1
|
Lisieska-Żołnierczyk S, Gajęcka M, Zielonka Ł, Dąbrowski M, Gajęcki MT. Blood levels of zearalenone, thyroid-stimulating hormone, and thyroid hormones in patients with colorectal cancer. Toxicon 2024; 251:108125. [PMID: 39395743 DOI: 10.1016/j.toxicon.2024.108125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Mycotoxins are secondary metabolites produced by various species of mold fungi commonly found in plant materials. Zearalenone (ZEN) adversely affects the endocrine system. This study aimed to determine whether thyroid-stimulating hormone (TSH), procalcitonin (PCT), free triiodothyronine (fT3), and free thyroxine (fT4) levels are altered during natural zearalenone mycotoxicosis in patients diagnosed with sigmoid colon cancer (SCC) or colorectal cancer (CRC). A study was conducted on women and men diagnosed with SCC or CRC accompanied by the presence or absence (Patients Without ZEN - PWZ group) of ZEN in the blood. The PWZ group consisted of 17 patients with symptoms of SCC and CRC in whom ZEN and its metabolites were not detected in peripheral blood. The experimental (empirical) groups included a total of 16 SCC and CRC patients who tested positive for ZEN, but not its metabolites. TSH values in both sexes were within the upper limit of the reference range (0.27-4.2 μIU/mL) adopted by the hospital laboratory and corresponded to the upper second tertile and the lower third tertile. PCT values demonstrated that SCC and CRC were accompanied by a systemic or local bacterial infection. All mean values of fT3 were in the middle of the reference range, and the mean values of fT4 were within the upper reference limit. The fT3/fT4 prognostic marker was somewhat above the cut-off point of 0.22. These results indicate that in postmenopausal women and andropausal men who were diagnosed with SCC and CRC and were exposed to food-borne ZEN, higher values of the prognostic marker (fT3/fT4) were associated with an unfavorable prognosis. The study also revealed that the more distal the neoplastic lesions in the colon, the higher the percentage of both thyroid hormones, regardless of the patient's sex. The presence of ZEN in the diet alters thyroid activity in patients diagnosed with SCC and CRC.
Collapse
Affiliation(s)
- Sylwia Lisieska-Żołnierczyk
- Independent Public Health Care Center of the Ministry of the Interior and Administration and the Warmia and Mazury Oncology Center in Olsztyn, Wojska Polskiego 37, 10-228, Olsztyn, Poland.
| | - Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland.
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland.
| | - Michał Dąbrowski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland.
| | - Maciej T Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland.
| |
Collapse
|
2
|
Ji N, Li H, Zhang Y, Li Y, Wang P, Chen X, Liu YN, Wang JQ, Yang Y, Chen ZS, Li Y, Wang R, Kong D. Lansoprazole (LPZ) reverses multidrug resistance (MDR) in cancer through impeding ATP-binding cassette (ABC) transporter-mediated chemotherapeutic drug efflux and lysosomal sequestration. Drug Resist Updat 2024; 76:101100. [PMID: 38885537 DOI: 10.1016/j.drup.2024.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
AIMS Lansoprazole is one of the many proton pump inhibitors (PPIs) that acts more strongly with ABCB1 and ABCG2. The present study is to investigate the potential of lansoprazole on reversal of ABCB1/G2-mediated MDR in cancer, in vitro and in vivo. METHODS Reversal studies and combination evaluation were conducted to determine the synergistic anti-MDR effects on lansoprazole. Lysosomal staining was used to determination of lansoprazole on ABCB1-mediated lysosomal sequestration. Substrate accumulation and efflux assays, ATPase activity, and molecular docking were conducted to evaluate lansoprazole on ABCB1/G2 functions. Western blot and immunofluorescence were used to detect lansoprazole on ABCB1/G2 expression and subcellular localization. MDR nude mice models were established to evaluate the effects of lansoprazole on MDR in vivo. RESULTS Lansoprazole attenuated ABCB1/G2-mediated MDR and exhibited synergistic effects with substrate drugs in MDR cells. In vivo experiments demonstrated that lansoprazole attenuated ABCB1/G2-mediated MDR and exhibited synergistic effects that augmented the sensitivity of substrate anticancer drugs in ABCB1/G2-mediated settings without obvious toxicity. Lansoprazole impeded lysosomal sequestration mediated by ABCB1, leading to a substantial increase in intracellular accumulation of substrate drugs. The effects of lansoprazole were not attributable to downregulation or alterations in subcellular localization of ABCB1/G2. Lansoprazole promoted the ATPase activity of ABCB1/G2 and competitively bound to the substrate-binding region of ABCB1/G2. CONCLUSIONS These findings present novel therapeutic avenues whereby the combination of lansoprazole and chemotherapeutic agents mitigates MDR mediated by ABCB1/G2 overexpression.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Antineoplastic Agents/pharmacology
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- Cell Line, Tumor
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Lansoprazole/pharmacology
- Lysosomes/metabolism
- Lysosomes/drug effects
- Mice, Nude
- Molecular Docking Simulation
- Neoplasm Proteins
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Neoplasms/pathology
- Proton Pump Inhibitors/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ning Ji
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China; Tianjin Medical University, Tianjin 300070, China
| | - Hui Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China; Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Yixuan Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China; Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Yuelin Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China; Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Peiyu Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China; Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Xin Chen
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China; Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Yi-Nan Liu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China; Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yueguo Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China; Tianjin Medical University, Tianjin 300070, China.
| | - Ran Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China; Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China.
| | - Dexin Kong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China; Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
3
|
Caron P, Declèves X. The Use of Levothyroxine Absorption Tests in Clinical Practice. J Clin Endocrinol Metab 2023; 108:1875-1888. [PMID: 36916146 DOI: 10.1210/clinem/dgad132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/10/2023] [Accepted: 03/06/2023] [Indexed: 03/15/2023]
Abstract
Although levothyroxine (LT4) is a widely prescribed drug, more than 30% of LT4-treated patients fail to achieve the recommended serum level of thyrotropin with a body weight-based dose of LT4. An LT4 absorption test (LT4AT) is part of the workup for confirming normal LT4 absorption or diagnosing malabsorption. We searched PubMed with the terms levothyrox*, L-T4, LT4, TT4, FT4, FT3, TT3, test, loading, uptake, absorp*, "absorb*, bioavailab*, bioequiv* malabsorb*, and pseudomalabsorb*. A total of 43 full-text publications were analyzed. The published procedures for LT4AT differ markedly in the test dose, formulation, test duration, frequency of blood collection, analyte (total thyroxine [TT4] or free thyroxine [FT4]), metric (absolute or relative peak or increment, or area under the curve) and the threshold for normal absorption. In a standardized LT4AT for routine use, the physician could advise the patient to not consume food, beverages, or medications the morning of the test; administer 1000 µg of LT4 in the patient's usual formulation as the test dose; ensure that the patient is supervised throughout the LT4AT; perform a 4-hour test, with hourly blood samples; assay FT4; and consider that normal LT4 absorption corresponds to an FT4 increment of more than 0.40 ng/dL (5.14 pmol/L) or a TT4 increment of more than 6 μg/dL (77.23 nmol/L) for a test dose of at least 300 µg, or a percentage TT4 absorption of more than 60%. If the test indicates abnormal LT4 absorption, the physician can increase the LT4 dose, change the formulation or administration route, and/or refer the patient to a gastroenterologist.
Collapse
Affiliation(s)
- Philippe Caron
- Service d'Endocrinologie, Maladies Métaboliques et Nutrition, Pôle Cardio-Vasculaire et Métabolique, Hôpital Larrey, CHU de Toulouse, Toulouse F-31059, France
| | - Xavier Declèves
- Service de Biologie du Médicament-Toxicologie, Hôpital Cochin, AP-HP, Paris F-75006, France
- INSERM UMR-S1144, Université Paris Cité, Paris F-75006, France
| |
Collapse
|
4
|
Ritter MJ, Gupta S, Hennessey JV. Alternative routes of levothyroxine administration for hypothyroidism. Curr Opin Endocrinol Diabetes Obes 2020; 27:318-322. [PMID: 32740045 DOI: 10.1097/med.0000000000000558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW The aim of the article is to present the basics of oral levothyroxine (LT4) absorption, reasons why patients may have persistently elevated serum thyroid stimulation hormone (TSH) levels, and alternative strategies for LT4 dosing. RECENT FINDINGS Although oral LT4 tablets are most commonly used for thyroid hormone replacement in patients with hypothyroidism, case studies report that liquid oral LT4, intravenous, intramuscular, and rectal administration of LT4 can successfully treat refractory hypothyroidism. SUMMARY Hypothyroidism is one of the most common endocrine disorders encountered by primary care physicians and endocrinologists. LT4 is one of the most widely prescribed medications in the world and it is the standard of care treatment for hypothyroidism. Generally, hypothyroid patients will be treated with LT4 tablets to be taken orally, and monitoring will occur with routine serum thyroid tests, including TSH concentrations. However, many patients fail to maintain serum TSH levels in the target range while managed on oral LT4 tablets. A subset of these patients would be considered to have poorly controlled hypothyroidism, sometimes termed refractory hypothyroidism. For these patients, optimization of ingestion routines and alternative formulations and routes of administration of LT4 can be considered, including oral liquid, intravenous, intramuscular, and even rectal formulations.
Collapse
Affiliation(s)
| | - Suruchi Gupta
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | |
Collapse
|
5
|
Adequate timing and constant supervision are the keys for successful implementation of levothyroxine or levothyroxine/paracetamol absorption test. Thyroid Res 2020; 13:5. [PMID: 32467734 PMCID: PMC7236172 DOI: 10.1186/s13044-020-00079-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/06/2020] [Indexed: 11/16/2022] Open
Abstract
Background Levothyroxine (LT4) pseudomalabsorption due to medication non-adherence results in significant costs for Health Service. High dose LT4 or LT4/paracetamol absorption test is used in such cases. Hence, establishment of an optimal test protocol and timing of sample collection is of utmost importance. Case presentation A 34-year old woman was admitted to our Department because of severe hypothyroidism [on admission thyrotropin (TSH) > 100 μIU/ml, free thyroxine (FT4) 0.13 ng/dl (ref. range 0.93–1.7)] despite apparently taking 1000 μg of LT4 a day. Autoimmune hypothyroidism had been diagnosed 4 years before during post-partum thyroiditis. Subsequently, it was not possible to control her hypothyroidism despite several admissions to two University Hospitals and despite vehement denial of compliance problems. There was no evidence of coeliac disease or other malabsorption problems, though gluten-free and lactose-free diet was empirically instigated without success. A combined paracetamol (1000 mg)/LT4 (1000 μg) absorption test was performed in one of these Hospitals. This showed good paracetamol absorption (from < 2 μg/ml to 14.11 μg/ml at 120 min), with inadequate LT4 absorption (FT4 increase from 5.95 pmol/l to 9.92 pmol/l at 0 and 120 min respectively). About 2 years prior to admission to our Department the patient was treated with escalating doses of levothyroxine [up to 3000 μg of T4 and 40 μg of triiodothyronine (T3) daily] without significant impact on TSH (still > 75 μIU/ml, and FT4 still below reference range). After admission to our Department we performed a 2500 μg LT4 absorption test with controlled ingestion of crushed tablets, strict patient monitoring and sampling at 30 min intervals. We observed a quick and striking increase in FT4 from 0.13 to 0.46, 1.78, 3.05 and 3.81 ng/dl, at 0, 30, 60, 90 and 120 min, respectively. Her TSH concentration decreased to 13.77 μIU/ml within 4 days. When informed, that we had managed to “overcome” her absorption problems, she discharged herself against medical advice and declined psychiatric consultation. Conclusions Adequate patient supervision and frequent sampling (e.g. every 30 min for 210 min) is the key for successful implementation of LT4 absorption test. Paracetamol coadministration appears superfluous in such cases.
Collapse
|