1
|
Ecological validity of social defeat stressors in mouse models of vulnerability and resilience. Neurosci Biobehav Rev 2023; 145:105032. [PMID: 36608919 DOI: 10.1016/j.neubiorev.2023.105032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Laboratory mouse models offer opportunities to bridge the gap between basic neuroscience and applied stress research. Here we consider the ecological validity of social defeat stressors in mouse models of emotional vulnerability and resilience. Reports identified in PubMed from 1980 to 2020 are reviewed for the ecological validity of social defeat stressors, sex of subjects, and whether results are discussed in terms of vulnerability alone, resilience alone, or both vulnerability and resilience. Most of the 318 reviewed reports (95%) focus on males, and many reports (71%) discuss vulnerability and resilience. Limited ecological validity is associated with increased vulnerability and decreased resilience. Elements of limited ecological validity include frequent and repeated exposure to defeat stressors without opportunities to avoid or escape from unfamiliar conspecifics that are pre-screened and selected for aggressive behavior. These elements ensure defeat and may be required to induce vulnerability, but they are not representative of naturalistic conditions. Research aimed at establishing causality is needed to determine whether ecologically valid stressors build resilience in both sexes of mice.
Collapse
|
2
|
Zalachoras I, Astori S, Meijer M, Grosse J, Zanoletti O, de Suduiraut IG, Deussing JM, Sandi C. Opposite effects of stress on effortful motivation in high and low anxiety are mediated by CRHR1 in the VTA. SCIENCE ADVANCES 2022; 8:eabj9019. [PMID: 35319997 PMCID: PMC8942367 DOI: 10.1126/sciadv.abj9019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Individuals frequently differ in their behavioral and cognitive responses to stress. However, whether motivation is differently affected by acute stress in different individuals remains to be established. By exploiting natural variation in trait anxiety in outbred Wistar rats, we show that acute stress facilitates effort-related motivation in low anxious animals, while dampening effort in high anxious ones. This model allowed us to address the mechanisms underlying acute stress-induced differences in motivated behavior. We show that CRHR1 expression levels in dopamine neurons of the ventral tegmental area (VTA)-a neuronal type implicated in the regulation of motivation-depend on animals' anxiety, and these differences in CRHR1 expression levels explain the divergent effects of stress on both effortful behavior and the functioning of mesolimbic DA neurons. These findings highlight CRHR1 in VTA DA neurons-whose levels vary with individuals' anxiety-as a switching mechanism determining whether acute stress facilitates or dampens motivation.
Collapse
Affiliation(s)
- Ioannis Zalachoras
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Corresponding author. (C.S.); (I.Z.); (S.A.)
| | - Simone Astori
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Corresponding author. (C.S.); (I.Z.); (S.A.)
| | - Mandy Meijer
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Olivia Zanoletti
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Isabelle Guillot de Suduiraut
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jan M. Deussing
- Max Planck Institute of Psychiatry/Molecular Neurogenetics, Munich, Germany
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Corresponding author. (C.S.); (I.Z.); (S.A.)
| |
Collapse
|
3
|
Pallarés ME, Monteleone MC, Pastor V, Grillo Balboa J, Alzamendi A, Brocco MA, Antonelli MC. Early-Life Stress Reprograms Stress-Coping Abilities in Male and Female Juvenile Rats. Mol Neurobiol 2021; 58:5837-5856. [PMID: 34409559 DOI: 10.1007/s12035-021-02527-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/06/2021] [Indexed: 01/06/2023]
Abstract
Prenatal stress (PS) is a major risk factor for the development of emotional disorders in adulthood that may be mediated by an altered hypothalamic-pituitary-adrenal axis response to stress. Although the early onset of stress-related disorders is recognized as a major public health problem, to date, there are relatively few studies that have examined the incidence of early-life stressors in younger individuals. In this study, we assessed PS impact on the stress-coping response of juvenile offspring in behavioral tests and in the induced molecular changes in the hippocampus. Furthermore, we assessed if pregnancy stress could be driving changes in patterns of maternal behavior during early lactation. We found that PS modified stress-coping abilities of both sex offspring. In the hippocampus, PS increased the expression of bdnf-IV and crfr1 and induced sex difference changes on glucocorticoids and BDNF mRNA receptor levels. PS changed the hippocampal epigenetic landscape mainly in male offspring. Stress during pregnancy enhanced pup-directed behavior of stressed dams. Our study indicates that exposure to PS, in addition to enhanced maternal behavior, induces dynamic neurobehavioral variations at juvenile ages of the offspring that should be considered adaptive or maladaptive, depending on the characteristics of the confronting environment. Our present results highlight the importance to further explore risk factors that appear early in life that will be important to allow timely prevention strategies to later vulnerability to stress-related disorders.
Collapse
MESH Headings
- Animals
- Female
- Male
- Pregnancy
- Rats
- Adaptation, Psychological
- Anxiety/etiology
- Anxiety/genetics
- Anxiety/physiopathology
- Brain-Derived Neurotrophic Factor/biosynthesis
- Brain-Derived Neurotrophic Factor/genetics
- Corticosterone/blood
- Corticotropin-Releasing Hormone/biosynthesis
- Corticotropin-Releasing Hormone/genetics
- Elevated Plus Maze Test
- Gene Expression Regulation
- Glucocorticoids/biosynthesis
- Glucocorticoids/genetics
- Hippocampus/embryology
- Hippocampus/physiology
- Hypothalamo-Hypophyseal System/embryology
- Hypothalamo-Hypophyseal System/physiopathology
- Lactation/physiology
- Lactation/psychology
- Maternal Behavior
- Pituitary-Adrenal System/embryology
- Pituitary-Adrenal System/physiopathology
- Pregnancy Complications/physiopathology
- Pregnancy Complications/psychology
- Prenatal Exposure Delayed Effects
- Rats, Wistar
- Receptor, trkB/biosynthesis
- Receptor, trkB/genetics
- Receptors, Corticotropin-Releasing Hormone/biosynthesis
- Receptors, Corticotropin-Releasing Hormone/genetics
- Receptors, Glucocorticoid/biosynthesis
- Receptors, Glucocorticoid/genetics
- Restraint, Physical/adverse effects
- Sex Characteristics
- Stress, Physiological/physiology
- Stress, Psychological/physiopathology
- Swimming
Collapse
Affiliation(s)
- María Eugenia Pallarés
- Laboratorio de Neuroprogramación Perinatal del Neurodesarrollo, Instituto de Biología Celular Y Neurociencias "Prof. Eduardo De Robertis" (IBCN)- Facultad de Medicina, Universidad de Buenos Aires, 2155 Paraguay St. CABA, C1121ABG, Buenos Aires, Argentina.
| | - Melisa Carolina Monteleone
- Instituto de Investigaciones Biotecnológicas (IIB), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Verónica Pastor
- Laboratorio de Neuroprogramación Perinatal del Neurodesarrollo, Instituto de Biología Celular Y Neurociencias "Prof. Eduardo De Robertis" (IBCN)- Facultad de Medicina, Universidad de Buenos Aires, 2155 Paraguay St. CABA, C1121ABG, Buenos Aires, Argentina
| | - Jazmín Grillo Balboa
- Laboratorio de Neuroprogramación Perinatal del Neurodesarrollo, Instituto de Biología Celular Y Neurociencias "Prof. Eduardo De Robertis" (IBCN)- Facultad de Medicina, Universidad de Buenos Aires, 2155 Paraguay St. CABA, C1121ABG, Buenos Aires, Argentina
| | - Ana Alzamendi
- Instituto Multidisciplinario de Biología Celular, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Marcela Adriana Brocco
- Instituto de Investigaciones Biotecnológicas (IIB), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Marta Cristina Antonelli
- Laboratorio de Neuroprogramación Perinatal del Neurodesarrollo, Instituto de Biología Celular Y Neurociencias "Prof. Eduardo De Robertis" (IBCN)- Facultad de Medicina, Universidad de Buenos Aires, 2155 Paraguay St. CABA, C1121ABG, Buenos Aires, Argentina
| |
Collapse
|
4
|
Plank AC, Frey S, Basedow LA, Solati J, Canneva F, von Hörsten S, Kratz O, Moll GH, Golub Y. Prenatally traumatized mice reveal hippocampal methylation and expression changes of the stress-related genes Crhr1 and Fkbp5. Transl Psychiatry 2021; 11:183. [PMID: 33758173 PMCID: PMC7988147 DOI: 10.1038/s41398-021-01293-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 11/17/2022] Open
Abstract
In our previous study, we found that prenatal trauma exposure leads to an anxiety phenotype in mouse pups, characterized by increased corticosterone levels and increased anxiety-like behavior. In order to understand the mechanisms by which aversive in utero experience leads to these long-lasting behavioral and neuroendocrine changes, we investigated stress reactivity of prenatally traumatized (PT) mice, as well as the expression and methylation levels of several key regulatory genes of the stress axis in the dorsal hippocampus (dHPC) of the PT embryo and adult mice. We detected increased corticotropin-releasing hormone receptor 1 (Crhr1) and decreased FK506 binding protein 5 (Fkbp5) mRNA levels in the left dHPC of adult PT mice. These alterations were accompanied by a decreased methylation status of the Crhr1 promoter and an increased methylation status of the Fkbp5 promoter, respectively. Interestingly, the changes in Fkbp5 and Crhr1 mRNA levels were not detected in the embryonic dHPC of PT mice. Together, our findings provide evidence that prenatal trauma has a long-term impact on stress axis function and anxiety phenotype associated with altered Crhr1 and Fkbp5 transcripts and promoter methylation.
Collapse
Affiliation(s)
- Anne-Christine Plank
- grid.411668.c0000 0000 9935 6525Department of Child and Adolescent Mental Health, University Hospital Erlangen, Schwabachanlage 6 and 10, 91054 Erlangen, Germany
| | - Stefan Frey
- grid.411668.c0000 0000 9935 6525Department of Child and Adolescent Mental Health, University Hospital Erlangen, Schwabachanlage 6 and 10, 91054 Erlangen, Germany
| | - Lukas Andreas Basedow
- grid.4488.00000 0001 2111 7257Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jalal Solati
- grid.411668.c0000 0000 9935 6525Department of Child and Adolescent Mental Health, University Hospital Erlangen, Schwabachanlage 6 and 10, 91054 Erlangen, Germany
| | - Fabio Canneva
- grid.5330.50000 0001 2107 3311Department Experimental Therapy, University Hospital Erlangen and Preclinical Experimental Animal Center, Friedrich-Alexander-University Erlangen-Nürnberg, Palmsanlage 5, 91054 Erlangen, Germany
| | - Stephan von Hörsten
- grid.5330.50000 0001 2107 3311Department Experimental Therapy, University Hospital Erlangen and Preclinical Experimental Animal Center, Friedrich-Alexander-University Erlangen-Nürnberg, Palmsanlage 5, 91054 Erlangen, Germany
| | - Oliver Kratz
- grid.411668.c0000 0000 9935 6525Department of Child and Adolescent Mental Health, University Hospital Erlangen, Schwabachanlage 6 and 10, 91054 Erlangen, Germany
| | - Gunther H. Moll
- grid.411668.c0000 0000 9935 6525Department of Child and Adolescent Mental Health, University Hospital Erlangen, Schwabachanlage 6 and 10, 91054 Erlangen, Germany
| | - Yulia Golub
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Schwabachanlage 6 and 10, 91054, Erlangen, Germany. .,Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany.
| |
Collapse
|
5
|
Short AK, Baram TZ. Early-life adversity and neurological disease: age-old questions and novel answers. Nat Rev Neurol 2019; 15:657-669. [PMID: 31530940 PMCID: PMC7261498 DOI: 10.1038/s41582-019-0246-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2019] [Indexed: 12/24/2022]
Abstract
Neurological illnesses, including cognitive impairment, memory decline and dementia, affect over 50 million people worldwide, imposing a substantial burden on individuals and society. These disorders arise from a combination of genetic, environmental and experiential factors, with the latter two factors having the greatest impact during sensitive periods in development. In this Review, we focus on the contribution of adverse early-life experiences to aberrant brain maturation, which might underlie vulnerability to cognitive brain disorders. Specifically, we draw on recent robust discoveries from diverse disciplines, encompassing human studies and experimental models. These discoveries suggest that early-life adversity, especially in the perinatal period, influences the maturation of brain circuits involved in cognition. Importantly, new findings suggest that fragmented and unpredictable environmental and parental signals comprise a novel potent type of adversity, which contributes to subsequent vulnerabilities to cognitive illnesses via mechanisms involving disordered maturation of brain 'wiring'.
Collapse
Affiliation(s)
- Annabel K Short
- Departments of Anatomy and Neruobiology, University of California-Irvine, Irvine, CA, USA
- Departments of Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Departments of Anatomy and Neruobiology, University of California-Irvine, Irvine, CA, USA.
- Departments of Pediatrics, University of California-Irvine, Irvine, CA, USA.
- Departments of Neurology, University of California-Irvine, Irvine, CA, USA.
| |
Collapse
|
6
|
Candemir E, Post A, Dischinger US, Palme R, Slattery DA, O'Leary A, Reif A. Limited effects of early life manipulations on sex-specific gene expression and behavior in adulthood. Behav Brain Res 2019; 369:111927. [PMID: 31034851 DOI: 10.1016/j.bbr.2019.111927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 01/19/2023]
Abstract
Exposure to childhood adversity is associated with increased vulnerability to stress-related disorders in adulthood which has been replicated in rodent stress models, whereas environmental enrichment has been suggested to have beneficial effects. However, the exact neurobiological mechanisms underlying these environment influences on adult brain and behavior are not well understood. Therefore, we investigated the long-term effects of maternal separation (MS) or environmental enrichment (EE) in male and female CD1 mice. We found clear sex-specific effects, but limited influence of environmental manipulations, on adult behavior, fecal corticosterone metabolite (FCM) levels and stress- and plasticity related gene expression in discrete brain regions. In detail, adult females displayed higher locomotor activity and FCM levels compared to males and EE resulted in attenuation in both measures, but only in females. There were no sex- or postnatal manipulation-dependent differences in anxiety-related behaviors in either sex. Gene expression analyses revealed that adult males showed higher Fkbp5 mRNA levels in hippocampus, hypothalamus and raphe nuclei, and higher hippocampal Nos1 levels. Interestingly, MS elevated Nos1 levels in hippocampus but reduced Fkbp5 expression in hypothalamus of males. Finally, we also found higher Maoa expression in the hypothalamus of adult females, however no differences were observed in the expression levels of Bdnf, Crhr1, Nr3c1 and Htr1a. Our findings further contribute to sex-dependent differences in behavior, corticosterone and gene expression and reveal that the effects of postnatal manipulations on these parameters in outbred CD1 mice are limited.
Collapse
Affiliation(s)
- Esin Candemir
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Antonia Post
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany
| | - Ulrich Severin Dischinger
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany; Department of Neuropsychopharmacology, Institute of Psychology, University of Tartu, Tartu, Estonia
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Park J, Sung JY, Kim DK, Kong ID, Hughes TL, Kim N. Genetic association of human Corticotropin-Releasing Hormone Receptor 1 (CRHR1) with Internet gaming addiction in Korean male adolescents. BMC Psychiatry 2018; 18:396. [PMID: 30572854 PMCID: PMC6302290 DOI: 10.1186/s12888-018-1974-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/05/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The number of people with Internet gaming addiction (IGA) is increasing around the world. IGA is known to be associated with personal characteristics, psychosocial factors, and physiological factors. However, few studies have examined the genetic factors related to IGA. This study aimed to investigate the association between IGA and stress-related genetic variants. METHODS This cross-sectional study was conducted with 230 male high school students in a South Korean city. We selected five stress-related candidate genes: DAT1, DRD4, NET8, CHRNA4, and CRHR1. The DAT1 and DRD4 genes were genotyped by polymerase chain reaction, and the NET8, CHRNA4, and CRHR1 genes were genotyped by pyrosequencing analysis. We performed a Chi-square test to examine the relationship of these five candidate genes to IGA. RESULTS Having the AA genotype and the A allele of the CRHR1 gene (rs28364027) was associated with higher odds of belonging to the IGA participant group (p = .016 and p = .021, respectively) than to the non-IGA group. By contrast, the DAT1, DRD4, NET8, and CHRNA4 gene polymorphisms showed no significant difference between the IGA group and control group. CONCLUSIONS These results indicate that polymorphism of the CRHR1 gene may play an important role in IGA susceptibility in the Korean adolescent male population. These findings provide a justification and foundation for further investigation of genetic factors related to IGA.
Collapse
Affiliation(s)
- Jooyeon Park
- College of Nursing, Keimyung University, Daegu, Republic of Korea
| | - Jin-Young Sung
- Department of Medical Genetics, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Dae-Kwang Kim
- Department of Medical Genetics, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - In Deok Kong
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Tonda L Hughes
- School of Nursing and Department of Psychiatry, Columbia University, New York City, USA
| | - Nahyun Kim
- College of Nursing, Keimyung University, Daegu, Republic of Korea.
| |
Collapse
|
8
|
Sleijpen M, Heitland I, Mooren T, Kleber RJ. Resilience in refugee and Dutch adolescents: Genetic variability in the corticotropin releasing hormone receptor 1. PERSONALITY AND INDIVIDUAL DIFFERENCES 2017. [DOI: 10.1016/j.paid.2017.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Zhu J, Chen Z, Tian J, Meng Z, Ju M, Wu G, Tian Z. miR-34b attenuates trauma-induced anxiety-like behavior by targeting CRHR1. Int J Mol Med 2017; 40:90-100. [PMID: 28498394 PMCID: PMC5466391 DOI: 10.3892/ijmm.2017.2981] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/25/2017] [Indexed: 02/04/2023] Open
Abstract
Exposure to trauma is a potential contributor to anxiety; however, the molecular mechanisms responsible for trauma-induced anxiety require further clarification. In this study, in an aim to explore these mechanisms, we observed the changes in the hypothalamic pituitary adrenal (HPA) axis using a radioimmunoassay and the changes in anxiety-like behavior using the open field test and elevated plus maze test in a rat model following intervention with NBI-27914, a specific corticotropin-releasing hormone receptor 1 (CRHR1) antagonist. CRHR1 was found to be involved in trauma-induced anxiety. We then applied bioinformatic analysis to screen microRNAs (miRNAs or miRs) that target CRHR1, and miR-34b was determined to negatively regulate CRHR1 mRNA in primary hypothalamic neurons. The overexpression of miR-34b in the paraventricular nucleus (PVN) by a miRNA agomir using a drug delivery system decreased the hyperactivity of the HPA axis and anxiety-like behavior. Overall, the involvement of the HPA axis in trauma-induced anxiety was demonstrated, and trauma-induced anxiety was attenuated by decreasing the hyperactivity of the HPA axis via miR-34b by targeting CRHR1.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institute of Acupuncture Research, WHO Collaborating Centre for Traditional Medicine, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P.R. China
| | - Zhejun Chen
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institute of Acupuncture Research, WHO Collaborating Centre for Traditional Medicine, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P.R. China
| | - Jinxing Tian
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Zehui Meng
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institute of Acupuncture Research, WHO Collaborating Centre for Traditional Medicine, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P.R. China
| | - Mingda Ju
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institute of Acupuncture Research, WHO Collaborating Centre for Traditional Medicine, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P.R. China
| | - Gencheng Wu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institute of Acupuncture Research, WHO Collaborating Centre for Traditional Medicine, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P.R. China
| | - Zhanzhuang Tian
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institute of Acupuncture Research, WHO Collaborating Centre for Traditional Medicine, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
10
|
Ebner K, Singewald N. Individual differences in stress susceptibility and stress inhibitory mechanisms. Curr Opin Behav Sci 2017. [DOI: 10.1016/j.cobeha.2016.11.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Li K, Nakajima M, Ibañez-Tallon I, Heintz N. A Cortical Circuit for Sexually Dimorphic Oxytocin-Dependent Anxiety Behaviors. Cell 2016; 167:60-72.e11. [PMID: 27641503 DOI: 10.1016/j.cell.2016.08.067] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/27/2016] [Accepted: 08/25/2016] [Indexed: 01/06/2023]
Abstract
The frequency of human social and emotional disorders varies significantly between males and females. We have recently reported that oxytocin receptor interneurons (OxtrINs) modulate female sociosexual behavior. Here, we show that, in male mice, OxtrINs regulate anxiety-related behaviors. We demonstrate that corticotropin-releasing-hormone-binding protein (CRHBP), an antagonist of the stress hormone CRH, is specifically expressed in OxtrINs. Production of CRHBP blocks the CRH-induced potentiation of postsynaptic layer 2/3 pyramidal cell activity of male, but not female, mice, thus producing an anxiolytic effect. Our data identify OxtrINs as critical for modulation of social and emotional behaviors in both females and males and reveal a molecular mechanism that acts on local medial prefrontal cortex (mPFC) circuits to coordinate responses to OXT and CRH. They suggest that additional studies of the impact of the OXT/OXTR and CRHBP/CRH pathways in males and females will be important in development of gender-specific therapies.
Collapse
Affiliation(s)
- Kun Li
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Miho Nakajima
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Ines Ibañez-Tallon
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Nathaniel Heintz
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
12
|
Barra de la Tremblaye P, Plamondon H. Alterations in the corticotropin-releasing hormone (CRH) neurocircuitry: Insights into post stroke functional impairments. Front Neuroendocrinol 2016; 42:53-75. [PMID: 27455847 DOI: 10.1016/j.yfrne.2016.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
Abstract
Although it is well accepted that changes in the regulation of the hypothalamic-pituitary adrenal (HPA) axis may increase susceptibility to affective disorders in the general population, this link has been less examined in stroke patients. Yet, the bidirectional association between depression and cardiovascular disease is strong, and stress increases vulnerability to stroke. Corticotropin-releasing hormone (CRH) is the central stress hormone of the HPA axis pathway and acts by binding to CRH receptors (CRHR) 1 and 2, which are located in several stress-related brain regions. Evidence from clinical and animal studies suggests a role for CRH in the neurobiological basis of depression and ischemic brain injury. Given its importance in the regulation of the neuroendocrine, autonomic, and behavioral correlates of adaptation and maladaptation to stress, CRH is likely associated in the pathophysiology of post stroke emotional impairments. The goals of this review article are to examine the clinical and experimental data describing (1) that CRH regulates the molecular signaling brain circuit underlying anxiety- and depression-like behaviors, (2) the influence of CRH and other stress markers in the pathophysiology of post stroke emotional and cognitive impairments, and (3) context and site specific interactions of CRH and BDNF as a basis for the development of novel therapeutic targets. This review addresses how the production and release of the neuropeptide CRH within the various regions of the mesocorticolimbic system influences emotional and cognitive behaviors with a look into its role in psychiatric disorders post stroke.
Collapse
Affiliation(s)
- P Barra de la Tremblaye
- School of Psychology, Behavioral Neuroscience Program, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - H Plamondon
- School of Psychology, Behavioral Neuroscience Program, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
13
|
Treatment-resistant depression: are animal models of depression fit for purpose? Psychopharmacology (Berl) 2015; 232:3473-95. [PMID: 26289353 DOI: 10.1007/s00213-015-4034-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/20/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Resistance to antidepressant drug treatment remains a major health problem. Animal models of depression are efficient in detecting effective treatments but have done little to increase the reach of antidepressant drugs. This may be because most animal models of depression target the reversal of stress-induced behavioural change, whereas treatment-resistant depression is typically associated with risk factors that predispose to the precipitation of depressive episodes by relatively low levels of stress. Therefore, the search for treatments for resistant depression may require models that incorporate predisposing factors leading to heightened stress responsiveness. METHOD Using a diathesis-stress framework, we review developmental, genetic and genomic models against four criteria: (i) increased sensitivity to stress precipitation of a depressive behavioural phenotype, (ii) resistance to chronic treatment with conventional antidepressants, (iii) a good response to novel modes of antidepressant treatment (e.g. ketamine; deep brain stimulation) that are reported to be effective in treatment-resistant depression and (iv) a parallel to a known clinical risk factor. RESULTS We identify 18 models that may have some potential. All require further validation. Currently, the most promising are the Wistar-Kyoto (WKY) and congenital learned helplessness (cLH) rat strains, the high anxiety behaviour (HAB) mouse strain and the CB1 receptor knockout and OCT2 null mutant mouse strains. CONCLUSION Further development is needed to validate models of antidepressant resistance that are fit for purpose. The criteria used in this review may provide a helpful framework to guide research in this area.
Collapse
|