1
|
Pande AR, Chaubey S, Kumar D, Chandra KP, Geetha T, Sharma A. Our Experiences and Learnings in Diagnosing MODY from Non-Institutional-Based Diabetes Care Clinics. Indian J Endocrinol Metab 2024; 28:480-487. [PMID: 39676784 PMCID: PMC11642506 DOI: 10.4103/ijem.ijem_361_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction Maturity-onset diabetes of the young (MODY) is a rare group of disorders characterised by impaired functions or development of pancreatic islets and monogenic diabetes at a young age. Diagnosing MODY can be rewarding for both clinicians and patients as it can change the management from generic to targeted therapy. Methods This study reports the retrospective analysis of data collected from four clinics between March 2016 and February 2023 from Lucknow, a city in northern India. Fifty-three individuals are suspected to be affected by MODY based on ISPAD guidelines. Following a detailed clinical evaluation, they were referred for genetic diagnostic testing. Results The cohort consists of 19 females and 34 males with a mean age of diagnosis of 25.3 years and a body mass index of 22.3 Kg/m2. Genetic testing detected variants in 13/53 (~24.5%) individuals. Five cases had significant pathogenic/likely pathogenic variants, HNF1A gene in two [(p.Phe268LeufsTer74) (p.Arg200Gln)], one each in HNF4A (Arg311His), PDX1(p.Ala228GlyfsTer33), and a case with suggestive digenic variants in HNF1A gene (p.Arg200Gln) and HNF1B [(p.Leu13Met)]. Variants of uncertain significance (VUSs) with inconclusive evidence of pathogenicity were reported in eight patients, and five were considered to be clinically significant as they are lean young onset, sulfonylurea-responsive, and presented with diabetes without acanthosis nigricans and with high pretest probability. These individuals harboured variants in HNF1A (p.Thr425_Thr429delinsPro), HNF1B (p.Ser19Phe), CEL (p.Val681ArgfsTer6), ABCC8 (p.Ile872Met), and KCNJ11 (p.Arg221Cys) genes. Conclusion We found a diagnostic yield of around 10% of pathogenic or likely pathogenic variants in individuals who were suspected to have MODY. As it is a field that is still evolving, we might consider starting with oral agents under close supervision in those individuals who have VUS; there are some proportions of individuals who might not have classical sulfonylurea-responsive genetic variants, but they might respond to it.
Collapse
Affiliation(s)
- Arunkumar R. Pande
- Department of Endocrinology, Lucknow Endocrine Diabetes and Thyroid Clinic, Uttar Pradesh, India
| | - Santosh Chaubey
- Department of Endocrinology, Cairns and Hinterland Hospital and Health Service, 165 The Esplanade Cairns North QLD, Queensland, Australia
| | - Dinesh Kumar
- Department of Internal Medicine, Harsh Clinic and Diabetes Care Centre, Singar Nagar Alambagh, Lucknow, Uttar Pradesh, India
| | - Kumar P. Chandra
- Department of Diabetology, Chandra Diabetes Clinic, Vijayant Khand, Gomti Nagar, Lucknow, Uttar Pradesh, India
| | - Thenral Geetha
- Department of Genetics, MedGenome Labs, Tamil Nadu, India
| | - Akshita Sharma
- Department of Genetics, MedGenome Labs, Tamil Nadu, India
| |
Collapse
|
2
|
Kind L, Molnes J, Tjora E, Raasakka A, Myllykoski M, Colclough K, Saint-Martin C, Adelfalk C, Dusatkova P, Pruhova S, Valtonen-André C, Bellanné-Chantelot C, Arnesen T, Kursula P, Njølstad PR. Molecular mechanism of HNF-1A-mediated HNF4A gene regulation and promoter-driven HNF4A-MODY diabetes. JCI Insight 2024; 9:e175278. [PMID: 38855865 PMCID: PMC11382887 DOI: 10.1172/jci.insight.175278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/25/2024] [Indexed: 06/11/2024] Open
Abstract
Monogenic diabetes is a gateway to precision medicine through molecular mechanistic insight. Hepatocyte nuclear factor 1A (HNF-1A) and HNF-4A are transcription factors that engage in crossregulatory gene transcription networks to maintain glucose-stimulated insulin secretion in pancreatic β cells. Variants in the HNF1A and HNF4A genes are associated with maturity-onset diabetes of the young (MODY). Here, we explored 4 variants in the P2-HNF4A promoter region: 3 in the HNF-1A binding site and 1 close to the site, which were identified in 63 individuals from 21 families of different MODY disease registries across Europe. Our goal was to study the disease causality for these variants and to investigate diabetes mechanisms on the molecular level. We solved a crystal structure of HNF-1A bound to the P2-HNF4A promoter and established a set of techniques to probe HNF-1A binding and transcriptional activity toward different promoter variants. We used isothermal titration calorimetry, biolayer interferometry, x-ray crystallography, and transactivation assays, which revealed changes in HNF-1A binding or transcriptional activities for all 4 P2-HNF4A variants. Our results suggest distinct disease mechanisms of the promoter variants, which can be correlated with clinical phenotype, such as age of diagnosis of diabetes, and be important tools for clinical utility in precision medicine.
Collapse
Affiliation(s)
- Laura Kind
- Department of Biomedicine and
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Janne Molnes
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics and
| | - Erling Tjora
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | - Kevin Colclough
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Cécile Saint-Martin
- Department of Medical Genetics, Sorbonne Université, AP-HP, Pitié-Salpêtrière Hospital, DMU BioGeM, Paris, France
- Monogenic Diabetes Study Group of the Société Francophone du Diabète, Paris, France
| | - Caroline Adelfalk
- Clinical Genetics, Pathology and Molecular Diagnostics, University Hospital Skåne, Lund, Sweden
| | - Petra Dusatkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Stepanka Pruhova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | | | - Christine Bellanné-Chantelot
- Department of Medical Genetics, Sorbonne Université, AP-HP, Pitié-Salpêtrière Hospital, DMU BioGeM, Paris, France
- Monogenic Diabetes Study Group of the Société Francophone du Diabète, Paris, France
| | - Thomas Arnesen
- Department of Biomedicine and
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine and
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Pål Rasmus Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section of Endocrinology and Metabolism, Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
3
|
Kaci A, Solheim MH, Silgjerd T, Hjaltadottir J, Hornnes LH, Molnes J, Madsen A, Sjøholt G, Bellanné-Chantelot C, Caswell R, Sagen JV, Njølstad PR, Aukrust I, Bjørkhaug L. Functional characterization of HNF4A gene variants identify promoter and cell line specific transactivation effects. Hum Mol Genet 2024; 33:894-904. [PMID: 38433330 PMCID: PMC11070132 DOI: 10.1093/hmg/ddae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/26/2024] [Accepted: 02/11/2024] [Indexed: 03/05/2024] Open
Abstract
Hepatocyte nuclear factor-4 alpha (HNF-4A) regulates genes with roles in glucose metabolism and β-cell development. Although pathogenic HNF4A variants are commonly associated with maturity-onset diabetes of the young (MODY1; HNF4A-MODY), rare phenotypes also include hyperinsulinemic hypoglycemia, renal Fanconi syndrome and liver disease. While the association of rare functionally damaging HNF1A variants with HNF1A-MODY and type 2 diabetes is well established owing to robust functional assays, the impact of HNF4A variants on HNF-4A transactivation in tissues including the liver and kidney is less known, due to lack of similar assays. Our aim was to investigate the functional effects of seven HNF4A variants, located in the HNF-4A DNA binding domain and associated with different clinical phenotypes, by various functional assays and cell lines (transactivation, DNA binding, protein expression, nuclear localization) and in silico protein structure analyses. Variants R85W, S87N and R89W demonstrated reduced DNA binding to the consensus HNF-4A binding elements in the HNF1A promoter (35, 13 and 9%, respectively) and the G6PC promoter (R85W ~10%). While reduced transactivation on the G6PC promoter in HepG2 cells was shown for S87N (33%), R89W (65%) and R136W (35%), increased transactivation by R85W and R85Q was confirmed using several combinations of target promoters and cell lines. R89W showed reduced nuclear levels. In silico analyses supported variant induced structural impact. Our study indicates that cell line specific functional investigations are important to better understand HNF4A-MODY genotype-phenotype correlations, as our data supports ACMG/AMP interpretations of loss-of-function variants and propose assay-specific HNF4A control variants for future functional investigations.
Collapse
Affiliation(s)
- Alba Kaci
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
- Center for Laboratory Medicine, Østfold Hospital Trust, Kalnesveien 300, Grålum 1714, Norway
| | - Marie Holm Solheim
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
| | - Trine Silgjerd
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, Bergen 5020, Norway
| | - Jorunn Hjaltadottir
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, Bergen 5020, Norway
| | - Lorentze Hope Hornnes
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Jonas Lies veg 87, Bergen 5021, Norway
| | - Janne Molnes
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
- Department of Medical Genetics, Haukeland University Hospital, Jonas Lies veg 87, Bergen 5021, Norway
| | - Andre Madsen
- Department of Clinical Science, University of Bergen, Jonas Lies veg 87, Bergen 5020, Norway
| | - Gry Sjøholt
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, Bergen 5020, Norway
| | - Christine Bellanné-Chantelot
- Départment of Medical Genetics, Sorbonne University, AP-HP, Hôpital Pitié-Salpêtriére, 21 rue de l'école de médecine, 75006 Paris, France
| | - Richard Caswell
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Barrack Rd, Exeter EX2 5DW, United Kingdom
| | - Jørn V Sagen
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Jonas Lies veg 87, Bergen 5021, Norway
| | - Pål R Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
- Children and Youth Clinic, Haukeland University Hospital, Haukelandsbakken 1, Bergen 5021, Norway
| | - Ingvild Aukrust
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
- Department of Medical Genetics, Haukeland University Hospital, Jonas Lies veg 87, Bergen 5021, Norway
| | - Lise Bjørkhaug
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, Bergen 5020, Norway
| |
Collapse
|
4
|
Svalastoga P, Kaci A, Molnes J, Solheim MH, Johansson BB, Krogvold L, Skrivarhaug T, Valen E, Johansson S, Molven A, Sagen JV, Søfteland E, Bjørkhaug L, Tjora E, Aukrust I, Njølstad PR. Characterisation of HNF1A variants in paediatric diabetes in Norway using functional and clinical investigations to unmask phenotype and monogenic diabetes. Diabetologia 2023; 66:2226-2237. [PMID: 37798422 PMCID: PMC10627920 DOI: 10.1007/s00125-023-06012-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/09/2023] [Indexed: 10/07/2023]
Abstract
AIMS/HYPOTHESIS Correctly diagnosing MODY is important, as individuals with this diagnosis can discontinue insulin injections; however, many people are misdiagnosed. We aimed to develop a robust approach for determining the pathogenicity of variants of uncertain significance in hepatocyte nuclear factor-1 alpha (HNF1A)-MODY and to obtain an accurate estimate of the prevalence of HNF1A-MODY in paediatric cases of diabetes. METHODS We extended our previous screening of the Norwegian Childhood Diabetes Registry by 830 additional samples and comprehensively genotyped HNF1A variants in autoantibody-negative participants using next-generation sequencing. Carriers of pathogenic variants were treated by local healthcare providers, and participants with novel likely pathogenic variants and variants of uncertain significance were enrolled in an investigator-initiated, non-randomised, open-label pilot study (ClinicalTrials.gov registration no. NCT04239586). To identify variants associated with HNF1A-MODY, we functionally characterised their pathogenicity and assessed the carriers' phenotype and treatment response to sulfonylurea. RESULTS In total, 615 autoantibody-negative participants among 4712 cases of paediatric diabetes underwent genetic sequencing, revealing 19 with HNF1A variants. We identified nine carriers with novel variants classified as variants of uncertain significance or likely to be pathogenic, while the remaining ten participants carried five pathogenic variants previously reported. Of the nine carriers with novel variants, six responded favourably to sulfonylurea. Functional investigations revealed their variants to be dysfunctional and demonstrated a correlation with the resulting phenotype, providing evidence for reclassifying these variants as pathogenic. CONCLUSIONS/INTERPRETATION Based on this robust classification, we estimate that the prevalence of HNF1A-MODY is 0.3% in paediatric diabetes. Clinical phenotyping is challenging and functional investigations provide a strong complementary line of evidence. We demonstrate here that combining clinical phenotyping with functional protein studies provides a powerful tool to obtain a precise diagnosis of HNF1A-MODY.
Collapse
Affiliation(s)
- Pernille Svalastoga
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Alba Kaci
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Laboratory Medicine, Østfold Hospital Trust, Grålum, Norway
| | - Janne Molnes
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Marie H Solheim
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bente B Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars Krogvold
- Division of Childhood and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Torild Skrivarhaug
- Division of Childhood and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Stefan Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Anders Molven
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Jørn V Sagen
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Eirik Søfteland
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Lise Bjørkhaug
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Erling Tjora
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Ingvild Aukrust
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Pål R Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway.
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
5
|
Kavitha B, Ranganathan S, Gopi S, Vetrivel U, Hemavathy N, Mohan V, Radha V. Molecular characterization and re-interpretation of HNF1A variants identified in Indian MODY subjects towards precision medicine. Front Endocrinol (Lausanne) 2023; 14:1177268. [PMID: 37396188 PMCID: PMC10313120 DOI: 10.3389/fendo.2023.1177268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Background HNF1A is an essential component of the transcription factor network that controls pancreatic β-cell differentiation, maintenance, and glucose stimulated insulin secretion (GSIS). A continuum of protein malfunction is caused by variations in the HNF1A gene, from severe loss-of-function (LOF) variants that cause the highly penetrant Maturity Onset Diabetes of the Young (MODY) to milder LOF variants that are far less penetrant but impart a population-wide risk of type 2 diabetes that is up to five times higher. Before classifying and reporting the discovered variations as relevant in clinical diagnosis, a critical review is required. Functional investigations offer substantial support for classifying a variant as pathogenic, or otherwise as advised by the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) ACMG/AMP criteria for variant interpretation. Objective To determine the molecular basis for the variations in the HNF1A gene found in patients with monogenic diabetes in India. Methods We performed functional protein analyses such as transactivation, protein expression, DNA binding, nuclear localization, and glucose stimulated insulin secretion (GSIS) assay, along with structural prediction analysis for 14 HNF1A variants found in 20 patients with monogenic diabetes. Results Of the 14 variants, 4 (28.6%) were interpreted as pathogenic, 6 (42.8%) as likely pathogenic, 3 (21.4%) as variants of uncertain significance, and 1 (7.14%) as benign. Patients harboring the pathogenic/likely pathogenic variants were able to successfully switch from insulin to sulfonylureas (SU) making these variants clinically actionable. Conclusion Our findings are the first to show the need of using additive scores during molecular characterization for accurate pathogenicity evaluations of HNF1A variants in precision medicine.
Collapse
Affiliation(s)
- Babu Kavitha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Indian Council of Medical Research (ICMR) Centre for Advanced Research on Diabetes, Affiliated to University of Madras, Chennai, India
| | | | - Sundaramoorthy Gopi
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Indian Council of Medical Research (ICMR) Centre for Advanced Research on Diabetes, Affiliated to University of Madras, Chennai, India
| | - Umashankar Vetrivel
- Department of Bioinformatics, Vision Research Foundation, Chennai, India
- Department of Virology Biotechnology, Indian Council of Medical Research (ICMR)-National Institute of Traditional Medicine, Belagavi, India
| | | | - Viswanathan Mohan
- Department of Diabetology, Madras Diabetes Research Foundation, Chennai and Dr. Mohan’s Diabetes Specialties Centre, International Diabetes Federation (IDF) Centre of Education, Chennai, India
| | - Venkatesan Radha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Indian Council of Medical Research (ICMR) Centre for Advanced Research on Diabetes, Affiliated to University of Madras, Chennai, India
| |
Collapse
|
6
|
Pollack-Schreiber N, Nwosu BU, Salemi P. Genetic testing for maturity-onset diabetes of the young resulting in an upgraded genetic classification of an HNF1A gene variant: a case report. Front Endocrinol (Lausanne) 2023; 14:1173471. [PMID: 37396173 PMCID: PMC10313222 DOI: 10.3389/fendo.2023.1173471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
The frequent misdiagnosis of MODY (Maturity-Onset Diabetes of the Young) subtypes makes it necessary to clarify the clinical spectrum of the disease phenotypes in suspected subjects so that accurate diagnosis and management plans can be introduced as early as possible in the course of the disease. We report the case of a MODY subtype that was initially characterized as variant of uncertain significance (VUS) but was later changed to a likely pathogenic variant following our report of two cases where the full expression of the clinical phenotype was described. HNF1A-MODY (Maturity Onset Diabetes of the Young type 3) is one of the most common subtypes of MODY. Due to its variable clinical presentation, and the concerns with being misdiagnosed as either type 1 or type 2 diabetes, DNA sequencing is needed to confirm the diagnosis. This case report illustrates the clinical scenario leading to the identification of the gene variant c.416T>C(p. Leu139Pro) in the HNF1A gene, initially reported as a VUS and later upgraded to a likely pathogenic variant. Though the mutation was described in two Czech family members in 2020, the clinical course and phenotype was not characterized. Therefore, there was the need to fully describe the spectrum of the disease arising from the mutation. The case report fully describes the clinical spectrum of this mutation and provides much needed clinical management approaches to the wider scientific community.
Collapse
|
7
|
Abstract
Monogenic diabetes includes several clinical conditions generally characterized by early-onset diabetes, such as neonatal diabetes, maturity-onset diabetes of the young (MODY) and various diabetes-associated syndromes. However, patients with apparent type 2 diabetes mellitus may actually have monogenic diabetes. Indeed, the same monogenic diabetes gene can contribute to different forms of diabetes with early or late onset, depending on the functional impact of the variant, and the same pathogenic variant can produce variable diabetes phenotypes, even in the same family. Monogenic diabetes is mostly caused by impaired function or development of pancreatic islets, with defective insulin secretion in the absence of obesity. The most prevalent form of monogenic diabetes is MODY, which may account for 0.5-5% of patients diagnosed with non-autoimmune diabetes but is probably underdiagnosed owing to insufficient genetic testing. Most patients with neonatal diabetes or MODY have autosomal dominant diabetes. More than 40 subtypes of monogenic diabetes have been identified to date, the most prevalent being deficiencies of GCK and HNF1A. Precision medicine approaches (including specific treatments for hyperglycaemia, monitoring associated extra-pancreatic phenotypes and/or following up clinical trajectories, especially during pregnancy) are available for some forms of monogenic diabetes (including GCK- and HNF1A-diabetes) and increase patients' quality of life. Next-generation sequencing has made genetic diagnosis affordable, enabling effective genomic medicine in monogenic diabetes.
Collapse
|
8
|
Functional Analyses of Rare Germline Missense BRCA1 Variants Located within and outside Protein Domains with Known Functions. Genes (Basel) 2023; 14:genes14020262. [PMID: 36833189 PMCID: PMC9957003 DOI: 10.3390/genes14020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The BRCA1 protein is implicated in numerous important cellular processes to prevent genomic instability and tumorigenesis, and pathogenic germline variants predispose carriers to hereditary breast and ovarian cancer (HBOC). Most functional studies of missense variants in BRCA1 focus on variants located within the Really Interesting New Gene (RING), coiled-coil and BRCA1 C-terminal (BRCT) domains, and several missense variants in these regions have been shown to be pathogenic. However, the majority of these studies focus on domain specific assays, and have been performed using isolated protein domains and not the full-length BRCA1 protein. Furthermore, it has been suggested that BRCA1 missense variants located outside domains with known function are of no functional importance, and could be classified as (likely) benign. However, very little is known about the role of the regions outside the well-established domains of BRCA1, and only a few functional studies of missense variants located within these regions have been published. In this study, we have, therefore, functionally evaluated the effect of 14 rare BRCA1 missense variants considered to be of uncertain clinical significance, of which 13 are located outside the well-established domains and one within the RING domain. In order to investigate the hypothesis stating that most BRCA1 variants located outside the known protein domains are benign and of no functional importance, multiple protein assays including protein expression and stability, subcellular localisation and protein interactions have been performed, utilising the full-length protein to better mimic the native state of the protein. Two variants located outside the known domains (p.Met297Val and p.Asp1152Asn) and one variant within the RING domain (p.Leu52Phe) were found to make the BRCA1 protein more prone to proteasome-mediated degradation. In addition, two variants (p.Leu1439Phe and p.Gly890Arg) also located outside known domains were found to have reduced protein stability compared to the wild type protein. These findings indicate that variants located outside the RING, BRCT and coiled-coiled domains could also affect the BRCA1 protein function. For the nine remaining variants, no significant effects on BRCA1 protein functions were observed. Based on this, a reclassification of seven variants from VUS to likely benign could be suggested.
Collapse
|
9
|
Menon S, Refaey A, Guffey D, Balasubramanyam A, Redondo MJ, Tosur M. Optimizing maturity-onset diabetes of the young detection in a pediatric diabetes population. Pediatr Diabetes 2022; 23:447-456. [PMID: 35218126 DOI: 10.1111/pedi.13329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/18/2022] [Accepted: 02/20/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Maturity-onset diabetes of the young (MODY) is often misdiagnosed as type 1/type 2 diabetes. We aimed to define patient characteristics to guide the decision to test for MODY in youth with diabetes. RESEARCH DESIGN AND METHODS Of 4750 patients enrolled in the Diabetes Registry at Texas Children's Hospital between July 2016 and July 2019, we selected ("Study Cohort", n = 350) those with: (1) diabetes diagnosis <25 years, (2) family history of diabetes in three consecutive generations, and (3) absent islet autoantibodies except for GAD65. We retrospectively studied their clinical and biochemical characteristics and available MODY testing results. Cluster analysis was then performed to identify the cluster with highest rate of MODY diagnosis. RESULTS Patients in the Study Cohort were 3.5 times more likely to have been diagnosed with MODY than in the overall Diabetes Registry (4.6% vs. 1.3%, p < 0.001). The cluster (n = 16) with the highest rate of clinician-diagnosed MODY (25%, n = 4/16) had the lowest age (10.9 ± 2.5 year), BMI-z score (0.5 ± 0.9), C-peptide level (1.5 ± 1.2 ng/ml) and acanthosis nigricans frequency (12.5%) at diabetes diagnosis (all p < 0.05). In this cluster, three out of five patients who underwent MODY genetic testing had a pathogenic variant. CONCLUSIONS Using a stepwise approach, we identified that younger age, lower BMI, lower C-peptide, and absence of acanthosis nigricans increase likelihood of MODY in racially/ethnically diverse children with diabetes who have a multigenerational family history of diabetes and negative islet autoantibodies, and can be used by clinicians to select patients for MODY testing.
Collapse
Affiliation(s)
- Sruthi Menon
- Department of Pediatrics, Division of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | | | - Danielle Guffey
- Dan L. Duncan Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, USA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, Texas, USA
| | - Maria J Redondo
- Department of Pediatrics, Division of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Mustafa Tosur
- Department of Pediatrics, Division of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
10
|
Li LM, Jiang BG, Sun LL. HNF1A:From Monogenic Diabetes to Type 2 Diabetes and Gestational Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:829565. [PMID: 35299962 PMCID: PMC8921476 DOI: 10.3389/fendo.2022.829565] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes, a disease characterized by hyperglycemia, has a serious impact on the lives and families of patients as well as on society. Diabetes is a group of highly heterogeneous metabolic diseases that can be classified as type 1 diabetes (T1D), type 2 diabetes (T2D), gestational diabetes mellitus (GDM), or other according to the etiology. The clinical manifestations are more or less similar among the different types of diabetes, and each type is highly heterogeneous due to different pathogenic factors. Therefore, distinguishing between various types of diabetes and defining their subtypes are major challenges hindering the precise treatment of the disease. T2D is the main type of diabetes in humans as well as the most heterogeneous. Fortunately, some studies have shown that variants of certain genes involved in monogenic diabetes also increase the risk of T2D. We hope this finding will enable breakthroughs regarding the pathogenesis of T2D and facilitate personalized treatment of the disease by exploring the function of the signal genes involved. Hepatocyte nuclear factor 1 homeobox A (HNF1α) is widely expressed in pancreatic β cells, the liver, the intestines, and other organs. HNF1α is highly polymorphic, but lacks a mutation hot spot. Mutations can be found at any site of the gene. Some single nucleotide polymorphisms (SNPs) cause maturity-onset diabetes of the young type 3 (MODY3) while some others do not cause MODY3 but increase the susceptibility to T2D or GDM. The phenotypes of MODY3 caused by different SNPs also differ. MODY3 is among the most common types of MODY, which is a form of monogenic diabetes mellitus caused by a single gene mutation. Both T2D and GDM are multifactorial diseases caused by both genetic and environmental factors. Different types of diabetes mellitus have different clinical phenotypes and treatments. This review focuses on HNF1α gene polymorphisms, HNF1A-MODY3, HNF1A-associated T2D and GDM, and the related pathogenesis and treatment methods. We hope this review will provide a valuable reference for the precise and individualized treatment of diabetes caused by abnormal HNF1α by summarizing the clinical heterogeneity of blood glucose abnormalities caused by HNF1α mutation.
Collapse
Affiliation(s)
- Li-Mei Li
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bei-Ge Jiang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Bei-Ge Jiang, ; Liang-Liang Sun,
| | - Liang-Liang Sun
- Department of Endocrinology and Metabolism, Changzheng Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Bei-Ge Jiang, ; Liang-Liang Sun,
| |
Collapse
|
11
|
Yalçıntepe S, Özgüç Çömlek F, Gürkan H, Demir S, Atlı Eİ, Atlı E, Eker D, Tütüncüler Kökenli F. The Application of Next Generation Sequencing Maturity Onset Diabetes of the Young Gene Panel in Turkish Patients from Trakya Region. J Clin Res Pediatr Endocrinol 2021; 13:320-331. [PMID: 33565752 PMCID: PMC8388052 DOI: 10.4274/jcrpe.galenos.2021.2020.0285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate the molecular basis of maturity-onset diabetes of the young (MODY) by targeted-gene sequencing of 20 genes related to monogenic diabetes, estimate the frequency and describe the clinical characteristics of monogenic diabetes and MODY in the Trakya Region of Turkey. METHODS A panel of 20 monogenic diabetes related genes were screened in 61 cases. Illumina NextSeq550 system was used for sequencing. Pathogenicity of the variants were assessed by bioinformatics prediction software programs and segregation analyses. RESULTS In 29 (47.5%) cases, 31 pathogenic/likely pathogenic variants in the GCK, ABCC8, KCNJ11, HNF1A, HNF4A genes and in 11 (18%) cases, 14 variants of uncertain significance (VUS) in the GCK, RFX6, CEL, PDX1, KCNJ11, HNF1A, G6PC2, GLIS3 and KLF11 genes were identified. There were six different pathogenic/likely pathogenic variants and six different VUS which were novel. CONCLUSION This is the first study including molecular studies of twenty monogenic diabetes genes in Turkish cases in the Trakya Region. The results showed that pathogenic variants in the GCK gene are the leading cause of MODY in our population. A high frequency of novel variants (32.4%-12/37) in the current study, suggests that multiple gene analysis provides accurate genetic diagnosis in MODY.
Collapse
Affiliation(s)
- Sinem Yalçıntepe
- Trakya University Faculty of Medicine, Department of Medical Genetics, Edirne, Turkey,* Address for Correspondence: Trakya University Faculty of Medicine, Department of Medical Genetics, Edirne, Turkey Phone: +90 537 716 86 91 E-mail:
| | - Fatma Özgüç Çömlek
- Trakya University Faculty of Medicine, Department of Pediatric Endocrinology, Edirne, Turkey
| | - Hakan Gürkan
- Trakya University Faculty of Medicine, Department of Medical Genetics, Edirne, Turkey
| | - Selma Demir
- Trakya University Faculty of Medicine, Department of Medical Genetics, Edirne, Turkey
| | - Emine İkbal Atlı
- Trakya University Faculty of Medicine, Department of Medical Genetics, Edirne, Turkey
| | - Engin Atlı
- Trakya University Faculty of Medicine, Department of Medical Genetics, Edirne, Turkey
| | - Damla Eker
- Trakya University Faculty of Medicine, Department of Medical Genetics, Edirne, Turkey
| | | |
Collapse
|
12
|
Maturity Onset Diabetes of the Young-New Approaches for Disease Modelling. Int J Mol Sci 2021; 22:ijms22147553. [PMID: 34299172 PMCID: PMC8303136 DOI: 10.3390/ijms22147553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Maturity-onset diabetes of the young (MODY) is a genetically heterogeneous group of monogenic endocrine disorders that is characterised by autosomal dominant inheritance and pancreatic β-cell dysfunction. These patients are commonly misdiagnosed with type 1 or type 2 diabetes, as the clinical symptoms largely overlap. Even though several biomarkers have been tested none of which could be used as single clinical discriminator. The correct diagnosis for individuals with MODY is of utmost importance, as the applied treatment depends on the gene mutation or is subtype-specific. Moreover, in patients with HNF1A-MODY, additional clinical monitoring can be included due to the high incidence of vascular complications observed in these patients. Finally, stratification of MODY patients will enable better and newer treatment options for MODY patients, once the disease pathology for each patient group is better understood. In the current review the clinical characteristics and the known disease-related abnormalities of the most common MODY subtypes are discussed, together with the up-to-date applied diagnostic criteria and treatment options. Additionally, the usage of pluripotent stem cells together with CRISPR/Cas9 gene editing for disease modelling with the possibility to reveal new pathophysiological mechanisms in MODY is discussed.
Collapse
|
13
|
A Review of Functional Characterization of Single Amino Acid Change Mutations in HNF Transcription Factors in MODY Pathogenesis. Protein J 2021; 40:348-360. [PMID: 33950347 DOI: 10.1007/s10930-021-09991-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/15/2022]
Abstract
Mutations in HNF transcription factor genes cause the most common subtypes of maturity-onset of diabetes of youth (MODY), a monogenic form of diabetes mellitus. Mutations in the HNF1-α, HNF4-α, and HNF1-β genes are primarily considered as the cause of MODY3, MODY1, and MODY5 subtypes, respectively. Although patients with different subtypes display similar symptoms, they may develop distinct diabetes-related complications and require different treatments depending on the type of the mutation. Genetic analysis of MODY patients revealed more than 400 missense/nonsense mutations in HNF1-α, HNF4-α, and HNF1-β genes, however only a small portion of them are functionally characterized. Evaluation of nonsense mutations are more direct as they lead to premature stop codons and mostly in mRNA decay or nonfunctional truncated proteins. However, interpretation of the single amino acid change (missense) mutation is not such definite, as effect of the variant may vary depending on the location and also the substituted amino acid. Mutations with benign effect on the protein function may not be the pathologic variant and further genetic testing may be required. Here, we discuss the functional characterization analysis of single amino acid change mutations identified in HNF1-α, HNF4-α, and HNF1-β genes and evaluate their roles in MODY pathogenesis. This review will contribute to comprehend HNF nuclear family-related molecular mechanisms and to develop more accurate diagnosis and treatment based on correct evaluation of pathologic effects of the variants.
Collapse
|
14
|
Zhang H, Colclough K, Gloyn AL, Pollin TI. Monogenic diabetes: a gateway to precision medicine in diabetes. J Clin Invest 2021; 131:142244. [PMID: 33529164 PMCID: PMC7843214 DOI: 10.1172/jci142244] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Monogenic diabetes refers to diabetes mellitus (DM) caused by a mutation in a single gene and accounts for approximately 1%-5% of diabetes. Correct diagnosis is clinically critical for certain types of monogenic diabetes, since the appropriate treatment is determined by the etiology of the disease (e.g., oral sulfonylurea treatment of HNF1A/HNF4A-diabetes vs. insulin injections in type 1 diabetes). However, achieving a correct diagnosis requires genetic testing, and the overlapping of the clinical features of monogenic diabetes with those of type 1 and type 2 diabetes has frequently led to misdiagnosis. Improvements in sequencing technology are increasing opportunities to diagnose monogenic diabetes, but challenges remain. In this Review, we describe the types of monogenic diabetes, including common and uncommon types of maturity-onset diabetes of the young, multiple causes of neonatal DM, and syndromic diabetes such as Wolfram syndrome and lipodystrophy. We also review methods of prioritizing patients undergoing genetic testing, and highlight existing challenges facing sequence data interpretation that can be addressed by forming collaborations of expertise and by pooling cases.
Collapse
Affiliation(s)
- Haichen Zhang
- University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| | - Kevin Colclough
- Exeter Genomics Laboratory, Royal Devon and Exeter Hospital, Exeter, United Kingdom
| | - Anna L. Gloyn
- Department of Pediatrics, Division of Endocrinology, and,Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, California, USA
| | - Toni I. Pollin
- University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Schnedl WJ, Holasek SJ, Schenk M, Enko D, Mangge H. Diagnosis of hepatic nuclear factor 1A monogenic diabetes mellitus (HNF1A-MODY) impacts antihyperglycemic treatment. Wien Klin Wochenschr 2020; 133:241-244. [PMID: 33245425 DOI: 10.1007/s00508-020-01770-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 11/04/2020] [Indexed: 11/25/2022]
Abstract
Monogenic mutations of the hepatocyte nuclear factor 1 homeobox A maturity onset diabetes of the young (HNF1A-MODY) is characterized by early onset, typically before the age of 25 years. Patients are often not clinically recognized; however, the identification of HNF1A-MODY patients is crucial because they require different antihyperglycemic medical treatment than patients with type 1 or type 2 diabetes mellitus. We describe two adult patients with monogenic diabetes, both identified as HNF1A-MODY, genetically c.815G>A, p.Arg272His and c675delC, p.Ser225Argfs*8, respectively. They were misdiagnosed as having type 1 diabetes mellitus, and consequently, initiating insulin therapy led to hypoglycemia and unstable blood glucose control. Usually, sulfonylureas represent the basis of antidiabetic treatment in patients with HNF1A-MODY; however, all medical personnel involved in diabetes care should be aware of monogenic diabetes mellitus and the possibilities for genetic testing. The patients observed have shown the necessity of the identification and appropriate genetic diagnosis of HNF1A-MODY in order to discontinue insulin therapy and to initiate adjusted diabetes management.
Collapse
Affiliation(s)
- Wolfgang J Schnedl
- General Internal Medicine Practice, Dr. Theodor Körnerstraße 19b, 8600, Bruck/Mur, Austria.
| | - Sandra J Holasek
- Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Heinrichstraße 31a, 8010, Graz, Austria
| | - Michael Schenk
- Das Kinderwunsch Institut Schenk GmbH, Am Sendergrund 11, 8143, Dobl, Austria
| | - Dietmar Enko
- Clinical Institute of Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Auenbruggerplatz 30, 8036, Graz, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Auenbruggerplatz 30, 8036, Graz, Austria
| |
Collapse
|
16
|
Liang H, Zhang Y, Li M, Yan J, Yang D, Luo S, Zheng X, Yang G, Li Z, Xu W, Groop L, Weng J. Recognition of maturity-onset diabetes of the young in China. J Diabetes Investig 2020; 12:501-509. [PMID: 32741144 PMCID: PMC8015824 DOI: 10.1111/jdi.13378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Aims/Introduction Given that mutations related to maturity‐onset diabetes of the young (MODY) are rarely found in Chinese populations, we aim to characterize the mutation spectrum of MODY pedigrees. Materials and Methods Maturity‐onset diabetes of the young candidate gene‐ or exome‐targeted capture sequencing was carried out in 76 probands from unrelated families fulfilling the clinical diagnostic criteria for MODY. MAF <0.01 in the GnomAD or ExAC database was used to filter significant variants. Sanger sequencing was then carried out to validate findings. Function prediction by SIFT, PolyPhen‐2 and PROVEAN or CADD was carried out in missense mutations. Results A total of 32 mutations in six genes were identified in 31 families, accounting for 40.79% of the potential MODY families. The MODY subtype detection rate was 18.42% for GCK, 15.79% for HNF1A, 2.63% for HNF4A, and 1.32% for KLF11, PAX4 and NEUROG3. Seven nonsense/frameshift mutations and four missense mutations with damaging prediction were newly identified novel mutations. The clinical features of MODY2, MODY3/1 and MODYX are similar to previous reports. Clinical phenotype of NEUROG3 p.Arg55Glufs*23 is characterized by hyperglycemia and mild intermittent abdominal pain. Conclusions This study adds to the emerging pattern of MODY epidemiology that the proportion of MODY explained by known pathogenic genes is higher than that previously reported, and found NEUROG3 as a new causative gene for MODY.
Collapse
Affiliation(s)
- Hua Liang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Yanan Zhang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Maixinyue Li
- Department of Clinical Laboratory, Nanning Children's Hospital, Nanning, China
| | - Jinhua Yan
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Daizhi Yang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Sihui Luo
- Division of Life Sciences and Medicine, Department of Endocrinology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Xueying Zheng
- Division of Life Sciences and Medicine, Department of Endocrinology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Guoqing Yang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Zhuo Li
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Wen Xu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Leif Groop
- Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - Jianping Weng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China.,Division of Life Sciences and Medicine, Department of Endocrinology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| |
Collapse
|