1
|
Gao H, Jin Z, Tang K, Ji Y, Suarez J, Suarez JA, Cunha e Rocha K, Zhang D, Dillmann WH, Mahata SK, Ying W. Microbial DNA Enrichment Promotes Adrenomedullary Inflammation, Catecholamine Secretion, and Hypertension in Obese Mice. J Am Heart Assoc 2022; 11:e024561. [PMID: 35112881 PMCID: PMC9245808 DOI: 10.1161/jaha.121.024561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Obesity is an established risk factor for hypertension. Although obesity‐induced gut barrier breach leads to the leakage of various microbiota‐derived products into host circulation and distal organs, the roles of microbiota in mediating the development of obesity‐associated adrenomedullary disorders and hypertension have not been elucidated. We seek to explore the impacts of microbial DNA enrichment on inducing obesity‐related adrenomedullary abnormalities and hypertension. Methods and Results Obesity was accompanied by remarkable bacterial DNA accumulation and elevated inflammation in the adrenal glands. Gut microbial DNA containing extracellular vesicles (mEVs) were readily leaked into the bloodstream and infiltrated into the adrenal glands in obese mice, causing microbial DNA enrichment. In lean wild‐type mice, adrenal macrophages expressed CRIg (complement receptor of the immunoglobulin superfamily) that efficiently blocks the infiltration of gut mEVs. In contrast, the adrenal CRIg+ cell population was greatly decreased in obese mice. In lean CRIg−/− or C3−/− (complement component 3) mice intravenously injected with gut mEVs, adrenal microbial DNA accumulation elevated adrenal inflammation and norepinephrine secretion, concomitant with hypertension. In addition, microbial DNA promoted inflammatory responses and norepinephrine production in rat pheochromocytoma PC12 cells treated with gut mEVs. Depletion of microbial DNA cargo markedly blunted the effects of gut mEVs. We also validated that activation of cGAS (cyclic GMP‐AMP synthase)/STING (cyclic GMP–AMP receptor stimulator of interferon genes) signaling is required for the ability of microbial DNA to trigger adrenomedullary dysfunctions in both in vivo and in vitro experiments. Restoring CRIg+ cells in obese mice decreased microbial DNA abundance, inflammation, and hypertension. Conclusions The leakage of gut mEVs leads to adrenal enrichment of microbial DNA that are pathogenic to induce obesity‐associated adrenomedullary abnormalities and hypertension. Recovering the CRIg+ macrophage population attenuates obesity‐induced adrenomedullary disorders.
Collapse
Affiliation(s)
- Hong Gao
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Zhongmou Jin
- Division of Biological SciencesUniversity of California, San DiegoLa JollaCA
| | | | - Yudong Ji
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
- Department of AnesthesiologyInstitute of Anesthesiology and Critical CareUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jorge Suarez
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Jorge A. Suarez
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Karina Cunha e Rocha
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Dinghong Zhang
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Wolfgang H. Dillmann
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| | - Sushil K. Mahata
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
- VA San Diego Healthcare SystemSan DiegoCA
| | - Wei Ying
- Division of Endocrinology & MetabolismDepartment of MedicineUniversity of California, San DiegoLa JollaCA
| |
Collapse
|
2
|
Protective role of cGMP in early sepsis. Eur J Pharmacol 2017; 807:174-181. [PMID: 28483456 DOI: 10.1016/j.ejphar.2017.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 01/09/2023]
Abstract
Septic shock, which is triggered by microbial products, is mainly characterised by inadequate tissue perfusion, which can lead to multiple organ dysfunction and death. An intense release of vasoconstrictors agents occurs in the early stages of shock, which can lead to ischemic injury. In this scenario, cGMP could play a key role in counterbalancing these agents and preventing tissue damage. Sildenafil, which is a phosphodiesterase-5 inhibitor, increases cGMP in smooth muscle cells and promotes vasodilation. Thus, the purpose of this study was to investigate the effect of treatment with sildenafil in the early stages of sepsis. Male rats were submitted to either cecal ligation and puncture (CLP) or a sham procedure. Eight h after the procedure, the CLP and sham groups were randomly assigned to receive sildenafil (10mg/kg, gavage) or vehicle, and twelve or twenty-four h later the inflammatory, biochemical and haemodynamic parameters were evaluated. Sepsis significantly increased levels of plasma nitrate/nitrite (NOx), aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea, creatinine, creatine kinase and lactate. Additionally, sepsis led to hypotension, hyporesponsiveness to vasoconstrictor, renal blood flow reduction and also increased lung and kidney myeloperoxidase. Sildenafil increased renal blood flow and reduced the plasma levels of creatinine, lactate and creatine kinase, as well as reducing lung myeloperoxidase. Thus, phosphodiesterase inhibition may be a useful therapeutic strategy if administered at the proper time.
Collapse
|
3
|
Liangpunsakul S, Agarwal R. Altered circadian hemodynamic and renal function in cirrhosis. Nephrol Dial Transplant 2017; 32:333-342. [PMID: 28186574 DOI: 10.1093/ndt/gfw014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/17/2016] [Indexed: 11/13/2022] Open
Abstract
Background Given that alterations in systemic hemodynamics have a profound influence on renal function in patients with cirrhosis, it is surprising that circadian variations in blood pressure (BP) and renal electrolyte excretion have scarcely been studied. Our aims were to define the relationship of 24-h ambulatory BP changes with renal tubular function and to determine the influence of endotoxemia on BP and urinary parameters. Methods Forty healthy controls served as a comparator to 20 cirrhotic patients. They underwent 24-h ambulatory BP monitoring and 24-h urine collection. Results Subjects with cirrhosis demonstrated significant diurnal variations in urinary excretion of sodium (57.7 µmol/min day versus 87 µmol/min night) and creatinine (826 µg/min day versus 1202 µg/min night). Increasing severity of cirrhosis was associated with a progressive reduction in ambulatory awake systolic (P-trend = 0.015), diastolic (P-trend < 0.001) and mean BP (P-trend < 0.001). In patients with cirrhosis, the magnitude of change in BP from awake to sleep state was blunted for systolic BP (5% reduction, P = 0.039) and pulse rate (2% reduction, P < 0.001). The amplitude of variation in pulse rate was blunted with increasing severity of cirrhosis (controls 6.5, Child-Pugh Class A 5.3, Child B 3.4, Child C 1.2, P = 0.03) and the acrophase was right-shifted with increasing severity of cirrhosis. Compared with sleep state, during the awake state, endotoxin was associated with less sodium excretion and a lower systolic BP. Compared with the awake state, endotoxin was associated with a higher sleeping pulse rate (P < 0.001). Conclusions Patients with cirrhosis have altered diurnal profiles in renal tubular function and blood pressure that appear to be related to endotoxemia. Determining whether endotoxemia is causally related to these perturbations will require interventional studies.
Collapse
Affiliation(s)
- Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,R.L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Rajiv Agarwal
- R.L. Roudebush VA Medical Center, Indianapolis, IN, USA.,Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
4
|
Kanczkowski W, Sue M, Bornstein SR. Adrenal Gland Microenvironment and Its Involvement in the Regulation of Stress-Induced Hormone Secretion during Sepsis. Front Endocrinol (Lausanne) 2016; 7:156. [PMID: 28018291 PMCID: PMC5155014 DOI: 10.3389/fendo.2016.00156] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/29/2016] [Indexed: 01/11/2023] Open
Abstract
Survival of all living organisms depends on maintenance of a steady state of homeostasis, which process relies on its ability to react and adapt to various physical and emotional threats. The defense against stress is executed by the hypothalamic-pituitary-adrenal axis and the sympathetic-adrenal medullary system. Adrenal gland is a major effector organ of stress system. During stress, adrenal gland rapidly responds with increased secretion of glucocorticoids (GCs) and catecholamines into circulation, which hormones, in turn, affect metabolism, to provide acutely energy, vasculature to increase blood pressure, and the immune system to prevent it from extensive activation. Sepsis resulting from microbial infections is a sustained and extreme example of stress situation. In many critical ill patients, levels of both corticotropin-releasing hormone and adrenocorticotropin, the two major regulators of adrenal hormone production, are suppressed. Levels of GCs, however, remain normal or are elevated in these patients, suggesting a shift from central to local intra-adrenal regulation of adrenal stress response. Among many mechanisms potentially involved in this process, reduced GC metabolism and activation of intra-adrenal cellular systems composed of adrenocortical and adrenomedullary cells, endothelial cells, and resident and recruited immune cells play a key role. Hence, dysregulated function of any of these cells and cellular compartments can ultimately affect adrenal stress response. The purpose of this mini review is to highlight recent insights into our understanding of the adrenal gland microenvironment and its role in coordination of stress-induced hormone secretion.
Collapse
Affiliation(s)
- Waldemar Kanczkowski
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Waldemar Kanczkowski,
| | - Mariko Sue
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Stefan R. Bornstein
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
- Department of Endocrinology and Diabetes, King’s College London, London, UK
| |
Collapse
|
5
|
Enhanced Ca2+-induced Ca2+ release from intracellular stores contributes to catecholamine hypersecretion in adrenal chromaffin cells from spontaneously hypertensive rats. Pflugers Arch 2015; 467:2307-23. [DOI: 10.1007/s00424-015-1702-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/02/2015] [Accepted: 03/08/2015] [Indexed: 01/09/2023]
|
6
|
Lukewich MK, Lomax AE. Mouse models of sepsis elicit spontaneous action potential discharge and enhance intracellular Ca2+ signaling in postganglionic sympathetic neurons. Neuroscience 2015; 284:668-677. [PMID: 25450963 DOI: 10.1016/j.neuroscience.2014.10.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/10/2014] [Accepted: 10/22/2014] [Indexed: 11/30/2022]
Abstract
Sepsis is a severe systemic inflammatory disorder that rapidly activates the sympathetic nervous system to enhance catecholamine secretion from postganglionic sympathetic neurons and adrenal chromaffin cells. Although an increase in preganglionic drive to postganglionic sympathetic tissues has been known to contribute to this response for quite some time, only recently was it determined that sepsis also has direct effects on adrenal chromaffin cell Ca2+ signaling and epinephrine release. In the present study, we characterized the direct effects of sepsis on postganglionic sympathetic neuron function. Using the endotoxemia model of sepsis in mice, we found that almost a quarter of postganglionic neurons acquired the ability to fire spontaneous action potentials, which was absent in cells from control mice. Spontaneously firing neurons possessed significantly lower rheobases and fired a greater number of action potentials at twice the rheobase compared to neurons from control mice. Sepsis did not significantly affect voltage-gated Ca2+ currents. However, global Ca2+ signaling was enhanced in postganglionic neurons isolated from 1 to 24 h endotoxemic mice. A similar increase in the amplitude of high-K+-stimulated Ca2+ transients was observed during the cecal ligation and puncture model of sepsis. The enhanced excitability and Ca2+ signaling produced during sepsis likely amplify the effect of increased preganglionic drive on norepinephrine release from postganglionic neurons. This is important, as sympathetic neurons are integral to the anti-inflammatory autonomic reflex that is activated during sepsis.
Collapse
Affiliation(s)
- M K Lukewich
- Department of Biomedical and Molecular Sciences, Gastrointestinal Diseases Research Unit and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - A E Lomax
- Department of Biomedical and Molecular Sciences, Gastrointestinal Diseases Research Unit and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Medicine, Gastrointestinal Diseases Research Unit and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
7
|
Kinebuchi M, Matsuura A. Calcium-overloaded sympathetic preganglionic neurons in a case of severe sepsis with anorexia nervosa. Acute Med Surg 2014; 2:169-175. [PMID: 29123716 PMCID: PMC5667258 DOI: 10.1002/ams2.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 10/19/2014] [Indexed: 12/29/2022] Open
Abstract
Aim We aimed to show the status of intracellular elements in sympathetic preganglionic neurons in an autopsy case of a 55‐year‐old woman with severe sepsis and cardiac dysfunction with anorexia nervosa. Methods Our methods include a case report and pathological examinations of autopsied tissues using synchrotron‐generated microbeam X‐ray fluorescence analysis. Results A case report of severe sepsis and myocardial dysfunction. The patient had sudden short cardiac arrest without arrhythmia and sequelae, and echocardiogram showed negative inotropic change. The X‐ray fluorescence analysis of autopsied tissues indicated an unusually high concentration of cytosolic calcium in sympathetic preganglionic neurons. However, there were no significant pathological findings of damage in the heart or the cardiovascular autonomic nuclei in the central nervous system. Conclusion The data indicate that dysfunction of the sympathetic preganglionic neurons exists in a patient of severe sepsis and cardiac dysfunction with anorexia nervosa.
Collapse
Affiliation(s)
- Miyuki Kinebuchi
- Department of Molecular Pathology Graduate School of Medicine Fujita Health University Toyoake Aichi Japan
| | - Akihiro Matsuura
- Department of Molecular Pathology Graduate School of Medicine Fujita Health University Toyoake Aichi Japan
| |
Collapse
|
8
|
Cai J, Lu S, Yao Z, Deng YP, Zhang LD, Yu JW, Ren GF, Shen FM, Jiang GJ. Glibenclamide attenuates myocardial injury by lipopolysaccharides in streptozotocin-induced diabetic mice. Cardiovasc Diabetol 2014; 13:106. [PMID: 25077824 PMCID: PMC4147163 DOI: 10.1186/s12933-014-0106-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 01/25/2014] [Accepted: 06/22/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Sepsis is a common disease that continues to increase in incidence in the world. Diseases, such as diabetes mellitus, may make the situation worse. Diabetic patients are at increased risk for common infections. This study was designed to investigate the role of glibenclamide on myocardial injury by lipopolysaccharides (LPS) in streptozotocin induced diabetic mice (STZ-mice). METHODS LPS was used to induce endotoxemia in STZ-mice. Heart rate and mean arterial pressure were measured by MPA-HBBS. Serum epinephrine level was measured by enzyme-linked immunosorbent assays (ELISA). Myocardial injury was examined by light and transmission electron microscope and TUNEL staining. Macrophage infiltration was measured by immunohistochemistry. Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) levels in myocardial tissue and serum in STZ-mice, and in conditional medium of primary cultured peritoneal macrophages were determined by ELISA. Nalp3 and Caspase-1 protein levels were measured by Western blotting analysis. RESULTS STZ administration decreased body weight and increased blood glucose in C57BL/6 mice. LPS injection caused decreases of heart rate and mean arterial pressure, and elevated serum epinephrine level in C57BL/6 mice. Compared with control mice without STZ treatment, LPS induced more severe myocardial injury and macrophage infiltration in STZ-mice, which was attenuated by pretreatment of glibenclamide. LPS stimulation enhanced the levels of IL-1β and TNF-α in both cardiac tissue and serum. Glibenclamide pretreatment significantly inhibited the serum levels of pro-inflammatory cytokines. Either high glucose or LPS increased the levels of IL-1β and TNF-α in the conditional medium of peritoneal macrophages. Glibenclamide treatment suppressed the increase of IL-1β level induced by high glucose and LPS. Furthermore, Nalp3 and Caspase-1 levels were markedly increased by high glucose plus LPS, and both proteins were significantly inhibited by glibenclamide treatment. CONCLUSIONS We conclude that glibenclamide could attenuate myocardial injury induced by LPS challenge in STZ-mice, which was possibly related to inhibiting inflammation through Nalp3 inflammasomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fu-Ming Shen
- Department of Pharmacy, Zhejiang Xiaoshan Hospital, Hangzhou 311202, Zhejiang, China.
| | | |
Collapse
|
9
|
Lukewich MK, Rogers RC, Lomax AE. Divergent neuroendocrine responses to localized and systemic inflammation. Semin Immunol 2014; 26:402-8. [PMID: 24486057 DOI: 10.1016/j.smim.2014.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/09/2014] [Indexed: 12/19/2022]
Abstract
The sympathetic nervous system (SNS) is part of an integrative network that functions to restore homeostasis following injury and infection. The SNS can provide negative feedback control over inflammation through the secretion of catecholamines from postganglionic sympathetic neurons and adrenal chromaffin cells (ACCs). Central autonomic structures receive information regarding the inflammatory status of the body and reflexively modulate SNS activity. However, inflammation and infection can also directly regulate SNS function by peripheral actions on postganglionic cells. The present review discusses how inflammation activates autonomic reflex pathways and compares the effect of localized and systemic inflammation on ACCs and postganglionic sympathetic neurons. Systemic inflammation significantly enhanced catecholamine secretion through an increase in Ca(2+) release from the endoplasmic reticulum. In contrast, acute and chronic GI inflammation reduced voltage-gated Ca(2+) current. Thus it appears that the mechanisms underlying the effects of peripheral and systemic inflammation neuroendocrine function converge on the modulation of intracellular Ca(2+) signaling.
Collapse
Affiliation(s)
- Mark K Lukewich
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Richard C Rogers
- Laboratory for Autonomic Neuroscience, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Alan E Lomax
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Department of Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|