1
|
Abdalla MMI. Therapeutic potential of adiponectin in prediabetes: strategies, challenges, and future directions. Ther Adv Endocrinol Metab 2024; 15:20420188231222371. [PMID: 38250316 PMCID: PMC10798122 DOI: 10.1177/20420188231222371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024] Open
Abstract
Adiponectin, an adipose-derived hormone, plays a pivotal role in glucose regulation and lipid metabolism, with a decrease in circulating adiponectin levels being linked to insulin resistance and prediabetes. This review examines the therapeutic potential of adiponectin in managing prediabetes, elucidating on multiple aspects including its role in glucose and lipid metabolism, influence on insulin sensitivity, and anti-inflammatory properties. Moreover, the paper highlights the latest strategies to augment adiponectin levels, such as gene therapy, pharmacological interventions, dietary modifications, and lifestyle changes. It also addresses the challenges encountered in translating preclinical findings into clinical practice, primarily related to drug delivery, safety, and efficacy. Lastly, the review proposes future directions, underlining the need for large-scale human trials, novel adiponectin analogs, and personalized treatment strategies to harness adiponectin's full therapeutic potential in preventing the transition from prediabetes to diabetes.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Human Biology Department, School of Medicine, International Medical University, 126, Jln Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur, Federal Territory of Kuala Lumpur 57000, Malaysia
| |
Collapse
|
2
|
Song Y, Wei D, Raza SHA, Zhao Y, Jiang C, Song X, Wu H, Wang X, Luoreng Z, Ma Y. Research progress of intramuscular fat formation based on co-culture. Anim Biotechnol 2023; 34:3216-3236. [PMID: 36200856 DOI: 10.1080/10495398.2022.2127410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Intramuscular fat (IMF) is closely related to the meat quality of livestock and poultry. As a new cell culture technique in vitro, cell co-culture has been gradually applied to the related research of IMF formation because it can simulate the changes of microenvironment in vivo during the process of IMF cell formation. In the co-culture model, in addition to studying the effects of skeletal muscle cells on the proliferation and differentiation of IMF, we can also consider the role of many secretion factors in the formation of IMF, thus making the cell research in vitro closer to the real level in vivo. This paper reviewed the generation and origin of IMF, summarized the existing co-culture methods and systems, and discussed the advantages and disadvantages of each method as well as the challenges faced in the establishment of the system, with emphasis on the current status of research on the formation of IMF for human and animal based on co-culture technology.
Collapse
Affiliation(s)
- Yaping Song
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Dawei Wei
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | | | - Yiang Zhao
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Chao Jiang
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Xiaoyu Song
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Hao Wu
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Xingping Wang
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Zhuoma Luoreng
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| |
Collapse
|
3
|
Suganya N, Mani KP, Sireesh D, Rajaguru P, Vairamani M, Suresh T, Suzuki T, Chatterjee S, Ramkumar KM. Establishment of pancreatic microenvironment model of ER stress: Quercetin attenuates β-cell apoptosis by invoking nitric oxide-cGMP signaling in endothelial cells. J Nutr Biochem 2018; 55:142-156. [PMID: 29455095 DOI: 10.1016/j.jnutbio.2017.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 01/24/2023]
Abstract
The involvement of endoplasmic reticulum (ER) stress in endothelial dysfunction and diabetes-associated complications has been well documented. Inhibition of ER stress represents a promising therapeutic strategy to attenuate endothelial dysfunction in diabetes. Recent attention has focused on the development of small molecule inhibitors of ER stress to maintain endothelial homeostasis in diabetes. Here we have developed a reliable, robust co-culture system that allows a study on the endothelial cells and pancreatic β-cells crosstalk under ER stress and validated using a known ER stress modulator, quercetin. Furthermore, sensitizing of endothelial cells by quercetin (25 μM) confers protection of pancreatic β-cells against ER stress through nitric oxide (NO∙) signaling. In addition, increased intracellular insulin and NO∙-mediated cyclic 3',5'-guanosine monophosphate (cGMP) levels in pancreatic β-cells further confirmed the mechanism of protection under co-culture system. In addition, the potential protein targets of quercetin against ER stress in the endothelial cells were investigated through proteomic profiling and its phosphoprotein targets through Bioplex analysis. On the whole, the developed in vitro co-culture set up can serve as a platform to study the signaling network between the endothelial and pancreatic β-cells as well as provides a mechanistic insight for the validation of novel ER stress modulators.
Collapse
Affiliation(s)
- Natarajan Suganya
- SRM Research Institute, SRM University, Kattankulathur, Chennai - 603 203, India
| | - Krishna Priya Mani
- Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chromepet, Chennai - 600 044, India
| | - Dornadula Sireesh
- SRM Research Institute, SRM University, Kattankulathur, Chennai - 603 203, India
| | - Palanisamy Rajaguru
- Bharathidasan Institute of Technology, Anna University, Tiruchirappalli - 620 024, India
| | | | - Thiruppathi Suresh
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Tokyo, Japan
| | - Takayoshi Suzuki
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Tokyo, Japan
| | - Suvro Chatterjee
- Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chromepet, Chennai - 600 044, India; Department of Biotechnology, Anna University, Chennai, India
| | | |
Collapse
|
4
|
Kudoh A, Satoh H, Hirai H, Watanabe T, Shimabukuro M. Preliminary Evidence for Adipocytokine Signals in Skeletal Muscle Glucose Uptake. Front Endocrinol (Lausanne) 2018; 9:295. [PMID: 29930536 PMCID: PMC5999789 DOI: 10.3389/fendo.2018.00295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/17/2018] [Indexed: 02/04/2023] Open
Abstract
The cross talk between the adipose tissue and insulin target tissues is a key mechanism for obesity-associated insulin resistance. However, the precise role of the interaction between the skeletal muscle and adipose tissue for insulin signaling and glucose uptake is questionable. L6 myocytes were co-cultured with or without 3T3-L1 adipocytes (~5 × 103 cells/cm2) up to 24 h. Glucose uptake was evaluated by 2-[3H] deoxyglucose uptake assay. Levels of mRNA expression of Glut1 and Glut4 and mitochondrial enzymes were analyzed by quantitative real-time reverse transcription polymerase chain reaction. Levels of Glut1 and Glut4 protein and phosphorylation of Akt (Ser473 and Thr308) were analyzed by immunoblotting. Study 1: co-culture with 3T3-L1 adipocytes increased glucose uptake in dose- and time-dependent manner in L6 myocytes under insulin-untreated conditions. When co-cultured with 3T3-L1 cells, reactive oxygen species production and levels of Glut1 mRNA and protein were increased in L6 cells, while these changes were abrogated and the glucose uptake partially inhibited by antioxidant treatment. Study 2: co-culture with 3T3-L1 adipocytes suppressed insulin-stimulated glucose uptake in L6 myocytes. Insulin-induced Akt phosphorylation at Ser473 decreased, which was proportional to 3T3-L1 density. Antioxidant treatment partially reversed this effect. Interactions between skeletal muscle and adipose tissues are important for glucose uptake under insulin-untreated or -treated condition through oxygen stress mechanism.
Collapse
Affiliation(s)
- Akihiro Kudoh
- Department of Diabetes, Endocrinology, and Metabolism, Fukushima Medical University, Fukushima-City, Japan
- *Correspondence: Akihiro Kudoh, ; Michio Shimabukuro,
| | - Hiroaki Satoh
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroyuki Hirai
- Department of Diabetes, Endocrinology, and Metabolism, Fukushima Medical University, Fukushima-City, Japan
| | - Tsuyoshi Watanabe
- Department of Internal Medicine, Fukushima Rosai Hospital, Iwaki, Japan
| | - Michio Shimabukuro
- Department of Diabetes, Endocrinology, and Metabolism, Fukushima Medical University, Fukushima-City, Japan
- *Correspondence: Akihiro Kudoh, ; Michio Shimabukuro,
| |
Collapse
|
5
|
Winkler M, Schuchard J, Stölting I, Vogt FM, Barkhausen J, Thorns C, Bader M, Raasch W. The brain renin-angiotensin system plays a crucial role in regulating body weight in diet-induced obesity in rats. Br J Pharmacol 2016; 173:1602-17. [PMID: 26892671 DOI: 10.1111/bph.13461] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 02/04/2016] [Accepted: 02/14/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Reduced weight gain after treatment with AT1 receptor antagonists may involve a brain-related mechanism. Here, we investigated the role of the brain renin-angiotensin system on weight regulation and food behaviour, with or without additional treatment with telmisartan. METHODS Transgenic rats with a brain-specific deficiency in angiotensinogen (TGR(ASrAOGEN)) and the corresponding wild-type, Sprague Dawley (SD) rats were fed (3 months) with a high-calorie cafeteria diet (CD) or standard chow. SD and TGR(ASrAOGEN) rats on the CD diet were also treated with telmisartan (8 mg·kg(-1) ·d(-1) , 3 months). RESULTS Compared with SD rats, TGR(ASrAOGEN) rats (i) had lower weights during chow feeding, (ii) did not become obese during CD feeding, (iii) had normal baseline leptin plasma concentrations independent of the feeding regimen, whereas plasma leptin of SD rats was increased due to CD, (iv) showed a reduced energy intake, (v) had a higher, strain-dependent energy expenditure, which is additionally enhanced during CD feeding, (vi) had enhanced mRNA levels of pro-opiomelanocortin and (vii) showed improved glucose control. Weight gain and energy intake in rats fed the CD diet were markedly reduced by telmisartan in SD rats but only to a minor extent in TGR(ASrAOGEN) rats. CONCLUSIONS The brain renin-angiotensin system affects body weight regulation, feeding behaviour and metabolic disorders. When angiotensin II levels are low in brain, rats are protected from developing diet-induced obesity and obesity-related metabolic impairments. We further suggest that telmisartan at least partly lowers body weight via a CNS-driven mechanism.
Collapse
Affiliation(s)
- Martina Winkler
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Johanna Schuchard
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Ines Stölting
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Florian M Vogt
- Department for Radiology and Nuclear Medicine, University of Lübeck, Lübeck, Germany
| | - Jörg Barkhausen
- Department for Radiology and Nuclear Medicine, University of Lübeck, Lübeck, Germany
| | - Christoph Thorns
- Department of Pathology, University Clinic Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Center for Structural and Cell Biology in Medicine, Institute for Biology, University of Lübeck, Lübeck, Germany.,Charité - University Medicine Berlin, Berlin, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany.,CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany
| |
Collapse
|
6
|
Pellegrinelli V, Rouault C, Rodriguez-Cuenca S, Albert V, Edom-Vovard F, Vidal-Puig A, Clément K, Butler-Browne GS, Lacasa D. Human Adipocytes Induce Inflammation and Atrophy in Muscle Cells During Obesity. Diabetes 2015; 64:3121-34. [PMID: 25695947 DOI: 10.2337/db14-0796] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 02/10/2015] [Indexed: 01/01/2023]
Abstract
Inflammation and lipid accumulation are hallmarks of muscular pathologies resulting from metabolic diseases such as obesity and type 2 diabetes. During obesity, the hypertrophy of visceral adipose tissue (VAT) contributes to muscle dysfunction, particularly through the dysregulated production of adipokines. We have investigated the cross talk between human adipocytes and skeletal muscle cells to identify mechanisms linking adiposity and muscular dysfunctions. First, we demonstrated that the secretome of obese adipocytes decreased the expression of contractile proteins in myotubes, consequently inducing atrophy. Using a three-dimensional coculture of human myotubes and VAT adipocytes, we showed the decreased expression of genes corresponding to skeletal muscle contractility complex and myogenesis. We demonstrated an increased secretion by cocultured cells of cytokines and chemokines with interleukin (IL)-6 and IL-1β as key contributors. Moreover, we gathered evidence showing that obese subcutaneous adipocytes were less potent than VAT adipocytes in inducing these myotube dysfunctions. Interestingly, the atrophy induced by visceral adipocytes was corrected by IGF-II/insulin growth factor binding protein-5. Finally, we observed that the skeletal muscle of obese mice displayed decreased expression of muscular markers in correlation with VAT hypertrophy and abnormal distribution of the muscle fiber size. In summary, we show the negative impact of obese adipocytes on muscle phenotype, which could contribute to muscle wasting associated with metabolic disorders.
Collapse
Affiliation(s)
- Vanessa Pellegrinelli
- INSERM, U1166 Nutriomique, Paris, France Sorbonne Universités, University Pierre et Marie Curie-Paris 6, UMR S 1166, Paris, France
| | - Christine Rouault
- INSERM, U1166 Nutriomique, Paris, France Sorbonne Universités, University Pierre et Marie Curie-Paris 6, UMR S 1166, Paris, France Institut Cardiométabolisme et Nutrition, Pitié-Salpétrière Hospital, Paris, France
| | - Sergio Rodriguez-Cuenca
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, U.K
| | - Victorine Albert
- INSERM, U1166 Nutriomique, Paris, France Sorbonne Universités, University Pierre et Marie Curie-Paris 6, UMR S 1166, Paris, France Institut Cardiométabolisme et Nutrition, Pitié-Salpétrière Hospital, Paris, France
| | - Frédérique Edom-Vovard
- Sorbonne Universités, University Pierre et Marie Curie-Paris 6, Centre de Recherche en Myologie, UMR 974, Paris, France INSERM, U974, Paris, France CNRS FRE 3617, Paris, France Institut de Myologie, Paris, France
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, U.K
| | - Karine Clément
- INSERM, U1166 Nutriomique, Paris, France Sorbonne Universités, University Pierre et Marie Curie-Paris 6, UMR S 1166, Paris, France Institut Cardiométabolisme et Nutrition, Pitié-Salpétrière Hospital, Paris, France
| | - Gillian S Butler-Browne
- Sorbonne Universités, University Pierre et Marie Curie-Paris 6, Centre de Recherche en Myologie, UMR 974, Paris, France INSERM, U974, Paris, France CNRS FRE 3617, Paris, France Institut de Myologie, Paris, France
| | - Danièle Lacasa
- INSERM, U1166 Nutriomique, Paris, France Sorbonne Universités, University Pierre et Marie Curie-Paris 6, UMR S 1166, Paris, France Institut Cardiométabolisme et Nutrition, Pitié-Salpétrière Hospital, Paris, France
| |
Collapse
|
7
|
Metabolomic profiling in liver of adiponectin-knockout mice uncovers lysophospholipid metabolism as an important target of adiponectin action. Biochem J 2015; 469:71-82. [PMID: 25915851 DOI: 10.1042/bj20141455] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/27/2015] [Indexed: 12/21/2022]
Abstract
Adiponectin mediates anti-diabetic effects via increasing hepatic insulin sensitivity and direct metabolic effects. In the present study, we conducted a comprehensive and unbiased metabolomic profiling of liver tissue from AdKO (adiponectin-knockout) mice, with and without adiponectin supplementation, fed on an HFD (high-fat diet) to derive insight into the mechanisms and consequences of insulin resistance. Hepatic lipid accumulation and insulin resistance induced by the HFD were reduced by adiponectin. The HFD significantly altered levels of 147 metabolites, and bioinformatic analysis indicated that one of the most striking changes was the profile of increased lysophospholipids. These changes were largely corrected by adiponectin, at least in part via direct regulation of PLA2 (phospholipase A2) as palmitate-induced PLA2 activation was attenuated by adiponectin in primary hepatocytes. Notable decreases in several glycerolipids after the HFD were reversed by adiponectin, which also corrected elevations in several diacyglycerol and ceramide species. Our data also indicate that stimulation of ω-oxidation of fatty acids by the HFD is enhanced by adiponectin. In conclusion, this metabolomic profiling approach in AdKO mice identified important targets of adiponectin action, including PLA2, to regulate lysophospholipid metabolism and ω-oxidation of fatty acids.
Collapse
|
8
|
Abstract
The increased prevalence of obesity has mandated extensive research focused on mechanisms responsible for associated clinical complications. Emerging from the focus on adipose tissue biology as a vitally important adipokine is adiponectin which is now believed to mediate anti-diabetic, anti-atherosclerotic, anti-inflammatory, cardioprotective and cancer modifying actions. Adiponectin mediates these primarily beneficial effects via direct signaling effects and via enhancing insulin sensitivity via crosstalk with insulin signaling pathways. Reduced adiponectin action is detrimental and occurs in obesity via decreased circulating levels of adiponectin action or development of adiponectin resistance. This review will focus on cellular mechanisms of adiponectin action, their crosstalk with insulin signaling and the resultant role of adiponectin in cardiovascular disease, diabetes and cancer and reviews data from in vitro cell based studies through animal models to clinical observations.
Collapse
Affiliation(s)
- Michael P Scheid
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | | |
Collapse
|
9
|
Abstract
The beneficial metabolic effects of adiponectin which confer insulin-sensitizing and anti-diabetic effects are well established. Skeletal muscle is an important target tissue for adiponectin where it regulates glucose and fatty acid metabolism directly and via insulin sensitizing effects. Cell surface receptors and the intracellular signaling events via which adiponectin orchestrates metabolism are now becoming well characterized. The initially accepted dogma of adiponectin action was that the physiological effects were mediated via endocrine effects of adipose-derived adiponectin. However, in recent years it has been established that skeletal muscle can also produce and secrete adiponectin that can elicit important functional effects. There is evidence that skeletal muscle adiponectin resistance may develop in obesity and play a role in the pathogenesis of diabetes. In summary, adiponectin acting in an autocrine and endocrine manner has important metabolic and insulin sensitizing effects on skeletal muscle which contribute to the overall anti-diabetic outcome of adiponectin action.
Collapse
Affiliation(s)
- Ying Liu
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
10
|
Lam YY, Janovská A, McAinch AJ, Belobrajdic DP, Hatzinikolas G, Game P, Wittert GA. The use of adipose tissue-conditioned media to demonstrate the differential effects of fat depots on insulin-stimulated glucose uptake in a skeletal muscle cell line. Obes Res Clin Pract 2013; 5:e1-e78. [PMID: 24331010 DOI: 10.1016/j.orcp.2010.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/05/2010] [Accepted: 12/15/2010] [Indexed: 01/04/2023]
Abstract
SUMMARY We aimed to study the depot-specific effect of adipose tissue on insulin sensitivity of skeletal muscle in vitro. Adipose tissue-conditioned medium (CM) was generated from visceral and subcutaneous fat from obese subjects. CM from visceral as compared to subcutaneous fat had higher concentrations of interleukin (IL)-6 (15-fold; P < 0.05) and IL-8 (8-fold; P < 0.05). CM from visceral fat (1:128 dilution) reduced insulin-stimulated glucose uptake in L6 myotubes by 19% (P < 0.05), an effect mediated by a nuclear factor kappa B (NFκB)/mammalian target of rapamycin complex 1 (mTORC1)-dependent pathway and partially reversed by neutralizing IL-6. IL-6 at a concentration comparable to that in CM from visceral fat reduced insulin-stimulated glucose uptake by 53% (P < 0.05), an effect abolished by inhibiting NFκB or mTORC1. We demonstrated the utility of the CM-myotube system and identified IL-6 as a major cytokine mediating visceral fat-induced muscle insulin resistance.:
Collapse
Affiliation(s)
- Yan Y Lam
- Discipline of Medicine, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Alena Janovská
- Discipline of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew J McAinch
- School of Biomedical and Health Sciences, Victoria University, Melbourne, VIC 3000, Australia
| | | | - George Hatzinikolas
- Discipline of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Philip Game
- Discipline of Surgery, University of Adelaide, Adelaide, SA 5005, Australia
| | - Gary A Wittert
- Discipline of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
11
|
Vu V, Bui P, Eguchi M, Xu A, Sweeney G. Globular adiponectin induces LKB1/AMPK-dependent glucose uptake via actin cytoskeleton remodeling. J Mol Endocrinol 2013; 51:155-65. [PMID: 23709749 DOI: 10.1530/jme-13-0059] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Previous studies have shown that many metabolic actions of adiponectin are mediated via the activation of AMP kinase and that adiponectin stimulates GLUT4 translocation and glucose uptake in the muscle. In this study, we demonstrate that adiponectin stimulates actin cytoskeleton remodeling, with increased phosphorylation of cofilin, and that blocking of cytoskeletal remodeling with cytochalasin D prevents adiponectin-stimulated AMPK phosphorylation in L6 myoblasts. LKB1 is an upstream kinase of AMPK, and we observed the colocalization of LKB1 with filamentous actin in response to adiponectin. Adiponectin-stimulated translocation of LKB1 from a nuclear to a cytoplasmic location to activate AMPK was also dependent on actin cytoskeleton remodeling. Cytoskeletal remodeling visualized by rhodamine-phalloidin immunofluorescence indicated that adiponectin-stimulated reorganization resulted in the formation membrane ruffles, which were also clearly visible by scanning electron microscopy in L6-GLUT4(myc) myoblasts. The stimulation of glucose uptake, but not of GLUT4-myc translocation to the cell surface, by adiponectin was also dependent on actin cytoskeleton remodeling. These results suggest that actin remodeling induced by adiponectin is essential for mediating LKB1/AMPK signaling and glucose uptake in skeletal muscle cells.
Collapse
Affiliation(s)
- Vivian Vu
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | | | | | | | | |
Collapse
|
12
|
Lin YK, Chen YC, Chen JH, Chen SA, Chen YJ. Adipocytes modulate the electrophysiology of atrial myocytes: implications in obesity-induced atrial fibrillation. Basic Res Cardiol 2012; 107:293. [DOI: 10.1007/s00395-012-0293-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 07/17/2012] [Accepted: 07/31/2012] [Indexed: 01/19/2023]
|
13
|
Wang Y, Dong W, Ding X, Wang F, Wang Y, Chen X, Yu L, Li X, Zhang A, Peng Y. Protective effect of α-lipoic acid on islet cells co-cultured with 3T3L1 adipocytes. Exp Ther Med 2012. [PMID: 23181120 PMCID: PMC3503631 DOI: 10.3892/etm.2012.601] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Obesity and β-cell dysfunction due to oxidative stress impact the pathogenesis of type 2 diabetes mellitus. We co-cultured 3T3L1 adipocytes and islet cells in the presence or absence of the antioxidant α-lipoic acid (LA) and assayed the effects of the adipocytes and LA on the secretion of insulin by the islet cells and on the activities of factors involved in secretion and oxidative stress. At low glucose concentrations (2.8 mmol/l), the presence of adipocytes (co-culture) increased insulin secretion compared with islet cells cultured alone (control) and this increase was diminished by LA (co-culture plus LA). At high glucose concentrations (22 mmol/l), insulin secretion levels were similar for all islet groups, resulting in a restoration of the stimulation index in the presence of LA. The mRNA levels of the glucose-stimulated insulin secretion (GSIS) genes glucokinase, glucose transporter 2 and Kir6.2 were downregulated under co-culture and co-culture plus LA conditions. Protein and tyrosine phosphorylation levels of insulin receptor-β and insulin receptor substrate-1 were decreased under co-culture conditions and were restored by LA treatment. Cellular malondialdehyde levels increased in the co-cultured islets and this increase was blocked by LA. The mRNA levels of superoxide dismutase and catalase were reduced under co-culture conditions and these reductions were eliminated by the addition of LA. In conclusion, 3T3L1 adipocytes disturb insulin secretion and induce islet dysfunction. The effects may be mediated by multiple pathways, which include downregulation of GSIS gene expression, suppression of islet cell insulin signaling and the induction of oxidative stress. LA may protect islet cells via activation of islet cell insulin signaling and the mRNA expression of antioxidant enzymes.
Collapse
Affiliation(s)
- Yufan Wang
- Department of Endocrinology and Metabolism
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yu J, Shi L, Wang H, Bilan PJ, Yao Z, Samaan MC, He Q, Klip A, Niu W. Conditioned medium from hypoxia-treated adipocytes renders muscle cells insulin resistant. Eur J Cell Biol 2011; 90:1000-15. [PMID: 21962636 DOI: 10.1016/j.ejcb.2011.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 06/24/2011] [Accepted: 06/24/2011] [Indexed: 01/04/2023] Open
Abstract
Adipose tissue hypoxia is an early phenotype in obesity, associated with macrophage infiltration and local inflammation. Here we test the hypothesis that adipocytes in culture respond to a hypoxic environment with the release of pro-inflammatory factors that stimulate macrophage migration and cause muscle insulin resistance. 3T3-L1 adipocytes cultured in a 1% O2 atmosphere responded with a classic hypoxia response by elevating protein expression of HIF-1α. This was associated with elevated mRNA expression and peptide release of cytokines TNFα, IL-6 and the chemokine monocyte chemoattractant protein-1 (MCP-1). The mRNA and protein expression of the anti-inflammatory adipokine adiponectin was reduced. Conditioned medium from hypoxia-treated adipocytes (CM-H), inhibited insulin-stimulated and raised basal cell surface levels of GLUT4myc stably expressed in C2C12 myotubes. Insulin stimulation of Akt and AS160 phosphorylation, key regulators of GLUT4myc exocytosis, was markedly impaired. CM-H also caused activation of JNK and S6K, and elevated serine phosphorylation of IRS1 in the C2C12 myotubes. These effects were implicated in reducing propagation of insulin signaling to Akt and AS160. Heat inactivation of CM-H reversed its dual effects on GLUT4myc traffic in muscle cells. Interestingly, antibody-mediated neutralization of IL-6 in CM-H lowered its effect on both the basal and insulin-stimulated cell surface GLUT4myc compared to unmodified CM-H. IL-6 may have regulated GLUT4myc traffic through its action on AMPK. Additionally, antibody-mediated neutralization of MCP-1 partly reversed the inhibition of insulin-stimulated GLUT4myc exocytosis caused by unmodified CM-H. In Transwell co-culture, hypoxia-challenged adipocytes attracted RAW 264.7 macrophages, consistent with elevated release of MCP-1 from adipocytes during hypoxia. Neutralization of MCP-1 in adipocyte CM-H prevented macrophage migration towards it and partly reversed the effect of CM-H on insulin response in muscle cells. We conclude that adipose tissue hypoxia may be an important trigger of its inflammatory response observed in obesity, and the elevated chemokine MCP-1 may contribute to increased macrophage migration towards adipose tissue and subsequent decreased insulin responsiveness of glucose uptake in muscle.
Collapse
Affiliation(s)
- Junna Yu
- Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ma Y, Liu Y, Liu S, Qu Y, Wang R, Xia C, Pei H, Lian K, Yin T, Lu X, Sun L, Yang L, Cao Y, Lau WB, Gao E, Wang H, Tao L. Dynamic alteration of adiponectin/adiponectin receptor expression and its impact on myocardial ischemia/reperfusion in type 1 diabetic mice. Am J Physiol Endocrinol Metab 2011; 301:E447-55. [PMID: 21586697 DOI: 10.1152/ajpendo.00687.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study determined the dynamic change of adiponectin (APN, a cardioprotective adipokine), its receptor expression, and their impact upon myocardial ischemia/reperfusion (MI/R) injury during type 1 diabetes mellitus (T1DM) progression, and involved underlying mechanisms. Diabetic state was induced in mice via multiple intraperitoneal injections of low-dose streptozotocin. The dynamic change of plasma APN concentration and cardiac APN receptor-1 and -2 (AdipoR1/2) expression were assessed immediately after diabetes onset (0 wk) and 1, 3, 5, and 7 wk thereafter. Indicators of MI/R injury (infarct size, apoptosis, and LDH release) were determined at 0, 1, and 7 wk of DM duration. The effect of APN on MI/R injury was determined in mice subjected to different diabetic durations. Plasma APN levels (total and HMW form) increased, whereas cardiac AdipoR1 expression decreased early after T1DM onset. With T1DM progression, APN levels were reduced and cardiac AdipoR1 expression increased. MI/R injury was exacerbated with T1DM progression in a time-dependent manner. Administration of globular APN (gAD) failed to attenuate MI/R injury in 1-wk T1DM mice, while an AMP-activated protein kinase (AMPK) activator (AICAR) reduced MI/R injury. However, administration of gAD (and AICAR) reduced infarct size and cardiomyocyte apoptosis in 7-wk T1DM mice. In conclusion, our results demonstrate a dynamic dysfunction of APN/AdipoR1 during T1DM progression. Reduced cardiac AdipoR1 expression and APN concentration may be responsible for increased I/R injury susceptibility at early and late T1DM stages, respectively. Interventions bolstering AdipoR1 expression during early T1DM stages and APN supplementation during advanced T1DM stages may potentially reduce the myocardial ischemic injury in diabetic patients.
Collapse
Affiliation(s)
- Yanzhuo Ma
- Dept. of Cardiology, Xijing Hospital, The Fourth military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Temporal analysis of mechanisms leading to stimulation of glucose uptake in skeletal muscle cells by an adipokine mixture derived from primary rat adipocytes. Int J Obes (Lond) 2010; 35:355-63. [PMID: 20697414 DOI: 10.1038/ijo.2010.160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The direct effects of adipokines on skeletal muscle metabolism have been well established. As the combinatorial effects of adipokine mixtures are likely to be of more physiological relevance, we used a coculture system of primary rat adipocytes and L6 skeletal muscle cells to examine the effects of adiponectin derived from primary rat adipocytes on rat skeletal muscle cells. RESULTS We showed that coculture with adipocytes stimulated glucose uptake in L6 cells within 30 min and this correlated with an increase of glucose transporter isoform 4 (GLUT4) localization to the plasma membrane. These effects were dependent on the reorganization of the actin cytoskeleton, demonstrated by rhodamine-labeled phalloidin immunofluorescence, as cytochalasin D attenuated the glucose uptake induced by adipocyte-conditioned media. Temporal analysis revealed that enhanced glucose uptake was maintained after 24 h of coculture, and this was attributed to an increase in both GLUT1 expression and the cell surface content of GLUT4. We established a role for adiponectin in mediating these effects as antibody-mediated neutralization attenuated the metabolic effects of adipocyte-conditioned media. Furthermore, compound C blocked these effects, suggesting an important role for AMPK. Importantly, when we compared the effects of full-length recombinant adiponectin with adipocyte-conditioned media, we confirmed that recombinant adiponectin was unable to stimulate glucose uptake in L6 cells despite having an important role in adipocyte-conditioned media. CONCLUSIONS Our results demonstrate the importance of examining the effects of adipokines in the context of physiologically relevant mixtures to accurately determine their metabolic effects on skeletal muscle.
Collapse
|
17
|
Armani A, Mammi C, Marzolla V, Calanchini M, Antelmi A, Rosano GM, Fabbri A, Caprio M. Cellular models for understanding adipogenesis, adipose dysfunction, and obesity. J Cell Biochem 2010; 110:564-72. [DOI: 10.1002/jcb.22598] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Buday B, Kulcsár E, Literáti Nagy B, Horváth T, Vitai M, Vecsei I, Bezzegh K, Kiss J, Péterfai É, Koltay L, Korányi L. The role of osteocalcin in the connection of bone and glucose metabolism in humans. Orv Hetil 2008; 149:2453-61. [DOI: 10.1556/oh.2008.28518] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Egerekben az osteocalcin hiányakor csökken a pancreas β-sejtjeinek proliferációja, és bennük az
inzulin
, a zsírsejtekben pedig az
adiponektin
génexpressziója.
Módszer:
Az inzulinérzékenység, a csontállapot, illetve az osteocalcin kapcsolatát 45 egészséges (nő: 20, férfi: 25) és 92 glükózintoleráns (nő: 51, férfi: 41) egyén esetében vizsgálták. Nemenként elkülönítve mérték a testösszetételt, a csontok denzitását, a csontbontás és a csontépítés markereit és hyperinsulinaemiás-normoglykaemiás teszttel az inzulinérzékenységet tükröző cukorfelhasználást.
Eredmények:
Az osteocalcinszintek a két nemben hasonlóak voltak, de a glükózintoleráns férfi betegek osteocalcinszintje alacsonyabb volt, mint az egészségeseké (24,5±11 vs. 18,1±9 ng/ml,
p
< 0,05). Az egészséges csoportban, mindkét nemben pozitív volt a korreláció az osteocalcin és az izomszövet cukorfelhasználása között (M-érték: nők:
r
= +0,319,
p
< 0,05, férfiak:
r
= 0,481,
p
< 0,01), de a glükózintoleráns csoportokban ez a kapcsolat eltűnt. Az osteocalcin egyik nemben sem mutatott korrelációt az adiponektinszinttel. Többváltozós lineáris regresszió alapján az osteocalcin szignifikáns független prediktora
az összes nő
esetében az éhomi vércukor, a teljes test és az izomtömeg cukorfelhasználása, a cukorfelhasználás sebessége, az ösztradiol és az LDL-koleszterin-vérszint (92%-os determináció), míg az
összes férfi
esetében a szérumkalcium, az OGTT során mért glükózszintek görbe alatti területe, a szabadzsírsav-szint, az inzulogenikus index, a HOMA-IR és a has/csípő körfogat (95%-os determináció) volt. A csontbontást-csontépítést jellemző BMU-index csak nők esetében korrelált szignifikánsan az M-értékekkel.
Következtetés:
Vizsgálatunk egészségesek esetében megerősítette az inzulinérzékenység–osteocalcin kapcsolatot emberi vonatkozásban is, de a csontanyagcsere–energia-háztartás közötti kapcsolatban jelentős nemi különbséget talált, amely nem az osteocalcin szintjén alakult ki.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - László Koltay
- 3 Pannon Egyetem Matematikai és Számítástechnikai Tanszék Veszprém
| | | |
Collapse
|
19
|
Teoh H, Quan A, Bang KWA, Wang G, Lovren F, Vu V, Haitsma JJ, Szmitko PE, Al-Omran M, Wang CH, Gupta M, Peterson MD, Zhang H, Chan L, Freedman J, Sweeney G, Verma S. Adiponectin deficiency promotes endothelial activation and profoundly exacerbates sepsis-related mortality. Am J Physiol Endocrinol Metab 2008; 295:E658-64. [PMID: 18628355 PMCID: PMC2536730 DOI: 10.1152/ajpendo.90384.2008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 07/09/2008] [Indexed: 02/06/2023]
Abstract
Sepsis is a multifactorial, and often fatal, disorder typically characterized by widespread inflammation and immune activation with resultant endothelial activation. In the present study, we postulated that the adipokine adiponectin serves as a critical modulator of survival and endothelial activation in sepsis. To this aim, we evaluated both loss-of-function (adiponectin gene-deficient mice) and subsequent gain-of-function (recombinant adiponectin reconstitution) strategies in two well-established inflammatory models, cecal ligation perforation (CLP) and thioglyocollate-induced peritonitis. Adipoq(-/-) mice, subjected to CLP, exhibited a profound ( approximately 8-fold) reduction in survival compared with their wild-type Adipoq(+/+) littermates after 48 h. Furthermore, compared with wild-type controls, thioglycollate challenge resulted in a markedly greater influx of peritoneal neutrophils in Adipoq(-/-) mice accompanied by an excess production of key chemoattractant cytokines (IL-12p70, TNFalpha, MCP-1, and IL-6) and upregulation of aortic endothelial adhesion molecule VCAM-1 and ICAM-1 expressions. Importantly, all of these effects were blunted by recombinant total adiponectin administration given 3 days prior to thioglycollate challenge. The protective effects of adiponectin were ascribed largely to higher-order adiponectin oligomers, since administration of recombinant C39A trimeric adiponectin did not attenuate endothelial adhesion molecule expression in thioglycollate-challenged Adipoq(-/-) mice. These data suggest a critical role of adiponectin as a modulator of survival and endothelial inflammation in experimental sepsis and a potential mechanistic link between adiposity and increased sepsis.
Collapse
Affiliation(s)
- Hwee Teoh
- Div. of Cardiovascular and Thoracic Surgery, St. Michael's Hospital, Toronto, ON, Canada M5B 1W8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|