1
|
Corps ÁL, Relaño A. Theory of Dynamical Phase Transitions in Quantum Systems with Symmetry-Breaking Eigenstates. PHYSICAL REVIEW LETTERS 2023; 130:100402. [PMID: 36962016 DOI: 10.1103/physrevlett.130.100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/03/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
We present a theory for the two kinds of dynamical quantum phase transitions, termed DPT-I and DPT-II, based on a minimal set of symmetry assumptions. In the special case of collective systems with infinite-range interactions, both are triggered by excited-state quantum phase transitions. For quenches below the critical energy, the existence of an additional conserved charge, identifying the corresponding phase, allows for a nonzero value of the dynamical order parameter characterizing DPTs-I, and precludes the main mechanism giving rise to nonanalyticities in the return probability, trademark of DPTs-II. We propose a statistical ensemble describing the long-time averages of order parameters in DPTs-I, and provide a theoretical proof for the incompatibility of the main mechanism for DPTs-II with the presence of this additional conserved charge. Our results are numerically illustrated in the fully connected transverse-field Ising model, which exhibits both kinds of dynamical phase transitions. Finally, we discuss the applicability of our theory to systems with finite-range interactions, where the phenomenology of excited-state quantum phase transitions is absent. We illustrate our findings by means of numerical calculations with experimentally relevant initial states.
Collapse
Affiliation(s)
- Ángel L Corps
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 123, E-28006 Madrid, Spain
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Complutense de Madrid, Avenida Complutense s/n, E-28040 Madrid, Spain
| | - Armando Relaño
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Complutense de Madrid, Avenida Complutense s/n, E-28040 Madrid, Spain
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Avenida Complutense s/n, E-28040 Madrid, Spain
| |
Collapse
|
2
|
Marino J, Eckstein M, Foster MS, Rey AM. Dynamical phase transitions in the collisionless pre-thermal states of isolated quantum systems: theory and experiments. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:116001. [PMID: 36075190 DOI: 10.1088/1361-6633/ac906c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
We overview the concept of dynamical phase transitions (DPTs) in isolated quantum systems quenched out of equilibrium. We focus on non-equilibrium transitions characterized by an order parameter, which features qualitatively distinct temporal behavior on the two sides of a certain dynamical critical point. DPTs are currently mostly understood as long-lived prethermal phenomena in a regime where inelastic collisions are incapable to thermalize the system. The latter enables the dynamics to substain phases that explicitly break detailed balance and therefore cannot be encompassed by traditional thermodynamics. Our presentation covers both cold atoms as well as condensed matter systems. We revisit a broad plethora of platforms exhibiting pre-thermal DPTs, which become theoretically tractable in a certain limit, such as for a large number of particles, large number of order parameter components, or large spatial dimension. The systems we explore include, among others, quantum magnets with collective interactions,ϕ4quantum field theories, and Fermi-Hubbard models. A section dedicated to experimental explorations of DPTs in condensed matter and AMO systems connects this large variety of theoretical models.
Collapse
Affiliation(s)
- Jamir Marino
- Institut für Physik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Martin Eckstein
- Department of Physics, University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Matthew S Foster
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States of America
- Rice Center for Quantum Materials, Rice University, Houston, TX 77005, United States of America
| | - Ana Maria Rey
- JILA, National Institute of Standards and Technology, and Department of Physics,University of Colorado, Boulder, CO 80309, United States of America
- Center for Theory of Quantum Matter, University of Colorado, Boulder, CO 80309, United States of America
| |
Collapse
|
3
|
An FA, Sundar B, Hou J, Luo XW, Meier EJ, Zhang C, Hazzard KRA, Gadway B. Nonlinear Dynamics in a Synthetic Momentum-State Lattice. PHYSICAL REVIEW LETTERS 2021; 127:130401. [PMID: 34623847 DOI: 10.1103/physrevlett.127.130401] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
The scope of analog simulation in atomic, molecular, and optical systems has expanded greatly over the past decades. Recently, the idea of synthetic dimensions-in which transport occurs in a space spanned by internal or motional states coupled by field-driven transitions-has played a key role in this expansion. While approaches based on synthetic dimensions have led to rapid advances in single-particle Hamiltonian engineering, strong interaction effects have been conspicuously absent from most synthetic dimensions platforms. Here, in a lattice of coupled atomic momentum states, we show that atomic interactions result in large and qualitative changes to dynamics in the synthetic dimension. We explore how the interplay of nonlinear interactions and coherent tunneling enriches the dynamics of a one-band tight-binding model giving rise to macroscopic self-trapping and phase-driven Josephson dynamics with a nonsinusoidal current-phase relationship, which can be viewed as stemming from a nonlinear band structure arising from interactions.
Collapse
Affiliation(s)
- Fangzhao Alex An
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080, USA
| | - Bhuvanesh Sundar
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Rice Center for Quantum Materials, Rice University, Houston, Texas 77005, USA
- JILA, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Junpeng Hou
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA
| | - Xi-Wang Luo
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA
| | - Eric J Meier
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080, USA
| | - Chuanwei Zhang
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA
| | - Kaden R A Hazzard
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Rice Center for Quantum Materials, Rice University, Houston, Texas 77005, USA
| | - Bryce Gadway
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080, USA
| |
Collapse
|
4
|
Zhou L, Du Q. Floquet dynamical quantum phase transitions in periodically quenched systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:345403. [PMID: 34130264 DOI: 10.1088/1361-648x/ac0b60] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/15/2021] [Indexed: 06/12/2023]
Abstract
Dynamical quantum phase transitions (DQPTs) are characterized by nonanalytic behaviors of physical observables as functions of time. When a system is subject to time-periodic modulations, the nonanalytic signatures of its observables could recur periodically in time, leading to the phenomena of Floquet DQPTs. In this work, we systematically explore Floquet DQPTs in a class of periodically quenched one-dimensional system with chiral symmetry. By tuning the strength of quench, we find multiple Floquet DQPTs within a single driving period, with more DQPTs being observed when the system is initialized in Floquet states with larger topological invariants. Each Floquet DQPT is further accompanied by the quantized jump of a dynamical topological order parameter, whose values remain quantized in time if the underlying Floquet system is prepared in a gapped topological phase. The theory is demonstrated in a piecewise quenched lattice model, which possesses rich Floquet topological phases and is readily realizable in quantum simulators like the nitrogen-vacancy center in diamonds. Our discoveries thus open a new perspective for the Floquet engineering of DQPTs and the dynamical detection of topological phase transitions in Floquet systems.
Collapse
Affiliation(s)
- Longwen Zhou
- Department of Physics, College of Information Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Qianqian Du
- Department of Physics, College of Information Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| |
Collapse
|
5
|
Pizzi A, Knolle J, Nunnenkamp A. Higher-order and fractional discrete time crystals in clean long-range interacting systems. Nat Commun 2021; 12:2341. [PMID: 33879787 PMCID: PMC8058086 DOI: 10.1038/s41467-021-22583-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/19/2021] [Indexed: 11/08/2022] Open
Abstract
Discrete time crystals are periodically driven systems characterized by a response with periodicity nT, with T the period of the drive and n > 1. Typically, n is an integer and bounded from above by the dimension of the local (or single particle) Hilbert space, the most prominent example being spin-1/2 systems with n restricted to 2. Here, we show that a clean spin-1/2 system in the presence of long-range interactions and transverse field can sustain a huge variety of different 'higher-order' discrete time crystals with integer and, surprisingly, even fractional n > 2. We characterize these (arguably prethermal) non-equilibrium phases of matter thoroughly using a combination of exact diagonalization, semiclassical methods, and spin-wave approximations, which enable us to establish their stability in the presence of competing long- and short-range interactions. Remarkably, these phases emerge in a model with continous driving and time-independent interactions, convenient for experimental implementations with ultracold atoms or trapped ions.
Collapse
Affiliation(s)
- Andrea Pizzi
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Johannes Knolle
- Department of Physics, Technische Universität München, Garching, Germany.
- Munich Center for Quantum Science and Technology (MCQST), Munich, Germany.
- Blackett Laboratory, Imperial College London, London, UK.
| | - Andreas Nunnenkamp
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
6
|
De Nicola S, Michailidis AA, Serbyn M. Entanglement View of Dynamical Quantum Phase Transitions. PHYSICAL REVIEW LETTERS 2021; 126:040602. [PMID: 33576663 DOI: 10.1103/physrevlett.126.040602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The analogy between an equilibrium partition function and the return probability in many-body unitary dynamics has led to the concept of dynamical quantum phase transition (DQPT). DQPTs are defined by nonanalyticities in the return amplitude and are present in many models. In some cases, DQPTs can be related to equilibrium concepts, such as order parameters, yet their universal description is an open question. In this Letter, we provide first steps toward a classification of DQPTs by using a matrix product state description of unitary dynamics in the thermodynamic limit. This allows us to distinguish the two limiting cases of "precession" and "entanglement" DQPTs, which are illustrated using an analytical description in the quantum Ising model. While precession DQPTs are characterized by a large entanglement gap and are semiclassical in their nature, entanglement DQPTs occur near avoided crossings in the entanglement spectrum and can be distinguished by a complex pattern of nonlocal correlations. We demonstrate the existence of precession and entanglement DQPTs beyond Ising models, discuss observables that can distinguish them, and relate their interplay to complex DQPT phenomenology.
Collapse
Affiliation(s)
| | | | - Maksym Serbyn
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
7
|
Link V, Strunz WT. Dynamical Phase Transitions in Dissipative Quantum Dynamics with Quantum Optical Realization. PHYSICAL REVIEW LETTERS 2020; 125:143602. [PMID: 33064500 DOI: 10.1103/physrevlett.125.143602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
We study dynamical phase transitions (DPT) in the driven and damped Dicke model, realizable for example by a driven atomic ensemble collectively coupled to a damped cavity mode. These DPTs are characterized by nonanalyticities of certain observables, primarily the overlap of time evolved and initial state. Even though the dynamics is dissipative, this phenomenon occurs for a wide range of parameters and no fine-tuning is required. Focusing on the state of the "atoms" in the limit of a bad cavity, we are able to asymptotically evaluate an exact path integral representation of the relevant overlaps. The DPTs then arise by minimization of a certain action function, which is related to the large deviation theory of a classical stochastic process. Finally, we present a scheme which allows a measurement of the DPT in a cavity-QED setup.
Collapse
Affiliation(s)
- Valentin Link
- Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Walter T Strunz
- Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|