1
|
Fournier C, Karagounis LG, Sacco SM, Horcajada MN, Decaens T, Offord EA, Bouzakri K, Ammann P. Impact of moderate dietary protein restriction on glucose homeostasis in a model of oestrogen deficiency. J Nutr Biochem 2022; 102:108952. [PMID: 35122999 DOI: 10.1016/j.jnutbio.2022.108952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/27/2021] [Accepted: 01/04/2022] [Indexed: 11/26/2022]
Abstract
The need to consume adequate dietary protein to preserve physical function during ageing is well recognized. However, the effect of protein intakes on glucose metabolism is still intensively debated. During age-related oestrogen withdrawal at the time of the menopause, it is known that glucose homeostasis may be impaired but the influence of dietary protein levels in this context is unknown. The aim of the present study is to elucidate the individual and interactive effects of oestrogen deficiency and suboptimal protein intake on glucose homeostasis in a preclinical model involving ovariectomy (OVX) and a 13-week period of a moderately reduced protein intake in 7-month-old ageing rats. To investigate mechanisms of action acting via the pancreas-liver-muscle axis, fasting circulating levels of insulin, glucagon, IGF-1, FGF21 and glycemia were measured. The hepatic lipid infiltration and the protein expression of GLUT4 in the gastrocnemius were analyzed. The gene expression of some hepatokines, myokines and lipid storage/oxidation related transcription factors were quantified in the liver and the gastrocnemius. We show that, regardless of the oestrogen status, moderate dietary protein restriction increases fasting glycaemia without modifying insulinemia, body weight gain and composition. This fasting hyperglycaemia is associated with oestrogen status-specific metabolic alterations in the muscle and liver. In oestrogen-replete (SHAM) rats, GLUT4 was down-regulated in skeletal muscle while in oestrogen-deficient (OVX) rats, hepatic stress-associated hyperglucagonaemia and high serum FGF21 were observed. These findings highlight the importance of meeting dietary protein needs to avoid disturbances in glucose homeostasis in ageing female rats with or without oestrogen withdrawal.
Collapse
Affiliation(s)
- Carole Fournier
- Service of Bone Diseases, Department of Rehabilitation and Geriatrics, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland; Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309, La Tronche, France.
| | - Leonidas G Karagounis
- Nestlé Health Science, Translation Research, Epalinges, Switzerland; Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Sandra M Sacco
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Marie-Noelle Horcajada
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Thomas Decaens
- Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309, La Tronche, France; Université Grenoble Alpes, 38000 Grenoble, France; Service d'hépato-gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Elizabeth A Offord
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Karim Bouzakri
- Department of Genetic Medicine and Development, University of Geneva Medical Center, Geneva, Switzerland; UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Strasbourg, France
| | - Patrick Ammann
- Service of Bone Diseases, Department of Rehabilitation and Geriatrics, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
2
|
Olson B, Marks DL, Grossberg AJ. Diverging metabolic programmes and behaviours during states of starvation, protein malnutrition, and cachexia. J Cachexia Sarcopenia Muscle 2020; 11:1429-1446. [PMID: 32985801 PMCID: PMC7749623 DOI: 10.1002/jcsm.12630] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Our evolutionary history is defined, in part, by our ability to survive times of nutrient scarcity. The outcomes of the metabolic and behavioural adaptations during starvation are highly efficient macronutrient allocation, minimization of energy expenditure, and maximized odds of finding food. However, in different contexts, caloric deprivation is met with vastly different physiologic and behavioural responses, which challenge the primacy of energy homeostasis. METHODS We conducted a literature review of scientific studies in humans, laboratory animals, and non-laboratory animals that evaluated the physiologic, metabolic, and behavioural responses to fasting, starvation, protein-deficient or essential amino acid-deficient diets, and cachexia. Studies that investigated the changes in ingestive behaviour, locomotor activity, resting metabolic rate, and tissue catabolism were selected as the focus of discussion. RESULTS Whereas starvation responses prioritize energy balance, both protein malnutrition and cachexia present existential threats that induce unique adaptive programmes, which can exacerbate the caloric insufficiency of undernutrition. We compare and contrast the behavioural and metabolic responses and elucidate the mechanistic pathways that drive state-dependent alterations in energy seeking and partitioning. CONCLUSIONS The evolution of energetically inefficient metabolic and behavioural responses to protein malnutrition and cachexia reveal a hierarchy of metabolic priorities governed by discrete regulatory networks.
Collapse
Affiliation(s)
- Brennan Olson
- Medical Scientist Training ProgramOregon Health & Science UniversityPortlandORUSA
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
| | - Daniel L. Marks
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
- Brenden‐Colson Center for Pancreatic CareOregon Health & Science UniversityPortlandORUSA
| | - Aaron J. Grossberg
- Brenden‐Colson Center for Pancreatic CareOregon Health & Science UniversityPortlandORUSA
- Department of Radiation MedicineOregon Health & Science UniversityPortlandORUSA
- Cancer Early Detection Advanced Research CenterOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
3
|
Li T, Yan Z, He S, Zhou C, Wang H, Yin X, Zou S, Duan P. Intermittent parathyroid hormone improves orthodontic retention via insulin-like growth factor-1. Oral Dis 2020; 27:290-300. [PMID: 32608117 DOI: 10.1111/odi.13519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/06/2020] [Accepted: 06/18/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVES This study aimed to investigate the effects of intermittent parathyroid hormone (iPTH) on the stability of orthodontic retention and to explore the possible regulatory role of insulin-like growth factor-1 (IGF-1) in this process. METHODS Forty-eight 6-week-old male Wistar rats were adopted in this study. An orthodontic relapsing model was established to investigate the effects of iPTH on orthodontic retention. In vitro, an immortalized mouse cementoblast cell line OCCM-30 was detected by flow cytometry to study the effects of iPTH on cell proliferation and apoptosis. By application of a specific IGF-1 receptor inhibitor, the role of IGF-1 was also explored. RESULTS In vivo study found that daily injection of PTH significantly reduced the relapsing distance. Histological staining and ELISA assay showed faster periodontal regeneration during retention period in PTH group with increased RANKL/OPG ratio and greater amount of OCN, ALP, and IGF-1 in gingival cervical fluid (GCF). Cell experiment revealed that iPTH promoted proliferation and suppressed apoptosis of cementoblast. IGF-1 receptor inhibitor significantly restrained the anabolic effect of iPTH on OCCM-30 cells. CONCLUSIONS These findings suggest that iPTH could improve the stability of tooth movement by promoting periodontal regeneration. IGF-1 is essential in mediating the anabolic effects of iPTH.
Collapse
Affiliation(s)
- Tiancheng Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Orthodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ziqi Yan
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shushu He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Orthodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Pediatric Dentistry, School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Han Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Orthodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xing Yin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Orthodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Orthodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peipei Duan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Orthodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Kanakis I, Alameddine M, Scalabrin M, van 't Hof RJ, Liloglou T, Ozanne SE, Goljanek-Whysall K, Vasilaki A. Low protein intake during reproduction compromises the recovery of lactation-induced bone loss in female mouse dams without affecting skeletal muscles. FASEB J 2020; 34:11844-11859. [PMID: 32652768 DOI: 10.1096/fj.202001131r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Lactation-induced bone loss occurs due to high calcium requirements for fetal growth but skeletal recovery is normally achieved promptly postweaning. Dietary protein is vital for fetus and mother but the effects of protein undernutrition on the maternal skeleton and skeletal muscles are largely unknown. We used mouse dams fed with normal (N, 20%) or low (L, 8%) protein diet during gestation and lactation and maintained on the same diets (NN, LL) or switched from low to normal (LN) during a 28 d skeletal restoration period post lactation. Skeletal muscle morphology and neuromuscular junction integrity was not different between any of the groups. However, dams fed the low protein diet showed extensive bone loss by the end of lactation, followed by full skeletal recovery in NN dams, partial recovery in LN and poor bone recovery in LL dams. Primary osteoblasts from low protein diet fed mice showed decreased in vitro bone formation and decreased osteogenic marker gene expression; promoter methylation analysis by pyrosequencing showed no differences in Bmpr1a, Ptch1, Sirt1, Osx, and Igf1r osteoregulators, while miR-26a, -34a, and -125b expression was found altered in low protein fed mice. Therefore, normal protein diet is indispensable for maternal musculoskeletal health during the reproductive period.
Collapse
Affiliation(s)
- Ioannis Kanakis
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Moussira Alameddine
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Mattia Scalabrin
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Rob J van 't Hof
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Triantafillos Liloglou
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, UK
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Katarzyna Goljanek-Whysall
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.,Department of Physiology, School of Medicine, NUI Galway, Galway, Ireland
| | - Aphrodite Vasilaki
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Blais A, Rochefort GY, Moreau M, Calvez J, Wu X, Matsumoto H, Blachier F. Monosodium Glutamate Supplementation Improves Bone Status in Mice Under Moderate Protein Restriction. JBMR Plus 2019; 3:e10224. [PMID: 31687652 PMCID: PMC6820464 DOI: 10.1002/jbm4.10224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022] Open
Abstract
Adequate protein intake during development is critical to ensure optimal bone gain and to attain a higher peak bone mass later. Using a mild protein restriction model in Balb/C mice consuming 6% of their total energy intake as soy protein (LP-SOY)-for which we observed a significantly lower femoral cortical thickness, bone volume, trabecular number, and thickness reduction-we evaluated the effects of monosodium glutamate (MSG) supplementation at different concentrations (0.5, 1, 5, 10, and 20 g/kg of diet) on bone characteristics in LP-SOY-fed mice. After 6 and 12 weeks, LP-SOY-fed mice had lower BMD and reduced body weight related to lower lean mass, which was associated with a reduced IGF-1 level. The negative effect of the LP-SOY diet on BMD correlated with impaired bone formation. MSG supplementation, at 5, 10, and 20 g/kg of diet, and PTH injection, used as a positive control, were able to improve BMD and to increase osteoblast activity markers (P1NP and osteocalcin), as well as glutamine plasma concentration. An analysis of bone microarchitecture found that cortical bone was less sensitive to protein restriction than trabecular bone, and that MSG ingestion was able to preserve bone quality through an increase of collagen synthesis, although it did not allow normal bone growth. Our study reinforces the view that glutamate can act as a functional amino acid for bone physiology and support clinical investigation of glutamate supplementation in adults characterized by poor bone status, notably as a result of insufficient protein intake. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Anne Blais
- UMR PNCA, AgroParisTech, INRA Université Paris-Saclay Paris France
| | - Gael Y Rochefort
- EA 2496, Dental School Faculty Université Paris Descartes Montrouge France
| | - Manon Moreau
- UMR PNCA, AgroParisTech, INRA Université Paris-Saclay Paris France
| | - Juliane Calvez
- UMR PNCA, AgroParisTech, INRA Université Paris-Saclay Paris France
| | - Xin Wu
- Key Laboratory of Agro-ecological Process in Subtropical Region, Institute of Subtropical Agriculture Chinese Academy of Sciences Changsha China
| | | | | |
Collapse
|
6
|
Protein/amino-acid modulation of bone cell function. BONEKEY REPORTS 2016; 5:827. [PMID: 28149508 PMCID: PMC5238414 DOI: 10.1038/bonekey.2016.58] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/24/2016] [Indexed: 01/07/2023]
Abstract
Nutrients (protein, carbohydrates and fats) have traditionally been thought of as fuels simply providing the energy for cellular metabolic activity. According to the classic view, if nutrients are available, then anabolic pathways are activated, and if nutrients are not available, catabolic pathways are activated. However, it is becoming increasingly clear that nutrient effects on bone cells (stem cells, osteoblasts and osteoclasts) are complex, some nutrients promote bone formation, whereas others interfere with bone formation or actually promote bone break down. At an organ level, nutrient intake can suppress bone breakdown and modulate the activity of the calcium/vitamin D/parathyroid hormone axis. At a cellular level, nutrient intake can impact cellular energetics either through a direct mechanism (binding or uptake of the nutrient into the cell) or indirect (by elevating nutrient-related hormones such as insulin, insulin-like growth factor 1 or incretin hormones). It is also becoming clear that within a nutrient class (for example, protein), individual components (that is, amino acids) can have markedly different effects on cell function and impact bone formation. The focus of this review will be on one nutrient class in particular, dietary protein. As the prevalence of inadequate dietary protein intake increases with age, these findings may have translational implications as to the optimal dietary protein content in the setting of age-associated bone loss.
Collapse
|