1
|
Batty SR, Langlais PR. Microtubules in insulin action: what's on the tube? Trends Endocrinol Metab 2021; 32:776-789. [PMID: 34462181 PMCID: PMC8446328 DOI: 10.1016/j.tem.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
Microtubules (MT) have a role in the intracellular response to insulin stimulation and subsequent glucose transport by glucose transporter 4 (GLUT4), which resides in specialized storage vesicles that travel through the cell. Before GLUT4 is inserted into the plasma membrane for glucose transport, it undergoes complex trafficking through the cell via the integration of cytoskeletal networks. In this review, we highlight the importance of MT elements in insulin action in adipocytes through a summary of MT depolymerization studies, MT-based GLUT4 movement, molecular motor proteins involved in GLUT4 trafficking, as well as MT-related phenomena in response to insulin and links between insulin action and MT-associated proteins.
Collapse
Affiliation(s)
- Skylar R Batty
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Paul R Langlais
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
2
|
Endow SA, Miller SE, Ly PT. Mitochondria-enriched protrusions are associated with brain and intestinal stem cells in Drosophila. Commun Biol 2019; 2:427. [PMID: 31799429 PMCID: PMC6874589 DOI: 10.1038/s42003-019-0671-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Brain stem cells stop dividing in late Drosophila embryos and begin dividing again in early larvae after feeding induces reactivation. Quiescent neural stem cells (qNSCs) display an unusual cytoplasmic protrusion that is no longer present in reactivated NSCs. The protrusions join the qNSCs to the neuropil, brain regions that are thought to maintain NSCs in an undifferentiated state, but the function of the protrusions is not known. Here we show that qNSC protrusions contain clustered mitochondria that are likely maintained in position by slow forward-and-backward microtubule growth. Larvae treated with a microtubule-stabilizing drug show bundled microtubules and enhanced mitochondrial clustering in NSCs, together with reduced qNSC reactivation. We further show that intestinal stem cells contain mitochondria-enriched protrusions. The qNSC and intestinal stem-cell protrusions differ from previously reported cytoplasmic extensions by forming stem-cell-to-niche mitochondrial bridges that could potentially both silence genes and sense signals from the stem cell niche.
Collapse
Affiliation(s)
- Sharyn A. Endow
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, 169857 Singapore
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA
| | - Sara E. Miller
- Department of Pathology, Duke University Medical Center, Durham, NC 27710 USA
| | - Phuong Thao Ly
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, 169857 Singapore
| |
Collapse
|
3
|
Parker SS, Krantz J, Kwak EA, Barker NK, Deer CG, Lee NY, Mouneimne G, Langlais PR. Insulin Induces Microtubule Stabilization and Regulates the Microtubule Plus-end Tracking Protein Network in Adipocytes. Mol Cell Proteomics 2019; 18:1363-1381. [PMID: 31018989 PMCID: PMC6601206 DOI: 10.1074/mcp.ra119.001450] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Indexed: 12/21/2022] Open
Abstract
Insulin-stimulated glucose uptake is known to involve microtubules, although the function of microtubules and the microtubule-regulating proteins involved in insulin action are poorly understood. CLASP2, a plus-end tracking microtubule-associated protein (+TIP) that controls microtubule dynamics, was recently implicated as the first +TIP associated with insulin-regulated glucose uptake. Here, using protein-specific targeted quantitative phosphoproteomics within 3T3-L1 adipocytes, we discovered that insulin regulates phosphorylation of the CLASP2 network members G2L1, MARK2, CLIP2, AGAP3, and CKAP5 as well as EB1, revealing the existence of a previously unknown microtubule-associated protein system that responds to insulin. To further investigate, G2L1 interactome studies within 3T3-L1 adipocytes revealed that G2L1 coimmunoprecipitates CLASP2 and CLIP2 as well as the master integrators of +TIP assembly, the end binding (EB) proteins. Live-cell total internal reflection fluorescence microscopy in adipocytes revealed G2L1 and CLASP2 colocalize on microtubule plus-ends. We found that although insulin increases the number of CLASP2-containing plus-ends, insulin treatment simultaneously decreases CLASP2-containing plus-end velocity. In addition, we discovered that insulin stimulates redistribution of CLASP2 and G2L1 from exclusive plus-end tracking to "trailing" behind the growing tip of the microtubule. Insulin treatment increases α-tubulin Lysine 40 acetylation, a mechanism that was observed to be regulated by a counterbalance between GSK3 and mTOR, and led to microtubule stabilization. Our studies introduce insulin-stimulated microtubule stabilization and plus-end trailing of +TIPs as new modes of insulin action and reveal the likelihood that a network of microtubule-associated proteins synergize to coordinate insulin-regulated microtubule dynamics.
Collapse
Affiliation(s)
- Sara S Parker
- From the ‡Department of Cellular & Molecular Medicine
| | - James Krantz
- §Department of Medicine, Division of Endocrinology
| | | | | | - Chris G Deer
- University of Arizona Research Computing, University of Arizona, Tucson, Arizona 85721
| | - Nam Y Lee
- ¶Department of Pharmacology,; ‖Department of Chemistry & Biochemistry, University of Arizona College of Medicine, Tucson, Arizona 85721
| | | | | |
Collapse
|
4
|
Liu T, Yu B, Kakino M, Fujimoto H, Ando Y, Hakuno F, Takahashi SI. A novel IRS-1-associated protein, DGKζ regulates GLUT4 translocation in 3T3-L1 adipocytes. Sci Rep 2016; 6:35438. [PMID: 27739494 PMCID: PMC5064357 DOI: 10.1038/srep35438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/29/2016] [Indexed: 12/19/2022] Open
Abstract
Insulin receptor substrates (IRSs) are major targets of insulin receptor tyrosine kinases. Here we identified diacylglycerol kinase zeta (DGKζ) as an IRS-1-associated protein, and examined roles of DGKζ in glucose transporter 4 (GLUT4) translocation to the plasma membrane. When DGKζ was knocked-down in 3T3-L1 adipocytes, insulin-induced GLUT4 translocation was inhibited without affecting other mediators of insulin-dependent signaling. Similarly, knockdown of phosphatidylinositol 4-phosphate 5-kinase 1α (PIP5K1α), which had been reported to interact with DGKζ, also inhibited insulin-induced GLUT4 translocation. Moreover, DGKζ interacted with IRS-1 without insulin stimulation, but insulin stimulation decreased this interaction. Over-expression of sDGKζ (short-form DGKζ), which competed out DGKζ from IRS-1, enhanced GLUT4 translocation without insulin stimulation. Taking these results together with the data showing that cellular PIP5K activity was correlated with GLUT4 translocation ability, we concluded that IRS-1-associated DGKζ prevents GLUT4 translocation in the absence of insulin and that the DGKζ dissociated from IRS-1 by insulin stimulation enhances GLUT4 translocation through PIP5K1α activity.
Collapse
Affiliation(s)
- TingYu Liu
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - BuChin Yu
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Mamoru Kakino
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Hitoshi Fujimoto
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Yasutoshi Ando
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Fumihiko Hakuno
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
5
|
Abstract
GLUT4 is regulated by its intracellular localization. In the absence of insulin, GLUT4 is efficiently retained intracellularly within storage compartments in muscle and fat cells. Upon insulin stimulation (and contraction in muscle), GLUT4 translocates from these compartments to the cell surface where it transports glucose from the extracellular milieu into the cell. Its implication in insulin-regulated glucose uptake makes GLUT4 not only a key player in normal glucose homeostasis but also an important element in insulin resistance and type 2 diabetes. Nevertheless, how GLUT4 is retained intracellularly and how insulin acts on this retention mechanism is largely unclear. In this review, the current knowledge regarding the various molecular processes that govern GLUT4 physiology is discussed as well as the questions that remain.
Collapse
|
6
|
Renes J, Mariman E. Application of proteomics technology in adipocyte biology. MOLECULAR BIOSYSTEMS 2013; 9:1076-91. [PMID: 23629546 DOI: 10.1039/c3mb25596d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Obesity and its associated complications have reached epidemic proportions in Western-type societies. Concomitantly, the obesity incidence in developing countries is increasing. One hallmark of obesity is the differentiation of pre-adipocytes into mature triglyceride-loaded adipocytes present in subcutaneous and visceral adipose tissue depots. This may ultimately lead to dysfunctional adipose tissue together with detrimental changes in the profiles of (pre-)adipocyte-secreted proteins, known as adipokines. Obesity-induced alterations in adipokine profiles contribute to the development of obesity-associated disorders. Consequently, the interest in the molecular events responsible for adipose tissue modifications during weight gain and weight loss as well as in the aetiology of obesity-associated disorders is growing. Molecular mechanisms involved in pre-adipocyte differentiation and alterations in adipokine profiles have been examined at the gene and protein level by high-throughput technologies. Independent proteomics studies have contributed significantly to further insight into adipocyte biology, particularly with respect to adipokine profiling. In this review novel findings obtained with adipo-proteomics studies are highlighted and the relevance of proteomics technologies to further understand molecular aspects of adipocyte biology is discussed.
Collapse
Affiliation(s)
- Johan Renes
- Department of Human Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | |
Collapse
|
7
|
Liu LZ, Cheung SCK, Lan LL, Ho SKS, Chan JCN, Tong PCY. Microtubule network is required for insulin-induced signal transduction and actin remodeling. Mol Cell Endocrinol 2013; 365:64-74. [PMID: 22996137 DOI: 10.1016/j.mce.2012.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/14/2012] [Accepted: 09/08/2012] [Indexed: 02/02/2023]
Abstract
Both microtubule and actin are required for insulin-induced glucose uptake. However, the roles of these two cytoskeletons and their relationship in insulin action still remain unclear. In this work, we examined the morphological change of microtubule/actin and their involvement in insulin signal transduction using rat skeletal muscle cells. Insulin rapidly led to microtubule clustering from ventral to dorsal surface of the cell. Microtubule filaments were rearranged to create space where new actin structures formed. Disruption of microtubule prevented insulin-induced actin remodeling and distal insulin signal transduction, with reduction in surface glucose transporter isoform 4 (GLUT4) and glucose uptake. Though microtubule mediated actin remodeling through PKCζ, reorganization of microtubule depended on tyrosine phosphorylation of insulin receptor, the mechanism is different from insulin-induced actin remodeling, which relied on the activity of PI3-kinase and PKCζ. We propose that microtubule network is required for insulin-induced signal transduction and actin remodeling in skeletal muscle cells.
Collapse
Affiliation(s)
- Li-Zhong Liu
- Department of Medicine and Therapeutics, Hong Kong Institute of Diabetes and Obesity, Li Ka Shing Institute of Health, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
8
|
Sites of glucose transporter-4 vesicle fusion with the plasma membrane correlate spatially with microtubules. PLoS One 2012; 7:e43662. [PMID: 22916292 PMCID: PMC3423385 DOI: 10.1371/journal.pone.0043662] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/23/2012] [Indexed: 12/25/2022] Open
Abstract
In adipocytes, vesicles containing glucose transporter-4 (GLUT4) redistribute from intracellular stores to the cell periphery in response to insulin stimulation. Vesicles then fuse with the plasma membrane, facilitating glucose transport into the cell. To gain insight into the details of microtubule involvement, we examined the spatial organization and dynamics of microtubules in relation to GLUT4 vesicle trafficking in living 3T3-L1 adipocytes using total internal reflection fluorescence (TIRF) microscopy. Insulin stimulated an increase in microtubule density and curvature within the TIRF-illuminated region of the cell. The high degree of curvature and abrupt displacements of microtubules indicate that substantial forces act on microtubules. The time course of the microtubule density increase precedes that of the increase in intensity of fluorescently-tagged GLUT4 in this same region of the cell. In addition, portions of the microtubules are highly curved and are pulled closer to the cell cortex, as confirmed by Parallax microscopy. Microtubule disruption delayed and modestly reduced GLUT4 accumulation at the plasma membrane. Quantitative analysis revealed that fusions of GLUT4-containing vesicles with the plasma membrane, detected using insulin-regulated aminopeptidase with a pH-sensitive GFP tag (pHluorin), preferentially occur near microtubules. Interestingly, long-distance vesicle movement along microtubules visible at the cell surface prior to fusion does not appear to account for this proximity. We conclude that microtubules may be important in providing spatial information for GLUT4 vesicle fusion.
Collapse
|
9
|
Montessuit C, Lerch R. Regulation and dysregulation of glucose transport in cardiomyocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:848-56. [PMID: 22967513 DOI: 10.1016/j.bbamcr.2012.08.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 11/29/2022]
Abstract
The ability of the heart muscle to derive energy from a wide variety of substrates provides the myocardium with remarkable capacity to adapt to the ever-changing metabolic environment depending on factors including nutritional state and physical activity. There is increasing evidence that loss of metabolic flexibility of the myocardium contributes to cardiac dysfunction in disease conditions such as diabetes, ischemic heart disease and heart failure. At the level of glucose metabolism reduced metabolic adaptation in most cases is characterized by impaired stimulation of transarcolemmal glucose transport in the cardiomyocytes in response to insulin, referred to as insulin resistance, or to other stimuli such as energy deficiency. This review discusses cellular mechanisms involved in the regulation of glucose uptake in cardiomyocytes and their potential implication in impairment of stimulation of glucose transport under disease conditions. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
Affiliation(s)
- Christophe Montessuit
- Department of Medical Specialties, Geneva University Hospitals, Geneva, Switzerland.
| | | |
Collapse
|
10
|
Subcellular trafficking of the substrate transporters GLUT4 and CD36 in cardiomyocytes. Cell Mol Life Sci 2011; 68:2525-38. [PMID: 21547502 PMCID: PMC3134709 DOI: 10.1007/s00018-011-0690-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 04/01/2011] [Accepted: 04/12/2011] [Indexed: 12/16/2022]
Abstract
Cardiomyocytes use glucose as well as fatty acids for ATP production. These substrates are transported into the cell by glucose transporter 4 (GLUT4) and the fatty acid transporter CD36. Besides being located at the sarcolemma, GLUT4 and CD36 are stored in intracellular compartments. Raised plasma insulin concentrations and increased cardiac work will stimulate GLUT4 as well as CD36 to translocate to the sarcolemma. As so far studied, signaling pathways that regulate GLUT4 translocation similarly affect CD36 translocation. During the development of insulin resistance and type 2 diabetes, CD36 becomes permanently localized at the sarcolemma, whereas GLUT4 internalizes. This juxtaposed positioning of GLUT4 and CD36 is important for aberrant substrate uptake in the diabetic heart: chronically increased fatty acid uptake at the expense of glucose. To explain the differences in subcellular localization of GLUT4 and CD36 in type 2 diabetes, recent research has focused on the role of proteins involved in trafficking of cargo between subcellular compartments. Several of these proteins appear to be similarly involved in both GLUT4 and CD36 translocation. Others, however, have different roles in either GLUT4 or CD36 translocation. These trafficking components, which are differently involved in GLUT4 or CD36 translocation, may be considered novel targets for the development of therapies to restore the imbalanced substrate utilization that occurs in obesity, insulin resistance and diabetic cardiomyopathy.
Collapse
|
11
|
Nakagawa H, Miyazaki S, Abe T, Umadome H, Tanaka K, Nishimura K, Komori M, Matsuo S. H89 sensitive kinase regulates the translocation of Sar1 onto the ER membrane through phosphorylation of ER-coupled β-tubulin. Int J Biochem Cell Biol 2010; 43:423-30. [PMID: 21111843 DOI: 10.1016/j.biocel.2010.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 11/15/2010] [Accepted: 11/18/2010] [Indexed: 11/16/2022]
Abstract
ER-to-Golgi protein transport is carried out by transport vesicles which are formed at the ER-exit sites with recruitment of cytoplasmic coat proteins. Vesicle formation is initiated by assembly of the small G protein (Sar1) onto the ER membrane. Sar1 assembly onto the ER membrane is suppressed by protein kinase inhibitor H89, suggesting participation of H89-sensitive kinase in this process. The present study identified an effector of H89-sensitive kinase by LC-MS PMF analysis combined with 1D- and 2D-PAGE autoradiography, and examined the changes on the effector and Sar1 translocation induced by H89. H89 significantly suppressed the phosphorylation of 55 kDa protein with dosage dependency, and phosphorylation of 55 kDa, pI 5.5 protein spot in 2-D-autoradiography was drastically diminished by H89. LC-MS PMF analysis showed that the protein spot was β-tubulin. H89 significantly suppressed Sar1 translocation onto the ER. These findings indicate that β-tubulin is one of downstream effectors of H89-sensitive kinase, and that suppression of ER-coupled β-tubulin phosphorylation decreases Sar1 translocation onto the ER, suggesting that phosphorylation of β-tubulin regulates Sar1 translocation.
Collapse
Affiliation(s)
- Hiroshi Nakagawa
- Laboratory of Toxicology, Course of Veterinary Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Izumisano, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Compartmentalization and regulation of insulin signaling to GLUT4 by the cytoskeleton. VITAMINS AND HORMONES 2009; 80:193-215. [PMID: 19251039 DOI: 10.1016/s0083-6729(08)00608-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
One of the early events in the development of Type 2 diabetes appears to be an inhibition of insulin-mediated GLUT4 redistribution to the cell surface in tissues that express GLUT4. Understanding this process, and how it begins to breakdown in the development of insulin resistance is quite important as we face treatment and prevention of metabolic diseases. Over the past few years, and increasing number of laboratories have produced compelling data to demonstrate a role for both the actin and microtubule networks in the regulation of insulin-mediated GLUT4 redistribution to the cell surface. In this review, we explore this process from insulin-signal transduction to fusion of GLUT4 membrane vesicles, focusing on studies that have implicated a role for the cytoskeleton. We see from this body of work that both the actin network and the microtubule cytoskeleton play roles as targets of insulin action and effectors of insulin signaling leading to changes in GLUT4 redistribution to the cell surface and insulin-mediated glucose uptake.
Collapse
|
13
|
Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem J 2008; 413:201-15. [DOI: 10.1042/bj20080723] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Glucose entry into muscle cells is precisely regulated by insulin, through recruitment of GLUT4 (glucose transporter-4) to the membrane of muscle and fat cells. Work done over more than two decades has contributed to mapping the insulin signalling and GLUT4 vesicle trafficking events underpinning this response. In spite of this intensive scientific research, there are outstanding questions that continue to challenge us today. The present review summarizes the knowledge in the field, with emphasis on the latest breakthroughs in insulin signalling at the level of AS160 (Akt substrate of 160 kDa), TBC1D1 (tre-2/USP6, BUB2, cdc16 domain family member 1) and their target Rab proteins; in vesicle trafficking at the level of vesicle mobilization, tethering, docking and fusion with the membrane; and in the participation of the cytoskeleton to achieve optimal temporal and spatial location of insulin-derived signals and GLUT4 vesicles.
Collapse
|
14
|
Montessuit C, Papageorgiou I, Lerch R. Nuclear receptor agonists improve insulin responsiveness in cultured cardiomyocytes through enhanced signaling and preserved cytoskeletal architecture. Endocrinology 2008; 149:1064-74. [PMID: 18063688 DOI: 10.1210/en.2007-0656] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin resistance is the failure of insulin to stimulate the transport of glucose into its target cells. A highly regulatable supply of glucose is important for cardiomyocytes to cope with situations of metabolic stress. We recently observed that isolated adult rat cardiomyocytes become insulin resistant in vitro. Insulin resistance is combated at the whole body level with agonists of the nuclear receptor complex peroxisome proliferator-activated receptor gamma (PPARgamma)/retinoid X receptor (RXR). We investigated the effects of PPARgamma/RXR agonists on the insulin-stimulated glucose transport and on insulin signaling in insulin-resistant adult rat cardiomyocytes. Treatment of cardiomyocytes with ciglitazone, a PPARgamma agonist, or 9-cis retinoic acid (RA), a RXR agonist, increased insulin- and metabolic stress-stimulated glucose transport, whereas agonists of PPARalpha or PPARbeta/delta had no effect. Stimulation of glucose transport in response to insulin requires the phosphorylation of the signaling intermediate Akt on the residues Thr308 and Ser473 and, downstream of Akt, AS160 on several Thr and Ser residues. Phosphorylation of Akt and AS160 in response to insulin was lower in insulin-resistant cardiomyocytes. However, treatment with 9-cis RA markedly increased phosphorylation of both proteins. Treatment with 9-cis RA also led to better preservation of microtubules in cultured cardiomyocytes. Disruption of microtubules in insulin-responsive cardiomyocytes abolished insulin-stimulated glucose transport and reduced phosphorylation of AS160 but not Akt. Metabolic stress-stimulated glucose transport also involved AS160 phosphorylation in a microtubule-dependent manner. Thus, the stimulation of glucose uptake in response to insulin or metabolic stress is dependent in cardiomyocytes on the presence of intact microtubules.
Collapse
Affiliation(s)
- Christophe Montessuit
- Division of Cardiology, Geneva University Hospitals, 24 Micheli-du-Crest, 1211 Geneva 14, Switzerland.
| | | | | |
Collapse
|
15
|
Chen Y, Wang Y, Ji W, Xu P, Xu T. A pre-docking role for microtubules in insulin-stimulated glucose transporter 4 translocation. FEBS J 2008; 275:705-12. [PMID: 18190526 DOI: 10.1111/j.1742-4658.2007.06232.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Insulin stimulates glucose uptake by inducing translocation of glucose transporter 4 (GLUT4) from intracellular resides to the plasma membrane. How GLUT4 storage vesicles are translocated from the cellular interior to the plasma membrane remains to be elucidated. In the present study, intracellular transport of GLUT4 storage vesicles and the kinetics of their docking at the plasma membrane were comprehensively investigated at single vesicle level in control and microtubule-disrupted 3T3-L1 adipocytes by time-lapse total internal reflection fluorescence microscopy. It is demonstrated that microtubule disruption substantially inhibited insulin-stimulated GLUT4 translocation. Detailed analysis reveals that microtubule disruption blocked the recruitment of GLUT4 storage vesicles to underneath the plasma membrane and abolished the docking of them at the plasma membrane. These data suggest that transport of GLUT4 storage vesicles to the plasma membrane takes place along microtubules and that this transport is obligatory for insulin-stimulated GLUT4 translocation.
Collapse
Affiliation(s)
- Yu Chen
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
16
|
Vossenkämper A, Nedvetsky PI, Wiesner B, Furkert J, Rosenthal W, Klussmann E. Microtubules are needed for the perinuclear positioning of aquaporin-2 after its endocytic retrieval in renal principal cells. Am J Physiol Cell Physiol 2007; 293:C1129-38. [PMID: 17626240 DOI: 10.1152/ajpcell.00628.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Water reabsorption in the renal collecting duct is regulated by arginine vasopressin (AVP). AVP induces the insertion of the water channel aquaporin-2 (AQP2) into the plasma membrane of principal cells, thereby increasing the osmotic water permeability. The redistribution of AQP2 to the plasma membrane is a cAMP-dependent process and thus a paradigm for cAMP-controlled exocytic processes. Using primary cultured rat inner medullary collecting duct cells, we show that the redistribution of AQP2 to the plasma membrane is accompanied by the reorganization of microtubules and the redistribution of the small GTPase Rab11. In resting cells, AQP2 is colocalized with Rab11 perinuclearly. AVP induced the redistribution of AQP2 to the plasma membrane and of Rab11 to the cell periphery. The redistribution of both proteins was increased when microtubules were depolymerized by nocodazole. In addition, the depolymerization of microtubules prevented the perinuclear positioning of AQP2 and Rab11 in resting cells, which was restored if nocodazole was washed out and microtubules repolymerized. After internalization of AQP2, induced by removal of AVP, forskolin triggered the AQP2 redistribution to the plasma membrane even if microtubules were depolymerized and without the previous positioning of AQP2 in the perinuclear recycling compartment. Collectively, the data indicate that microtubule-dependent transport of AQP2 is predominantly responsible for trafficking and localization of AQP2 inside the cell after its internalization but not for the exocytic transport of the water channel. We also demonstrate that cAMP-signaling regulates the localization of Rab11-positive recycling endosomes in renal principal cells.
Collapse
Affiliation(s)
- Anna Vossenkämper
- Leibniz-Institut für Molekulare Pharmakologie (FMP Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Bisht B, Goel HL, Dey CS. Focal adhesion kinase regulates insulin resistance in skeletal muscle. Diabetologia 2007; 50:1058-69. [PMID: 17333113 DOI: 10.1007/s00125-007-0591-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 10/15/2006] [Indexed: 10/23/2022]
Abstract
AIMS/HYPOTHESIS On the basis of our previous studies, we investigated the possible role of focal adhesion kinase (FAK) in the development of insulin resistance in skeletal muscle, a major organ responsible for insulin-stimulated glucose uptake. MATERIALS AND METHODS Insulin-resistant C2C12 skeletal muscle cells were transfected with FAK wild-type or FAK mutant plasmids, knocked down using small interfering RNA (siRNA), and their effects on the levels and activities of insulin-signalling molecules and on glucose uptake were determined. RESULTS A significant decrease in tyrosine phosphorylation of FAK in insulin-resistant C2C12 cells was observed. A similar decrease was observed in skeletal muscle obtained from insulin-resistant Sprague-Dawley rats fed a high-fat diet. Increased levels of FAK in insulin-resistant C2C12 skeletal muscle cells increased insulin sensitivity and glucose uptake. These effects were reversed by an increase in the level of kinase activity mutant FAK or suppression of endogenous FAK by siRNA. FAK was also found to interact downstream with insulin receptor substrate-1, phosphatidylinositol 3-kinase and protein kinase C and glycogen synthase kinase 3beta, leading to translocation of glucose transporter 4 and resulting in the regulation of glucose uptake. CONCLUSIONS/INTERPRETATION The present study provides strong evidence that the modulation of FAK level regulates the insulin sensitivity of skeletal muscle cells. The results demonstrate a direct role of FAK in insulin-resistant skeletal muscle cells for the first time.
Collapse
Affiliation(s)
- B Bisht
- Signal Transduction Research Laboratory, Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Chandigarh 160062, India
| | | | | |
Collapse
|
18
|
Eyster CA, Duggins QS, Gorbsky GJ, Olson AL. Microtubule network is required for insulin signaling through activation of Akt/protein kinase B: evidence that insulin stimulates vesicle docking/fusion but not intracellular mobility. J Biol Chem 2006; 281:39719-27. [PMID: 17068336 DOI: 10.1074/jbc.m607101200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The microtubule network has been shown to be required for insulin-dependent GLUT4 redistribution; however, the precise molecular function has not been elucidated. In this article, we used fluorescence recovery after photobleaching (FRAP) to evaluate the role of microtubules in intracellular GLUT4 vesicle mobility. A comparison of the rate of fluorescence recovery (t((1/2))), and the maximum fluorescence recovered (F(max)) was made between basal and insulin-treated cells with or without nocodazole treatment to disrupt microtubules. We found that intracellular mobility of fluorescently tagged GLUT4 (HA-GLUT4-GFP) was high in basal cells. Mobility was not increased by insulin treatment. Basal mobility was dependent upon an intact microtubule network. Using a constitutively active Akt to signal GLUT4 redistribution, we found that microtubule-based GLUT4 vesicle mobility was not obligatory for GLUT4 plasma membrane insertion. Our findings suggest that microtubules organize the insulin-signaling complex and provide a surface for basal mobility of GLUT4 vesicles. Our data do not support an obligatory requirement for long range microtubule-based movement of GLUT4 vesicles for insulin-mediated GLUT4 redistribution to the cell surface. Taken together, these findings suggest a model in which insulin signaling targets membrane docking and/or fusion rather than GLUT4 trafficking to the cell surface.
Collapse
Affiliation(s)
- Craig A Eyster
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
19
|
He A, Liu X, Liu L, Chang Y, Fang F. How many signals impinge on GLUT4 activation by insulin? Cell Signal 2006; 19:1-7. [PMID: 16919913 DOI: 10.1016/j.cellsig.2006.05.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 05/23/2006] [Indexed: 01/26/2023]
Abstract
GLUT4 is the main glucose transporter activated by insulin in skeletal muscle cells and adipocytes. GLUT4 storage vesicles (GSVs) traffic in endocytic and exocytic compartments. In the basal state, GLUT4 compartments are preferentially sequestered in perinuclear deposits wherein stimuli including insulin and non-insulin factors can increase GLUT4 vesicle formation, its exocytosis, and fusion to plasma membrane. In addition to well-established effectors of insulin signaling pathway, such as PKCzeta and Akt, the cytoskeletal network is implicated in GLUT4 translocation. This review will discuss the mechanisms and activation of GLUT4 trafficking and incorporating to PM from three aspects: known molecules of the insulin signaling pathway; Rho and Rab family proteins and cytoskeletal molecules.
Collapse
Affiliation(s)
- Aibin He
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | | | | | | | | |
Collapse
|
20
|
Liu Z, Zhang YW, Chang YS, Fang FD. The role of cytoskeleton in glucose regulation. BIOCHEMISTRY (MOSCOW) 2006; 71:476-80. [PMID: 16732724 DOI: 10.1134/s0006297906050026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytoskeleton plays an important role in glucose regulation, mainly in the following three aspects. First, cytoskeleton regulates insulin secretion by guiding intracellular transport of insulin-containing vesicles and regulating release of insulin. Second, cytoskeleton is involved in insulin action by regulating distribution of insulin receptor substrate, GLUT4 translocation, and internalization of insulin receptor. In addition, cytoskeleton directs the intracellular distribution of glucose metabolism related enzymes including glycogen synthase and many glycolysis enzymes.
Collapse
Affiliation(s)
- Zhuo Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | | | | | | |
Collapse
|
21
|
Park SY, Lee S, Park KS, Lee HK, Lee W. Proteomic analysis of cellular change involved in mitochondria-to-nucleus communication in L6 GLUT4myc myocytes. Proteomics 2006; 6:1210-22. [PMID: 16402357 DOI: 10.1002/pmic.200500284] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Genetic or biochemical abnormalities in mitochondria are closely associated with apoptosis, aging, cancer, and other chronic degenerative diseases. Mitochondrial dysfunction resulting from mitochondrial DNA (mtDNA) depletion dispatches retrograde signals to the nucleus to compensate by altering the expression of various genes. In this study, a proteomic approach was used to gain insight into the nuclear gene targets of mitochondrial stress signaling and the pathophysiological mechanisms associated with mitochondrial dysfunction. We have used 2-DE to characterize the nuclear gene responses resulting from mtDNA depletion in L6 GLUT4myc myocytes. Our results showed that 77 polypeptides were differentially expressed in mtDNA-depleted cells; 33 polypeptides were down-regulated and 44 polypeptides were up-regulated. Of these differentially expressed polypeptides, 40 were identified as 36 different proteins by MALDI-TOF MS. These proteins are related to various cellular responses, such as apoptosis, cellular metabolism, signaling and cytoskeleton functions. It is suggested that the insulin resistance developed in mtDNA-depleted myocytes may be associated with disorganization of cytoskeleton assembly, and that cellular mtDNA depletion might promote the ability to evade apoptosis or other death effectors.
Collapse
Affiliation(s)
- Seung Yoon Park
- Department of Biochemistry, Dongguk University, College of Medicine, Kyungju, Kyungpook, Korea
| | | | | | | | | |
Collapse
|