2
|
Wu SP, Anderson ML, Wang T, Zhou L, Emery OM, Li X, DeMayo FJ. Dynamic transcriptome, accessible genome, and PGR cistrome profiles in the human myometrium. FASEB J 2019; 34:2252-2268. [PMID: 31908010 DOI: 10.1096/fj.201902654r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 02/04/2023]
Abstract
The myometrium undergoes structural and functional remodeling during pregnancy. We hypothesize that myometrial genomic elements alter correspondingly in preparation for parturition. Human myometrial tissues from nonpregnant (NP) and term pregnant (TP) human subjects were examined by RNAseq, ATACseq, and PGR ChIPseq assays to profile transcriptome, assessible genome, and PGR occupancy. NP and TP specimens exhibit 2890 differentially expressed genes, reflecting an increase of metabolic, inflammatory, and PDGF signaling, among others, in adaptation to pregnancy. At the epigenome level, patterns of accessible genome change between NP and TP myometrium, leading to the altered enrichment of binding motifs for hormone and muscle regulators such as the progesterone receptor (PGR), Krüppel-like factors, and MEF2A transcription factors. PGR genome occupancy exhibits a significant difference between the two stages of the myometrium, concomitant with distinct transcriptomic profiles including genes such as ENO1, LHDA, and PLCL1 in the glycolytic and calcium signaling pathways. Over-representation of SRF, MYOD, and STAT binding motifs in PGR occupying sites further suggests interactions between PGR and major muscle regulators for myometrial gene expression. In conclusion, changes in accessible genome and PGR occupancy are part of the myometrial remodeling process and may serve as mechanisms to formulate the state-specific transcriptome profiles.
Collapse
Affiliation(s)
- San-Pin Wu
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Matthew L Anderson
- Department of Obstetrics & Gynecology, University of South Florida Morsani College of Medicine and Moffitt Cancer Center, Tampa, FL
| | - Tianyuan Wang
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Lecong Zhou
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Olivia M Emery
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Xilong Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Francesco J DeMayo
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| |
Collapse
|
3
|
Placental cell death patterns exhibit differences throughout gestation in two strains of laboratory mice. Cell Tissue Res 2019; 378:341-358. [PMID: 31227907 DOI: 10.1007/s00441-019-03055-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
Abstract
Cell death is an essential physiological process required for the proper development and function of the human placenta. Although the mouse is a commonly used animal model for development studies, little is known about the extent and distribution of cell death in the mouse placenta throughout development and its physiological relevance. In the present study, we report the results of a systematic and quantitative assessment of cell death patterns in the placentae of two strains of laboratory mice commonly used for developmental studies-ICR and C57Bl/6. TUNEL staining revealed that ICR and C57Bl/6 placentae exhibited similar cell death patterns to those reported in human placentae during pregnancy, with comparatively infrequent death observed during early gestation, which increased and became more organized towards term. Interestingly, when comparing strain differences, increased cell death was observed in almost all regions of the inbred C57Bl/6 placentae compared to the outbred ICR strain. Finally, since Bcl-2 ovarian killer (Bok) has been reported to be a key player in human placental cell death, we examined its expression in murine placentae throughout gestation. Bok protein expression was observed in all placental regions and increased towards term in both strains. The results of this study indicate that although strain-specific differences in placental cell death exist, the overall rates and patterns of cell death during murine placentation parallel those previously described in humans. Thus, the murine placenta is a useful model to investigate molecular pathways involved in cell death signaling during human placentation.
Collapse
|
4
|
Ingles J, Simpson A, Kyathanahalli C, Anamthathmakula P, Hassan S, Jeyasuria P, Condon JC. Preconditioning the uterine unfolded protein response maintains non-apoptotic Caspase 3-dependent quiescence during pregnancy. Cell Death Dis 2018; 9:933. [PMID: 30224704 PMCID: PMC6141493 DOI: 10.1038/s41419-018-1000-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023]
Abstract
The prevention of apoptotic caspase 3 activation through biological preconditioning, mediated through the modulation of the unfolded protein response has been demonstrated to ameliorate multiple pathophysiologies. The maintenance of non-apoptotic caspase 3 activity by the unfolded protein response within the pregnant uterus has previously been proven to be critical in inhibiting uterine myocyte contractility during pregnancy. Here we report that the pregnant uterus utilizes an unfolded protein response-preconditioning paradigm to conserve myometrial caspase 3 in a non-apoptotic state in order to effectively inhibit uterine contractility thereby preventing the onset of preterm labor. In the absence of appropriate endogenous preconditioning during pregnancy, uterine caspase 3 is transformed from a non-apoptotic to an apoptotic phenotype. Apoptotic caspase 3 activation results in the precocious triggering of local uterine inflammatory signaling and prostaglandin production, consequently resulting in an increased incidence of preterm birth. These findings represent a paradigm shift in our understanding of how preconditioning promotes the maintenance of uterine non-apoptotic caspase 3 action during pregnancy preventing the onset of premature uterine contraction and therefore defining the timing of the onset of labor.
Collapse
Affiliation(s)
- Judith Ingles
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Arren Simpson
- Department of Biology, University of Detroit Mercy, Detroit, MI, USA
| | | | | | - Sonia Hassan
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.,Perinatal Research Initiative in support of the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda and Detroit, MD and MI, USA
| | - Pancharatnam Jeyasuria
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.,Perinatal Research Initiative in support of the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda and Detroit, MD and MI, USA
| | - Jennifer C Condon
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA. .,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA. .,Perinatal Research Initiative in support of the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda and Detroit, MD and MI, USA.
| |
Collapse
|
5
|
Cao B, Camden AJ, Parnell LA, Mysorekar IU. Autophagy regulation of physiological and pathological processes in the female reproductive tract. Am J Reprod Immunol 2017; 77. [PMID: 28194822 DOI: 10.1111/aji.12650] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/17/2017] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a ubiquitous cell recycling pathway that delivers cytoplasmic constituents to the lysosome and is essential for normal cellular function. Autophagic activity is up-regulated under physiological conditions as well as stressful conditions such as nutrient deprivation, oxidative stress, hypoxia, inflammation, and infection. Thus, it is essential to regard the functional importance of the pathway and its components in a given tissue context. Here we review what is known about the involvement of autophagy process during physiological processes in the female reproductive tract and in pregnancy from preimplantation to oocyte function to placental development, parturition, and postpartum remodeling of the uterus; as well as in pathological and adverse events during these processes.
Collapse
Affiliation(s)
- Bin Cao
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alison J Camden
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsay A Parnell
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Indira U Mysorekar
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
6
|
Agrawal V, Jaiswal MK, Mallers T, Katara GK, Gilman-Sachs A, Beaman KD, Hirsch E. Altered autophagic flux enhances inflammatory responses during inflammation-induced preterm labor. Sci Rep 2015; 5:9410. [PMID: 25797357 PMCID: PMC4369745 DOI: 10.1038/srep09410] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 03/02/2015] [Indexed: 12/28/2022] Open
Abstract
Cellular organelles and proteins are degraded and recycled through autophagy, a process during which vesicles known as autophagosomes fuse with lysosomes. Altered autophagy occurs in various diseases, but its role in preterm labor (PTL) is unknown. We investigated the role of autophagic flux in two mouse models of PTL compared to controls: 1) inflammation-induced PTL (IPTL), induced by toll-like receptor agonists; and 2) non-inflammation (hormonally)-induced PTL (NIPTL). We demonstrate that the autophagy related genes Atg4c and Atg7 (involved in the lipidation of microtubule-associated protein 1 light chain 3 (LC3) B-I to the autophagosome-associated form, LC3B-II) decrease significantly in uterus and placenta during IPTL but not NIPTL. Autophagic flux is altered in IPTL, as shown by the accumulation of LC3B paralogues and diminishment of lysosome associated membrane protein (LAMP)-1, LAMP-2 and the a2 isoform of V-ATPase (a2V, an enzyme involved in lysosome acidification). These alterations in autophagy are associated with increased activation of NF-κB and proinflammatory cytokines/chemokines in both uterus and placenta. Similar changes are seen in macrophages exposed to TLR ligands and are enhanced with blockade of a2V. These novel findings represent the first evidence of an association between altered autophagic flux and hyper-inflammation and labor in IPTL.
Collapse
Affiliation(s)
- Varkha Agrawal
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL
| | - Mukesh K. Jaiswal
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Timothy Mallers
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Gajendra K. Katara
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Alice Gilman-Sachs
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kenneth D. Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Emmet Hirsch
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL
- Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, Chicago, IL
| |
Collapse
|