1
|
Yart L, Frieden M, Konig S, Cohen M, Martinez de Tejada B. Dual effect of nifedipine on pregnant human myometrium contractility: Implication of TRPC1. J Cell Physiol 2022; 237:1980-1991. [PMID: 34988986 PMCID: PMC9306527 DOI: 10.1002/jcp.30666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/19/2021] [Accepted: 12/15/2021] [Indexed: 11/19/2022]
Abstract
Nifedipine, an L‐type voltage‐gated Ca2+ channel (L‐VGCC) blocker, is one of the most used tocolytics to treat preterm labor. In clinical practice, nifedipine efficiently decreases uterine contractions, but its efficacy is limited over time, and repeated or maintained nifedipine‐based tocolysis appears to be ineffective in preventing preterm birth. We aimed to understand why nifedipine has short‐lasting efficiency for the inhibition of uterine contractions. We used ex vivo term pregnant human myometrial strips treated with cumulative doses of nifedipine. We observed that nifedipine inhibited spontaneous myometrial contractions in tissues with high and regular spontaneous contractions. By contrast, nifedipine appeared to increase contractions in tissues with low and/or irregular spontaneous contractions. To investigate the molecular mechanisms activated by nifedipine in myometrial cells, we used the pregnant human myometrial cell line PHM1‐41 that does not express L‐VGCC. The in vitro measurement of intracellular Ca2+ showed that high doses of nifedipine induced an important intracellular Ca2+ entry in myometrial cells. The inhibition or downregulation of the genes encoding for store‐operated Ca2+ entry channels from the Orai and transient receptor potential‐canonical (TRPC) families in PHM1‐41 cells highlighted the implication of TRPC1 in nifedipine‐induced Ca2+ entry. In addition, the use of 2‐APB in combination with nifedipine on human myometrial strips tends to confirm that the pro‐contractile effect induced by nifedipine on myometrial tissues may involve the activation of TRPC channels.
Collapse
Affiliation(s)
- Lucile Yart
- Department of Pediatrics, Gynecology, and Obstetrics, Geneva University Hospitals and University of Geneva Faculty of Medicine, Geneva, Switzerland.,Translational Research Center in Oncohaematology, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Maud Frieden
- Department of Cell Physiology and Metabolism, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Stéphane Konig
- Department of Cell Physiology and Metabolism, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Marie Cohen
- Department of Pediatrics, Gynecology, and Obstetrics, Geneva University Hospitals and University of Geneva Faculty of Medicine, Geneva, Switzerland.,Translational Research Center in Oncohaematology, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Begoña Martinez de Tejada
- Department of Pediatrics, Gynecology, and Obstetrics, Geneva University Hospitals and University of Geneva Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
2
|
de Sousa ÍA, de Meneses GMS, Cardoso JVM, Lopes PQ, de Sousa JA, Cavalcanti SMPG, da Silva Cavalcanti PM, Filho FC. Inhibitory effect of Pyr6 (an Orai channel blocker) on agonist-induced contractions in rat uterus. J Obstet Gynaecol Res 2021; 47:4306-4318. [PMID: 34571573 DOI: 10.1111/jog.15034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/09/2021] [Accepted: 09/12/2021] [Indexed: 11/30/2022]
Abstract
AIM Both human and rat myometrium express stromal interaction molecule (STIM) and Orai/ transient receptor potential canonical (TRPC) proteins, which are components of plasma membrane Ca2+ store-operated channels. There are reports that these proteins mediate agonist-induced Ca2+ influx in cultured myometrial cells. In this study, we aimed to determine the effects of Pyr6, an Orai channel blocker, on different agonist-induced contractions in isolated segments of rat uterus. MAIN FINDINGS In Ca2+ -free Tyrode's solution, Pyr6 (3 μM) promoted a reduction in both the magnitude and frequency of Ca2+ (1 mM)-induced uterine contractions after the addition of carbachol (CCh, 100 μM), but not after the addition of oxytocin (OT, 150 nM). In Ca2+ (0.18 mM)-Tyrode's solution, Pyr6 completely relaxed uterine contractions induced by both CCh and cloprostenol (300 nM), but not those induced by either KCI (40-80 mM) or OT. The addition of Pyr6 abolished the oscillatory uterine contractions induced by Ca2+ after the addition of cyclopiazonic acid (CPA, 10 μM). When pre-incubated (5 min), Pyr6 reduced the magnitude of both CCh-induced phasic and tonic contractions. The addition of Pyr2 (3 μM), an Orai and TRPC channel blocker, abolished uterine contractions induced by CCh or OT. CONCLUSION Considering Pyr6 as an Orai channel blocker and its inhibitory effect on uterine contractions induced by CCh, CPA, and cloprostenol, we suggest that Orai channels are required for the maintenance of contractions induced by these agonists in rat uterus.
Collapse
Affiliation(s)
- Ícaro Araújo de Sousa
- Biophysics and Physiology Department, Health Sciences Center, Federal University of Piauí, Ininga, Teresina, Brazil
| | | | - José Victor Miranda Cardoso
- Biophysics and Physiology Department, Health Sciences Center, Federal University of Piauí, Ininga, Teresina, Brazil
| | - Pablo Queiroz Lopes
- Pharmacological Sciences Department, Health Sciences Center, Federal University of Paraíba, Cidade Universitária - Campus I. Castelo Branco, João Pessoa, Brazil
| | - Joubert Aires de Sousa
- Physiotherapy Department, Health Sciences Center, University of the State of Piauí, Teresina, Brazil
| | | | - Paulo Marques da Silva Cavalcanti
- Pharmacological Sciences Department, Health Sciences Center, Federal University of Paraíba, Cidade Universitária - Campus I. Castelo Branco, João Pessoa, Brazil
| | - Francisco Chagas Filho
- Biophysics and Physiology Department, Health Sciences Center, Federal University of Piauí, Ininga, Teresina, Brazil
| |
Collapse
|
3
|
Pharmacological and genetic inhibition of TRPC6-induced gene transcription. Eur J Pharmacol 2020; 886:173357. [PMID: 32758574 DOI: 10.1016/j.ejphar.2020.173357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 11/20/2022]
Abstract
Transient receptor potential canonical-6 (TRPC6) channels are non-selective cation channels that can be activated by hyperforin, a constituent of Hypericum perforatum. TRPC6 activation has been linked to a variety of biological functions and pathologies, including focal segmental glomerulosclerosis and the development of various tumor entities. Thus, TRPC6 is an interesting drug target, and a specific pharmacological inhibitor would be very valuable for both basic research and therapy of TRPC6-mediated human pathologies. Here, we assessed the biological activity of various TRP channel inhibitors on hyperforin-stimulated TRPC6 channel signaling. Hyperforin stimulates the activity of the transcription factor AP-1 via TRPC6. Expression experiments involving a TRPC6-specific small hairpin RNA confirmed that hyperforin-induced gene transcription requires TRPC6. Cellular AP-1 activity was measured to assess which compound interrupted the TRPC6-induced intracellular signaling cascade. The results show that the compounds 2-APB, clotrimazole, BCTC, TC-I 2014, SAR 7334, and larixyl acetate blocked TRPC6-mediated activation of AP-1. In contrast, the TRPM8-specific inhibitor RQ-00203078 did not inhibit TRPC6-mediated signaling. 2-APB, clotrimazole, BCTC, and TC-I 2014 are broad-spectrum Ca2+ channel inhibitors, while SAR 7334 and larixyl acetate have been proposed to function as rather TRPC6-specific inhibitors. In this study it is shown that both compounds, in addition to inhibiting TRPC6-induced signaling, completely abolished pregnenolone sulfate-mediated signaling via TRPM3 channels. Thus, SAR 7334 and larixyl acetate are not TRPC6-specific inhibitors.
Collapse
|
4
|
Amazu C, Ferreira JJ, Santi CM, England SK. Sodium channels and transporters in the myometrium. CURRENT OPINION IN PHYSIOLOGY 2020; 13:141-144. [PMID: 39036486 PMCID: PMC11259238 DOI: 10.1016/j.cophys.2019.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In excitable cells such as neurons and cardiomyocytes, sodium influx across the plasma membrane contributes to the resting membrane potential, and sodium is the key ion for generating action potentials. In myometrial smooth muscle cells, however, the functions of sodium influx have not been fully elucidated. This review briefly discusses the contribution of Na+ pumps to myometrial excitability but given the brevity of this article, we focus on the evidence that sodium influx through various types of channels may play numerous roles in controlling myometrial excitability.
Collapse
Affiliation(s)
- Chinwendu Amazu
- Department of Obstetrics and Gynecology, Washington University School of Medicine. St Louis. MO
| | - Juan J Ferreira
- Department of Obstetrics and Gynecology, Washington University School of Medicine. St Louis. MO
| | - Celia M Santi
- Department of Obstetrics and Gynecology, Washington University School of Medicine. St Louis. MO
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine. St Louis. MO
| |
Collapse
|
5
|
Jurek B, Neumann ID. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol Rev 2018; 98:1805-1908. [DOI: 10.1152/physrev.00031.2017] [Citation(s) in RCA: 601] [Impact Index Per Article: 85.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The many facets of the oxytocin (OXT) system of the brain and periphery elicited nearly 25,000 publications since 1930 (see FIGURE 1 , as listed in PubMed), which revealed central roles for OXT and its receptor (OXTR) in reproduction, and social and emotional behaviors in animal and human studies focusing on mental and physical health and disease. In this review, we discuss the mechanisms of OXT expression and release, expression and binding of the OXTR in brain and periphery, OXTR-coupled signaling cascades, and their involvement in behavioral outcomes to assemble a comprehensive picture of the central and peripheral OXT system. Traditionally known for its role in milk let-down and uterine contraction during labor, OXT also has implications in physiological, and also behavioral, aspects of reproduction, such as sexual and maternal behaviors and pair bonding, but also anxiety, trust, sociability, food intake, or even drug abuse. The many facets of OXT are, on a molecular basis, brought about by a single receptor. The OXTR, a 7-transmembrane G protein-coupled receptor capable of binding to either Gαior Gαqproteins, activates a set of signaling cascades, such as the MAPK, PKC, PLC, or CaMK pathways, which converge on transcription factors like CREB or MEF-2. The cellular response to OXT includes regulation of neurite outgrowth, cellular viability, and increased survival. OXTergic projections in the brain represent anxiety and stress-regulating circuits connecting the paraventricular nucleus of the hypothalamus, amygdala, bed nucleus of the stria terminalis, or the medial prefrontal cortex. Which OXT-induced patterns finally alter the behavior of an animal or a human being is still poorly understood, and studying those OXTR-coupled signaling cascades is one initial step toward a better understanding of the molecular background of those behavioral effects.
Collapse
Affiliation(s)
- Benjamin Jurek
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
6
|
Weber EW, Han F, Tauseef M, Birnbaumer L, Mehta D, Muller WA. TRPC6 is the endothelial calcium channel that regulates leukocyte transendothelial migration during the inflammatory response. ACTA ACUST UNITED AC 2015; 212:1883-99. [PMID: 26392222 PMCID: PMC4612081 DOI: 10.1084/jem.20150353] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/25/2015] [Indexed: 12/14/2022]
Abstract
Weber et al. identify TRPC6 as the calcium channel mediating the transient increase in endothelial cytosolic free calcium concentration required for transendothelial migration of leukocytes during the inflammatory response. Leukocyte transendothelial migration (TEM) is a tightly regulated, multistep process that is critical to the inflammatory response. A transient increase in endothelial cytosolic free calcium ion concentration (↑[Ca2+]i) is required for TEM. However, the mechanism by which endothelial ↑[Ca2+]i regulates TEM and the channels mediating this ↑[Ca2+]i are unknown. Buffering ↑[Ca2+]i in endothelial cells does not affect leukocyte adhesion or locomotion but selectively blocks TEM, suggesting a role for ↑[Ca2+]i specifically for this step. Transient receptor potential canonical 6 (TRPC6), a Ca2+ channel expressed in endothelial cells, colocalizes with platelet/endothelial cell adhesion molecule-1 (PECAM) to surround leukocytes during TEM and clusters when endothelial PECAM is engaged. Expression of dominant-negative TRPC6 or shRNA knockdown in endothelial cells arrests neutrophils apically over the junction, similar to when PECAM is blocked. Selectively activating endothelial TRPC6 rescues TEM during an ongoing PECAM blockade, indicating that TRPC6 functions downstream of PECAM. Furthermore, endothelial TRPC6 is required for trafficking of lateral border recycling compartment membrane, which facilitates TEM. Finally, mice lacking TRPC6 in the nonmyeloid compartment (i.e., endothelium) exhibit a profound defect in neutrophil TEM with no effect on leukocyte trafficking. Our findings identify endothelial TRPC6 as the calcium channel mediating the ↑[Ca2+]i required for TEM at a step downstream of PECAM homophilic interactions.
Collapse
Affiliation(s)
- Evan W Weber
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Fei Han
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Mohammad Tauseef
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois in Chicago College of Medicine, Chicago, IL 60612
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Dolly Mehta
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois in Chicago College of Medicine, Chicago, IL 60612
| | - William A Muller
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
7
|
Salvianolic acid A attenuates TNF-α- and d-GalN-induced ER stress-mediated and mitochondrial-dependent apoptosis by modulating Bax/Bcl-2 ratio and calcium release in hepatocyte LO2 cells. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:817-30. [DOI: 10.1007/s00210-015-1116-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 03/13/2015] [Indexed: 02/07/2023]
|
8
|
Chaemsaithong P, Madan I, Romero R, Than NG, Tarca AL, Draghici S, Bhatti G, Yeo L, Mazor M, Kim CJ, Hassan SS, Chaiworapongsa T. Characterization of the myometrial transcriptome in women with an arrest of dilatation during labor. J Perinat Med 2013; 41:665-81. [PMID: 23893668 PMCID: PMC4183453 DOI: 10.1515/jpm-2013-0086] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/17/2013] [Indexed: 01/28/2023]
Abstract
OBJECTIVE The molecular basis of failure to progress in labor is poorly understood. This study was undertaken to characterize the myometrial transcriptome of patients with an arrest of dilatation (AODIL). STUDY DESIGN Human myometrium was prospectively collected from women in the following groups: (1) spontaneous term labor (TL; n=29) and (2) arrest of dilatation (AODIL; n=14). Gene expression was characterized using Illumina® HumanHT-12 microarrays. A moderated Student's t-test and false discovery rate adjustment were used for analysis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) of selected genes was performed in an independent sample set. Pathway analysis was performed on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database using Pathway Analysis with Down-weighting of Overlapping Genes (PADOG). The MetaCore knowledge base was also searched for pathway analysis. RESULTS (1) Forty-two differentially expressed genes were identified in women with an AODIL; (2) gene ontology analysis indicated enrichment of biological processes, which included regulation of angiogenesis, response to hypoxia, inflammatory response, and chemokine-mediated signaling pathway. Enriched molecular functions included transcription repressor activity, heat shock protein (Hsp) 90 binding, and nitric oxide synthase (NOS) activity; (3) MetaCore analysis identified immune response chemokine (C-C motif) ligand 2 (CCL2) signaling, muscle contraction regulation of endothelial nitric oxide synthase (eNOS) activity in endothelial cells, and triiodothyronine and thyroxine signaling as significantly overrepresented (false discovery rate <0.05); (4) qRT-PCR confirmed the overexpression of Nitric oxide synthase 3 (NOS3); hypoxic ischemic factor 1A (HIF1A); Chemokine (C-C motif) ligand 2 (CCL2); angiopoietin-like 4 (ANGPTL4); ADAM metallopeptidase with thrombospondin type 1, motif 9 (ADAMTS9); G protein-coupled receptor 4 (GPR4); metallothionein 1A (MT1A); MT2A; and selectin E (SELE) in an AODIL. CONCLUSION The myometrium of women with AODIL has a stereotypic transcriptome profile. This disorder has been associated with a pattern of gene expression involved in muscle contraction, an inflammatory response, and hypoxia. This is the first comprehensive and unbiased examination of the molecular basis of an AODIL.
Collapse
|
9
|
Zhang WS, Fei KL, Wu MT, Wu XH, Liang QH. Neuromedin B and its receptor influence the activity of myometrial primary cells in vitro through regulation of Il6 expression via the Rela/p65 pathway in mice. Biol Reprod 2012; 86:154, 1-7. [PMID: 22262690 DOI: 10.1095/biolreprod.111.095984] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The neuromedin B receptor (Nmbr) is an important physiological regulator of spontaneous activities and stress responses through different cascades as well as its autocrine and paracrine effects. Previous studies have revealed that neuromedin B (Nmb) and its receptor signal via the Rela (also known as p65)/Il6 pathway in a mouse model of pregnancy. This study investigated the mechanism of Nmbr signaling via the Rela/p65-Il6 pathway and regulation of the concentration of intracellular free calcium ([Ca(2+)](i)) during the onset of labor in primary mouse myometrial cell cultures isolated from mice in term labor. Data demonstrated Nmbr agonist-mediated upregulation of the DNA binding activity of Rela/p65, Il6 expression, and [Ca(2+)](i) in a concentration-dependent manner. Furthermore, a significant correlation was observed between DNA binding activity of Rela/p65 and Il6 expression. Moreover, this up-regulation was blocked by Nmbr and Rela/p65 knockdown, achieved by RNA interference (RNAi) technology. No significant differences were identified in the inhibition of Il6 expression as a result of Nmbr or Rela/p65 knockdown. However, significant differences were observed between the [Ca(2+)](i) in Rela/p65-specific group and that in the Nmbr-specific small interfering RNA (siRNA)-treated groups. These data demonstrated that the Nmb/Nmbr interaction in pregnant myometrial primary cells in vitro predominantly influenced uterine activity through regulation of Il6 expression via the Rela/p65 pathway, although the effects of Nmbr on [Ca(2+)](i) involved several pathways that remain to be elucidated.
Collapse
Affiliation(s)
- Wei-She Zhang
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Hunan, Changsha, China.
| | | | | | | | | |
Collapse
|
10
|
Murtazina DA, Chung D, Ulloa A, Bryan E, Galan HL, Sanborn BM. TRPC1, STIM1, and ORAI influence signal-regulated intracellular and endoplasmic reticulum calcium dynamics in human myometrial cells. Biol Reprod 2011; 85:315-26. [PMID: 21565997 DOI: 10.1095/biolreprod.111.091082] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
To explore the relationship between signal-stimulated increases in intracellular calcium ([Ca(2+)](i)) and depletion and refilling of the endoplasmic reticulum (ER) Ca(2+) stores ([Ca(2+)](L)) in human myometrial cells, we measured simultaneous changes in [Ca(2+)](i) and [Ca(2+)](L) using Fura-2 and Mag-fluo-4, respectively, in PHM1-41 immortalized and primary cells derived from pregnant myometrium and in primary cells derived from nonpregnant tissue. Signal- and extracellular Ca(2+)-dependent increases in [Ca(2+)](i) (SRCE) and ER refilling stimulated by oxytocin and cyclopiazonic acid were not inhibited by voltage-operated channel blocker nifedipine or mibefradil, inhibition of Na(+)/Ca(2+) exchange with KB-R7943, or zero extracellular Na(+) in PHM1-41 cells. Gadolinium-inhibited oxytocin- and cyclopiazonic acid-induced SRCE and slowed ER store refilling. TRPC1 mRNA knockdown specifically inhibited oxytocin-stimulated SRCE but had no statistically significant effect on ER store refilling and no effect on either parameter following cyclopiazonic acid treatment. Dominant negative STIMΔERM expression attenuated oxytocin- and thapsigargin-stimulated SRCE. Both STIM1 and ORAI1-ORAI3 mRNA knockdowns significantly attenuated oxytocin- and cyclopiazonic acid-stimulated SRCE. The data also suggest that reduction in STIM1 or ORAI1-ORAI3 mRNA can impede the rate of ER store refilling following removal of SERCA inhibition. These data provide evidence for both distinct and overlapping influences of TRPC1, STIM1, and ORAI1-ORAI3 on SRCE and ER store refilling in human myometrial cells that may contribute to the regulation of myometrial Ca(2+) dynamics. These findings have important implications for understanding the control of myometrial Ca(2+) dynamics in relation to myometrial contractile function.
Collapse
Affiliation(s)
- Dilyara A Murtazina
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | |
Collapse
|
11
|
Mittal P, Romero R, Tarca AL, Draghici S, Nhan-Chang CL, Chaiworapongsa T, Hotra J, Gomez R, Kusanovic JP, Lee DC, Kim CJ, Hassan SS. A molecular signature of an arrest of descent in human parturition. Am J Obstet Gynecol 2011; 204:177.e15-33. [PMID: 21284969 PMCID: PMC3053040 DOI: 10.1016/j.ajog.2010.09.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/18/2010] [Accepted: 09/27/2010] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This study was undertaken to identify the molecular basis of an arrest of descent. STUDY DESIGN Human myometrium was obtained from women in term labor (TL; n = 29) and arrest of descent (AODes; n = 21). Gene expression was characterized using Illumina HumanHT-12 microarrays. A moderated Student t test and false discovery rate adjustment were applied for analysis. Confirmatory quantitative reverse transcription-polymerase chain reaction and immunoblot were performed in an independent sample set. RESULTS Four hundred genes were differentially expressed between women with an AODes compared with those with TL. Gene Ontology analysis indicated enrichment of biological processes and molecular functions related to inflammation and muscle function. Impacted pathways included inflammation and the actin cytoskeleton. Overexpression of hypoxia inducible factor-1a, interleukin -6, and prostaglandin-endoperoxide synthase 2 in AODes was confirmed. CONCLUSION We have identified a stereotypic pattern of gene expression in the myometrium of women with an arrest of descent. This represents the first study examining the molecular basis of an arrest of descent using a genome-wide approach.
Collapse
Affiliation(s)
- Pooja Mittal
- Perinatology Research Branch, National Institute of Child Health and Human Development/National Institutes of Health/Department of Health and Human Services, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dörr J, Fecher-Trost C. TRP channels in female reproductive organs and placenta. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:909-28. [PMID: 21290333 DOI: 10.1007/978-94-007-0265-3_47] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
TRP channel proteins are widely expressed in female reproductive organs. Based on studies detecting TRP transcripts and proteins in different parts of the female reproductive organs and placenta they are supposed to be involved in the transport of the oocyte or the blastocyte through the oviduct, implantation of the blastocyte, development of the placenta and transport processes across the feto-maternal barrier. Furthermore uterus contractility and physiological processes during labour and in mammary glands seem to be dependant on TRP channel expression.
Collapse
Affiliation(s)
- Janka Dörr
- Proteinfunktion Proteomics, Fachbereich Biologie, TU Kaiserslautern, D-67663 Kaiserslautern, Germany.
| | | |
Collapse
|