel, Basel, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland
| | - Richard Kuehl
- Infection Biology Laboratory, Department of Biomedicine, University Hospital of Basel, Basel, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland
| | - Volker Alt
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen-Marburg, GmbH, Campus Giessen, Germany
| | | | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, P.R. China
| | - Stephan Zeiter
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
| | - Henk J Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - David W Grainger
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - R Geoff Richards
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos Platz, Switzerland
| |
Collapse
|
15
|
Woischnig AK, Gonçalves LM, Ferreira M, Kuehl R, Kikhney J, Moter A, Ribeiro IAC, Almeida AJ, Khanna N, Bettencourt AF. Acrylic microparticles increase daptomycin intracellular and in vivo anti-biofilm activity against Staphylococcus aureus. Int J Pharm 2018; 550:372-379. [PMID: 30153487 DOI: 10.1016/j.ijpharm.2018.08.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/30/2018] [Accepted: 08/24/2018] [Indexed: 12/30/2022]
Abstract
Daptomycin (DAP) is a cyclic lipopeptide antibiotic with potential clinical application in orthopedic infections caused by staphylococci. However, it failed to eradicate Staphylococcus aureus in vitro, in intracellular infection studies, as well as in vivo in an experimental model of implant-associated biofilm infections. In this study, the antimicrobial effect of DAP encapsulated in poly(methyl methacrylate)-Eudragit (PMMA-EUD) microparticles (DAP-MPs) on intracellular S. aureus was evaluated in human osteoblast cells using fluorescence in situ hybridization (FISH) analysis. Encapsulated DAP was able to reduce the amount of intracellular S. aureus by 73% compared to blank microparticles (MPs). Then, the advantage of treating with DAP-MPs versus free DAP was evaluated in a murine model of implant-associated biofilm infection. Free DAP showed a >3 log10 decrease in planktonic and adherent bacteria but failed to eradicate adherent methicillin-resistant S. aureus (MRSA), whereas DAP-MPs showed a clearance of planktonic MRSA, significantly reduced adherent MRSA by more than 3 log10 and cured the infection in 60%. This was linked to the prolonged higher DAP concentration within the tissue cage fluid compared to free DAP. To our knowledge, this study provides the first evidence for the high intracellular and in vivo anti-biofilm efficacy of DAP-MPs to target staphylococcal infections.
Collapse
Affiliation(s)
- Anne-Kathrin Woischnig
- Laboratory of Infection Biology, Department of Biomedicine, University and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Lidia M Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Cardiovascular Centre of the University of Lisbon, Faculty of Medicine, Universidade de Lisboa, Av Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Maxime Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Richard Kuehl
- Laboratory of Infection Biology, Department of Biomedicine, University and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Judith Kikhney
- Biofilmcenter, Deutsches Herzzentrum Berlin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; Institute for Microbiology, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Annette Moter
- Biofilmcenter, Deutsches Herzzentrum Berlin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; Institute for Microbiology, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Isabel A C Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - António J Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Nina Khanna
- Laboratory of Infection Biology, Department of Biomedicine, University and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Ana Francisca Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|