1
|
Abd-Elmoniem KZ, Edwan JH, Dietsche KB, Villalobos-Perez A, Shams N, Matta J, Baumgarten L, Qaddumi WN, Dixon SA, Chowdhury A, Stagliano M, Mabundo L, Wentzel A, Hadigan C, Gharib AM, Chung ST. Endothelial Dysfunction in Youth-Onset Type 2 Diabetes: A Clinical Translational Study. Circ Res 2024; 135:639-650. [PMID: 39069898 PMCID: PMC11361354 DOI: 10.1161/circresaha.124.324272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Youth-onset type 2 diabetes (Y-T2D) is associated with increased risk for coronary atherosclerotic disease, but the timing of the earliest pathological features and evidence of cardiac endothelial dysfunction have not been evaluated in this population. Endothelial function magnetic resonance imaging may detect early and direct endothelial dysfunction in the absence of classical risk factors (severe hyperglycemia, hypertension, and hyperlipidemia). Using endothelial function magnetic resonance imaging, we evaluated peripheral and coronary artery structure and endothelial function in young adults with Y-T2D diagnosed ≤5 years compared with age-matched healthy peers. We isolated and characterized plasma-derived small extracellular vesicles and evaluated their effects on inflammatory and signaling biomarkers in healthy human coronary artery endothelial cells to validate the imaging findings. METHODS Right coronary wall thickness, coronary artery flow-mediated dilation, and brachial artery flow-mediated dilation were measured at baseline and during isometric handgrip exercise using a 3.0T magnetic resonance imaging. Human coronary artery endothelial cells were treated with Y-T2D plasma-derived small extracellular vesicles. Protein expression was measured by Western blot analysis, oxidative stress was measured using the redox-sensitive probe dihydroethidium, and nitric oxide levels were measured by 4-amino-5-methylamino-2',7'-difluororescein diacetate. RESULTS Y-T2D (n=20) had higher hemoglobin A1c and high-sensitivity C-reactive protein, but similar total and LDL (low-density lipoprotein)-cholesterol compared with healthy peers (n=16). Y-T2D had greater coronary wall thickness (1.33±0.13 versus 1.22±0.13 mm; P=0.04) and impaired endothelial function: lower coronary artery flow-mediated dilation (-3.1±15.5 versus 15.9±17.3%; P<0.01) and brachial artery flow-mediated dilation (6.7±14.7 versus 26.4±15.2%; P=0.001). Y-T2D plasma-derived small extracellular vesicles reduced phosphorylated endothelial nitric oxide synthase expression and nitric oxide levels, increased reactive oxygen species production, and elevated ICAM (intercellular adhesion molecule)-mediated inflammatory pathways in human coronary artery endothelial cells. CONCLUSIONS Coronary and brachial endothelial dysfunction was evident in Y-T2D who were within 5 years of diagnosis and did not have severe hyperglycemia or dyslipidemia. Plasma-derived small extracellular vesicles induced markers of endothelial dysfunction, which corroborated accelerated subclinical coronary atherosclerosis as an early feature in Y-T2D. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT02830308 and NCT01399385.
Collapse
Affiliation(s)
- Khaled Z. Abd-Elmoniem
- National Institute of Diabetes and Digestive and Kidney Diseases, Biomedical Medical and Imaging Branch (K.Z.A., J.E., N.S., J.M., L.B., W.Q., A.M.G.), National Institutes of Health, Bethesda, MD
| | - Jehad H. Edwan
- National Institute of Diabetes and Digestive and Kidney Diseases, Biomedical Medical and Imaging Branch (K.Z.A., J.E., N.S., J.M., L.B., W.Q., A.M.G.), National Institutes of Health, Bethesda, MD
| | - Katrina B. Dietsche
- Diabetes Endocrinology and Obesity Branch (K.B., A.V., S.D., A.C., M.S., L.M., S.T.C.), National Institutes of Health, Bethesda, MD
| | - Alfredo Villalobos-Perez
- Diabetes Endocrinology and Obesity Branch (K.B., A.V., S.D., A.C., M.S., L.M., S.T.C.), National Institutes of Health, Bethesda, MD
| | - Nour Shams
- National Institute of Diabetes and Digestive and Kidney Diseases, Biomedical Medical and Imaging Branch (K.Z.A., J.E., N.S., J.M., L.B., W.Q., A.M.G.), National Institutes of Health, Bethesda, MD
| | - Jatin Matta
- National Institute of Diabetes and Digestive and Kidney Diseases, Biomedical Medical and Imaging Branch (K.Z.A., J.E., N.S., J.M., L.B., W.Q., A.M.G.), National Institutes of Health, Bethesda, MD
| | - Leilah Baumgarten
- National Institute of Diabetes and Digestive and Kidney Diseases, Biomedical Medical and Imaging Branch (K.Z.A., J.E., N.S., J.M., L.B., W.Q., A.M.G.), National Institutes of Health, Bethesda, MD
| | - Waleed N. Qaddumi
- National Institute of Diabetes and Digestive and Kidney Diseases, Biomedical Medical and Imaging Branch (K.Z.A., J.E., N.S., J.M., L.B., W.Q., A.M.G.), National Institutes of Health, Bethesda, MD
| | - Sydney A. Dixon
- Diabetes Endocrinology and Obesity Branch (K.B., A.V., S.D., A.C., M.S., L.M., S.T.C.), National Institutes of Health, Bethesda, MD
| | - Aruba Chowdhury
- Diabetes Endocrinology and Obesity Branch (K.B., A.V., S.D., A.C., M.S., L.M., S.T.C.), National Institutes of Health, Bethesda, MD
| | - Michael Stagliano
- Diabetes Endocrinology and Obesity Branch (K.B., A.V., S.D., A.C., M.S., L.M., S.T.C.), National Institutes of Health, Bethesda, MD
| | - Lilian Mabundo
- Diabetes Endocrinology and Obesity Branch (K.B., A.V., S.D., A.C., M.S., L.M., S.T.C.), National Institutes of Health, Bethesda, MD
| | - Annemarie Wentzel
- Hypertension in Africa Research Team (A.W.), North-West University, Potchefstroom
- South African Medical Research Council, Unit for Hypertension and Cardiovascular Disease (A.W.), North-West University, Potchefstroom
| | - Colleen Hadigan
- Clinical Center (C.H.), National Institutes of Health, Bethesda, MD
| | - Ahmed M. Gharib
- National Institute of Diabetes and Digestive and Kidney Diseases, Biomedical Medical and Imaging Branch (K.Z.A., J.E., N.S., J.M., L.B., W.Q., A.M.G.), National Institutes of Health, Bethesda, MD
| | - Stephanie T. Chung
- Diabetes Endocrinology and Obesity Branch (K.B., A.V., S.D., A.C., M.S., L.M., S.T.C.), National Institutes of Health, Bethesda, MD
| |
Collapse
|
2
|
Saatmann N, Schön M, Zaharia OP, Huttasch M, Strassburger K, Trenkamp S, Kupriyanova Y, Schrauwen-Hinderling V, Kahl S, Burkart V, Wagner R, Roden M. Association of thyroid function with non-alcoholic fatty liver disease in recent-onset diabetes. Liver Int 2024; 44:27-38. [PMID: 37697960 DOI: 10.1111/liv.15723] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND AND AIMS Non-alcoholic fatty liver disease (NAFLD) has been linked to type 2 diabetes (T2D), but also to hypothyroidism. Nevertheless, the relationship between thyroid function and NAFLD in diabetes is less clear. This study investigated associations between free thyroxine (fT4) or thyroid-stimulating hormone (TSH) and NAFLD in recent-onset diabetes. METHODS Participants with recent-onset type 1 diabetes (T1D, n = 358), T2D (n = 596) or without diabetes (CON, n = 175) of the German Diabetes Study (GDS), a prospective longitudinal cohort study, underwent Botnia clamp tests and assessment of fT4, TSH, fatty liver index (FLI) and in a representative subcohort 1 H-magnetic resonance spectroscopy. RESULTS First, fT4 levels were similar between T1D and T2D (p = .55), but higher than in CON (T1D: p < .01; T2D: p < .001), while TSH concentrations were not different between all groups. Next, fT4 correlated negatively with FLI and positively with insulin sensitivity only in T2D (ß = -.110, p < .01; ß = .126, p < .05), specifically in males (ß = -.117, p < .05; ß = .162; p < .01) upon adjustments for age, sex and BMI. However, correlations between fT4 and FLI lost statistical significance after adjustment for insulin sensitivity (T2D: ß = -.021, p = 0.67; males with T2D: ß = -.033; p = .56). TSH was associated positively with FLI only in male T2D before (ß = .116, p < .05), but not after adjustments for age and BMI (ß = .052; p = .30). CONCLUSIONS Steatosis risk correlates with lower thyroid function in T2D, which is mediated by insulin resistance and body mass, specifically in men, whereas no such relationship is present in T1D.
Collapse
Affiliation(s)
- Nina Saatmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Martin Schön
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Oana-Patricia Zaharia
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, University Hospital, Düsseldorf, Germany
| | - Maximilian Huttasch
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Sandra Trenkamp
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Yuliya Kupriyanova
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Vera Schrauwen-Hinderling
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sabine Kahl
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, University Hospital, Düsseldorf, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Robert Wagner
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, University Hospital, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, University Hospital, Düsseldorf, Germany
| |
Collapse
|
3
|
Perticone M, Maio R, Gigliotti S, Shehaj E, Toscani AF, Capomolla A, Fabiani G, Sciacqua A, Perticone F. Mutual Effect Modification between Insulin Resistance and Endothelial Dysfunction in Predicting Incident Heart Failure in Hypertensives. Biomedicines 2023; 11:2188. [PMID: 37626686 PMCID: PMC10452906 DOI: 10.3390/biomedicines11082188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Insulin resistance and endothelial dysfunction are associated with heart failure (HF). Our objective was to investigate whether endothelial dysfunction and insulin resistance are independent predictors of incident HF and if a possible interaction exists between them. We enrolled 705 white never-treated hypertensives. Endothelium-dependent vasodilation was investigated by intra-arterial infusion of acetylcholine. During the follow-up [median: 117 months (range: 31-211)], we documented 223 new cases of HF (3.3 events/100 patient-years). We stratified the study population into progressors and non-progressors; progressors showed an older age and a higher prevalence of females, as well as higher mean values of baseline glucose, insulin, homeostasis model assessment (HOMA), creatinine, and high-sensitivity C-reactive protein (hs-CRP), whereas the estimated glomerular filtration rate (e-GFR) and endothelium-dependent vasodilation were lower. In the multiple Cox regression analysis, serum hs-CRP (HR = 1.362, (95% CI = 1.208-1.536), HOMA (HR = 1.293, 95% CI = 1.142-1.465), maximal acetylcholine (Ach)-stimulated forearm blood flow (FBF) (100% increment, HR = 0.807, 95% CI = 0.697-0.934), and e-GFR (10 mL/min/1.73 m2 increment, HR = 0.552, 95% CI = 0.483-0.603) maintained an independent association with incident HF. HOMA and endothelial dysfunction interact between them in a competitive manner (HR = 6.548, 95% CI = 4.034-10.629), also showing a mutual effect modification. Our findings demonstrate that both endothelial dysfunction and HOMA are independent and strong predictors of incident HF in hypertensives, these two risk factors interact between them with a competitive mechanism.
Collapse
Affiliation(s)
- Maria Perticone
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (A.F.T.); (A.S.); (F.P.)
| | - Raffaele Maio
- Geriatrics Unit, Azienda Ospedaliero-Universitaria Renato Dulbecco, 88100 Catanzaro, Italy;
| | - Simona Gigliotti
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Ermal Shehaj
- Cardiology and CICU Unit, Giovanni Paolo II Hospital, 88046 Lamezia Terme, Italy;
| | - Alfredo Francesco Toscani
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (A.F.T.); (A.S.); (F.P.)
| | | | - Ginevra Fabiani
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy;
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (A.F.T.); (A.S.); (F.P.)
| | - Francesco Perticone
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (A.F.T.); (A.S.); (F.P.)
| |
Collapse
|