1
|
Ruan X, Jin X, Sun F, Pi J, Jinghu Y, Lin X, Zhang N, Chen G. IGF signaling pathway in bone and cartilage development, homeostasis, and disease. FASEB J 2024; 38:e70031. [PMID: 39206513 DOI: 10.1096/fj.202401298r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The skeleton plays a fundamental role in the maintenance of organ function and daily activities. The insulin-like growth factor (IGF) family is a group of polypeptide substances with a pronounced role in osteoblast differentiation, bone development, and metabolism. Disturbance of the IGFs and the IGF signaling pathway is inextricably linked with assorted developmental defects, growth irregularities, and jeopardized skeletal structure. Recent findings have illustrated the significance of the action of the IGF signaling pathway via growth factors and receptors and its interactions with dissimilar signaling pathways (Wnt/β-catenin, BMP, TGF-β, and Hh/PTH signaling pathways) in promoting the growth, survival, and differentiation of osteoblasts. IGF signaling also exhibits profound influences on cartilage and bone development and skeletal homeostasis via versatile cell-cell interactions in an autocrine, paracrine, and endocrine manner systemically and locally. Our review summarizes the role and regulatory function as well as a potentially integrated gene network of the IGF signaling pathway with other signaling pathways in bone and cartilage development and skeletal homeostasis, which in turn provides an enlightening insight into visualizing bright molecular targets to be eligible for designing effective drugs to handle bone diseases and maladies, such as osteoporosis, osteoarthritis, and dwarfism.
Collapse
Affiliation(s)
- Xinyi Ruan
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiuhui Jin
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fuju Sun
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiashun Pi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yihan Jinghu
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xinyi Lin
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Nenghua Zhang
- Clinical Laboratory, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
2
|
Yao Z, Lin M, Lin T, Gong X, Qin P, Li H, Kang T, Ye J, Zhu Y, Hong Q, Liu Y, Li Y, Wang J, Fang F. The expression of IGFBP-5 in the reproductive axis and effect on the onset of puberty in female rats. Reprod Biol Endocrinol 2022; 20:100. [PMID: 35821045 PMCID: PMC9277959 DOI: 10.1186/s12958-022-00966-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/18/2022] [Indexed: 11/21/2022] Open
Abstract
Insulin-like growth factor-binding protein-5 (IGFBP-5) has recently been shown to alter the reproductive capacity by regulating insulin-like growth factor (IGF) bioavailability or IGF-independent effects. The present study aimed to investigate the effect and mechanism of IGFBP-5 on the onset of puberty in female rats. Immunofluorescence and real-time quantitative PCR were used to determine the expression and location of IGFBP-5 mRNA and protein distribution in the infant's hypothalamus-pituitary-ovary (HPO) axis prepuberty, peripuberty, puberty and adult female rats. Prepubertal rats with IGFBP-5 intracerebroventricular (ICV) were injected to determine the puberty-related genes expression and the concentrations of reproductive hormones. Primary hypothalamic cells were treated with IGFBP-5 to determine the expression of puberty-related genes and the Akt and mTOR proteins. Results showed that Igfbp-5 mRNA and protein were present on the HPO axis. The addition of IGFBP-5 to primary hypothalamic cells inhibited the expression of Gnrh and Igf-1 mRNAs (P < 0.05) and increased the expression of AKT and mTOR protein (P < 0.01). IGFBP-5 ICV-injection delayed the onset of puberty, reduced Gnrh, Igf-1, and Fshβ mRNAs, and decreased the concentrations of E2, P4, FSH,serum LH levels and the ovaries weight (P < 0.05). More corpus luteum and fewer primary follicles were found after IGFBP-5 injection (P < 0.05).
Collapse
Affiliation(s)
- Zhiqiu Yao
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Maosen Lin
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Tao Lin
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Xinbao Gong
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Pin Qin
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Hailing Li
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Tiezhu Kang
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Jing Ye
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Yanyun Zhu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Qiwen Hong
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Ya Liu
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Yunsheng Li
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Juhua Wang
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Fugui Fang
- Anhui Provincial Key Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| |
Collapse
|
3
|
Nguyen P, Pease NA, Kueh HY. Scalable control of developmental timetables by epigenetic switching networks. J R Soc Interface 2021; 18:20210109. [PMID: 34283940 DOI: 10.1098/rsif.2021.0109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During development, progenitor cells follow timetables for differentiation that span many cell generations. These developmental timetables are robustly encoded by the embryo, yet scalably adjustable by evolution, facilitating variation in organism size and form. Epigenetic switches, involving rate-limiting activation steps at regulatory gene loci, control gene activation timing in diverse contexts, and could profoundly impact the dynamics of gene regulatory networks controlling developmental lineage specification. Here, we develop a mathematical framework to model regulatory networks with genes controlled by epigenetic switches. Using this framework, we show that such epigenetic switching networks uphold developmental timetables that robustly span many cell generations, and enable the generation of differentiated cells in precisely defined numbers and fractions. Changes to epigenetic switching networks can readily alter the timing of developmental events within a timetable, or alter the overall speed at which timetables unfold, enabling scalable control over differentiated population sizes. With their robust, yet flexibly adjustable nature, epigenetic switching networks could represent central targets on which evolution acts to manufacture diversity in organism size and form.
Collapse
Affiliation(s)
- Phuc Nguyen
- Molecular Engineering and Sciences Program, University of Washington, Seattle, WA, USA
| | - Nicholas A Pease
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Hao Yuan Kueh
- Department of Bioengineering, University of Washington, Seattle, WA, USA.,Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Shang M, Weng L, Wu S, Liu B, Yin X, Wang Z, Mao A. HP1BP3 promotes tumor growth and metastasis by upregulating miR-23a to target TRAF5 in esophageal squamous cell carcinoma. Am J Cancer Res 2021; 11:2928-2943. [PMID: 34249436 PMCID: PMC8263663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/01/2021] [Indexed: 06/13/2023] Open
Abstract
HP1BP3, an ubiquitously expressed nuclear protein belonging to the H1 histone family of proteins, plays an important role in cell growth and viability. Recently, it was reported that HP1BP3 exclusively regulates miRNA biogenesis by enhancing transcriptional miRNA processing. Although HP1BP3 has previously been implicated in common cancer types, the mechanistic functions and effects of HP1BP3 and its role in the prognosis of esophageal squamous cell carcinoma (ESCC) remain unclear. Here, we report that ESCC tissues and cell lines show increased endogenous expression of HP1BP3. Knockdown of HP1BP3 in TE-1 cells significantly inhibited tumor growth and metastasis in vivo emphasizing its role in cell proliferation and invasion. In contrast, overexpression of HP1BP3 significantly enhanced tumor growth and metastasis in Eca-109 cells. Further, we found that HP1BP3 regulates these functions by upregulating miR-23a, which directly binds to the 3'UTR region of TRAF5 downstream to alter cell survival and proliferation. Our findings describe a role for HP1BP3 in promoting tumor growth and metastasis by upregulating miR-23a to target TRAF5 in esophageal cancer. This study provides novel insights into the potential of targeting miRNAs for therapy and as clinical markers for cancer progression.
Collapse
Affiliation(s)
- Mingyi Shang
- Department of Interventional Radiology, Tong Ren Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Li Weng
- Department of Interventional Radiology, Tong Ren Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Shaoqiu Wu
- Department of Interventional Radiology, Tong Ren Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Bingyan Liu
- Department of Interventional Radiology, Tong Ren Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Xiang Yin
- Department of Interventional Radiology, Tong Ren Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Zhongmin Wang
- Clinical Research Center, Shanghai Jiao Tong University School of MedicineShanghai, China
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Aiwu Mao
- Department of Interventional Radiology, Tong Ren Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of MedicineShanghai, China
| |
Collapse
|
5
|
Shi G, Hu Y, Zhu X, Jiang Y, Pang J, Wang C, Huang W, Zhao Y, Ma W, Liu D, Huang J, Songyang Z. A critical role of telomere chromatin compaction in ALT tumor cell growth. Nucleic Acids Res 2020; 48:6019-6031. [PMID: 32379321 PMCID: PMC7293046 DOI: 10.1093/nar/gkaa224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/17/2020] [Accepted: 04/18/2020] [Indexed: 01/15/2023] Open
Abstract
ALT tumor cells often contain abundant DNA damage foci at telomeres and rely on the alternative lengthening of telomeres (ALT) mechanism to maintain their telomeres. How the telomere chromatin is regulated and maintained in these cells remains largely unknown. In this study, we present evidence that heterochromatin protein 1 binding protein 3 (HP1BP3) can localize to telomeres and is particularly enriched on telomeres in ALT cells. HP1BP3 inhibition led to preferential growth inhibition of ALT cells, which was accompanied by telomere chromatin decompaction, increased presence of C-circles, more pronounced ALT-associated phenotypes and elongated telomeres. Furthermore, HP1BP3 appeared to participate in regulating telomere histone H3K9me3 epigenetic marks. Taken together, our data suggest that HP1BP3 functions on telomeres to maintain telomere chromatin and represents a novel target for inhibiting ALT cancer cells.
Collapse
Affiliation(s)
- Guang Shi
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yang Hu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xing Zhu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuanling Jiang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Junjie Pang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chuanle Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenjun Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yong Zhao
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenbin Ma
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Dan Liu
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA 77030
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA 77030.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
6
|
What do DNA methylation studies tell us about depression? A systematic review. Transl Psychiatry 2019; 9:68. [PMID: 30718449 PMCID: PMC6362194 DOI: 10.1038/s41398-019-0412-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 11/09/2022] Open
Abstract
There has been a limited number of systematic reviews conducted to summarize the overview of the relationship between DNA methylation and depression, and to critically appraise the roles of major study characteristics in the accuracy of study findings. This systematic review aims to critically appraise the impact of study characteristics on the association between DNA methylation and depression, and summarize the overview of this association. Electronic databases and gray literatures until December 2017 were searched for English-language studies with standard diagnostic criteria of depression. A total of 67 studies were included in this review along with a summary of their study characteristics. We grouped the findings into etiological and treatment studies. Majority of these selected studies were recently published and from developed countries. Whole blood samples were the most studied common tissues. Bisulfite conversion, along with pyrosequencing, was widely used to test the DNA methylation level across all the studies. High heterogeneity existed among the studies in terms of experimental and statistical methodologies and study designs. As recommended by the Cochrane guideline, a systematic review without meta-analysis should be undertaken. This review has, in general, found that DNA methylation modifications were associated with depression. Subgroup analyses showed that most studies found BDNF and SLC6A4 hypermethylations to be associated with MDD or depression in general. In contrast, studies on NR3C1, OXTR, and other genes, which were tested by only few studies, reported mixed findings. More longitudinal studies using standardized experimental and laboratory methodologies are needed in future studies to enable more systematical comparisons and quantitative synthesis.
Collapse
|
7
|
Neuner SM, Ding S, Kaczorowski CC. Knockdown of heterochromatin protein 1 binding protein 3 recapitulates phenotypic, cellular, and molecular features of aging. Aging Cell 2019; 18:e12886. [PMID: 30549219 PMCID: PMC6351847 DOI: 10.1111/acel.12886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/25/2018] [Accepted: 11/10/2018] [Indexed: 12/12/2022] Open
Abstract
Identifying genetic factors that modify an individual's susceptibility to cognitive decline in aging is critical to understanding biological processes involved and mitigating risk associated with a number of age‐related disorders. Recently, heterochromatin protein 1 binding protein 3 (Hp1bp3) was identified as a mediator of cognitive aging. Here, we provide a mechanistic explanation for these findings and show that targeted knockdown of Hp1bp3 in the hippocampus by 50%–75% is sufficient to induce cognitive deficits and transcriptional changes reminiscent of those observed in aging and Alzheimer's disease brains. Specifically, neuroinflammatory‐related pathways become activated following Hp1bp3 knockdown in combination with a robust decrease in genes involved in synaptic activity and neuronal function. To test the hypothesis that Hp1bp3 mediates susceptibility to cognitive deficits via a role in neuronal excitability, we performed slice electrophysiology demonstrate transcriptional changes after Hp1bp3 knockdown manifest functionally as a reduction in hippocampal neuronal intrinsic excitability and synaptic plasticity. In addition, as Hp1bp3 is a known mediator of miRNA biogenesis, here we profile the miRNA transcriptome and identify mir‐223 as a putative regulator of a portion of observed mRNA changes, particularly those that are inflammatory‐related. In summary, work here identifies Hp1bp3 as a critical mediator of aging‐related changes at the phenotypic, cellular, and molecular level and will help inform the development of therapeutics designed to target either Hp1bp3 or its downstream effectors in order to promote cognitive longevity.
Collapse
Affiliation(s)
- Sarah M. Neuner
- The Jackson Laboratory Bar Harbor Maine
- Neuroscience Institute University of Tennessee Health Science Center Memphis Tennessee
| | | | | |
Collapse
|
8
|
Tan ALM, Langley SR, Tan CF, Chai JF, Khoo CM, Leow MKS, Khoo EYH, Moreno-Moral A, Pravenec M, Rotival M, Sadananthan SA, Velan SS, Venkataraman K, Chong YS, Lee YS, Sim X, Stunkel W, Liu MH, Tai ES, Petretto E. Ethnicity-Specific Skeletal Muscle Transcriptional Signatures and Their Relevance to Insulin Resistance in Singapore. J Clin Endocrinol Metab 2019; 104:465-486. [PMID: 30137523 DOI: 10.1210/jc.2018-00309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/14/2018] [Indexed: 11/19/2022]
Abstract
CONTEXT Insulin resistance (IR) and obesity differ among ethnic groups in Singapore, with the Malays more obese yet less IR than Asian-Indians. However, the molecular basis underlying these differences is not clear. OBJECTIVE As the skeletal muscle (SM) is metabolically relevant to IR, we investigated molecular pathways in SM that are associated with ethnic differences in IR, obesity, and related traits. DESIGN, SETTING, AND MAIN OUTCOME MEASURES We integrated transcriptomic, genomic, and phenotypic analyses in 156 healthy subjects representing three major ethnicities in the Singapore Adult Metabolism Study. PATIENTS This study contains Chinese (n = 63), Malay (n = 51), and Asian-Indian (n = 42) men, aged 21 to 40 years, without systemic diseases. RESULTS We found remarkable diversity in the SM transcriptome among the three ethnicities, with >8000 differentially expressed genes (40% of all genes expressed in SM). Comparison with blood transcriptome from a separate Singaporean cohort showed that >95% of SM expression differences among ethnicities were unique to SM. We identified a network of 46 genes that were specifically downregulated in Malays, suggesting dysregulation of components of cellular respiration in SM of Malay individuals. We also report 28 differentially expressed gene clusters, four of which were also enriched for genes that were found in genome-wide association studies of metabolic traits and disease and correlated with variation in IR, obesity, and related traits. CONCLUSION We identified extensive gene-expression changes in SM among the three Singaporean ethnicities and report specific genes and molecular pathways that might underpin and explain the differences in IR among these ethnic groups.
Collapse
Affiliation(s)
- Amelia Li Min Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore
| | - Sarah R Langley
- Duke-National University of Singapore Medical School, Singapore
- National Heart Centre Singapore, Singapore
| | - Chee Fan Tan
- Nanyang Institute of Technology in Health and Medicine, Nanyang Technological University, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jin Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Chin Meng Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore
- Division of Endocrinology, Department of Medicine, National University Health System, Singapore
| | - Melvin Khee-Shing Leow
- Duke-National University of Singapore Medical School, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Eric Yin Hao Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Endocrinology, Department of Medicine, National University Health System, Singapore
| | | | - Michal Pravenec
- Institute Of Physiology, Czech Academy Of Sciences, Prague, Czech Republic
| | - Maxime Rotival
- Unit of Human Evolutionary Genetics, Institut Pasteur, Paris, France
| | - Suresh Anand Sadananthan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - S Sendhil Velan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Kavita Venkataraman
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yung Seng Lee
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Paediatrics Endocrinology, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Walter Stunkel
- Experimental Biotherapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Mei Hui Liu
- Department of Chemistry, Food Science & Technology Programme, National University of Singapore, Singapore
| | - E Shyong Tai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore
- Division of Endocrinology, Department of Medicine, National University Health System, Singapore
| | - Enrico Petretto
- Duke-National University of Singapore Medical School, Singapore
| |
Collapse
|
9
|
A peptide containing the receptor binding site of insulin-like growth factor binding protein-2 enhances bone mass in ovariectomized rats. Bone Res 2018; 6:23. [PMID: 30109160 PMCID: PMC6089876 DOI: 10.1038/s41413-018-0024-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/31/2018] [Accepted: 06/15/2018] [Indexed: 12/27/2022] Open
Abstract
Male Igfbp2−/− mice have a significant reduction in bone mass and administration of a peptide that contains the insulin-like growth factor binding protein-2(IGFBP-2) receptor-binding domain stimulates bone formation in these animals. Female Igfbp2−/− mice do not have this phenotype but following ovariectomy (OVX) lose more bone than OVX wild-type mice. This suggests that in the absence of estrogen, IGFBP-2 is required to maintain bone mass. Therefore these studies were undertaken to determine if this peptide could stimulate bone acquisition in OVX rats. OVX rats were divided into seven treatment groups: sham animals, OVX animals, OVX animals receiving a control scrambled peptide, or one of three doses of the active peptide termed PEG-HBD-1 (0.7, 2, and 6 mg·kg-1) and an OVX group receiving parathyroid hormone (PTH) (50 µg·kg-1 per day). The peptides were administered for 8 weeks. DXA revealed a significant reduction in femoral and tibial areal bone mineral density (aBMD) after OVX, whereas treatment with the high-dose peptide increased aBMD by 6.2% ± 2.4% (P < 0.01) compared to control peptide; similar to the increase noted with PTH (5.6% ± 3.0%, P < 0.01). Similar increases were noted with two lower doses of the peptide (3.8% ± 1.5%, P < 0.05 for low dose; 3.1% ± 1.6%, P = 0.07 for middle dose). Micro CT showed that the OVX control peptide animals had reductions of 41% and 64% in femoral trabecular BV/TV and trabecular number, respectively. All three doses of the peptide increased bone volume/total volume (BV/TV) significantly, while the low and middle doses increased trabecular number. Cortical BV/TV and thickness at the midshaft increased significantly with each dose of peptide (18.9% ± 9.8%, P < 0.01 and 14.2% ± 7.9%, P < 0.01 for low dose; 23.7% ± 10.7%, P < 0.001 and 15.8% ± 6.1%, P < 0.001 for middle dose; 19.0% ± 6.9%, P < 0.01 and 16.2% ± 9.7%, P < 0.001 for high dose) and with PTH (25.8% ± 9.2%, P < 0.001 and 19.4% ± 8.8%, P < 0.001). Histomorphometry showed that the lowest dose of peptide stimulated BV/TV, trabecular thickness, mineral apposition rate (MAR), bone formation rate/bone surface (BFR/BS), number of osteoblasts/bone perimeter (N.ob/B.pm), and decreased osteoclast surface/bone perimeter (Oc.S/B.Pm). The highest dose stimulated each of these parameters except MAR and BFR/BS. Thus, the heparin-binding domain receptor region of IGFBP-2 accounts for its anabolic activity in bone. Importantly, this peptide enhances bone mass in estrogen-deficient animals. An experimental peptide stimulates bone acquisition in female rats who have had their ovaries removed, raising the prospect a new drug for osteoporosis. IGFBP-2 is an insulin-like growth factor (IGF) binding protein, which regulates the amount of IGF-I and II that are transported out of the blood and are available to influence the growth and proliferation of bone-producing osteoblasts. Previous studies have suggested that IGFBP-2 is required to maintain bone mass in the absence of estrogen, and that a 13 amino acid peptide (HBD1) from the core of the protein could provide a substitute for it. In this study, David Clemmons at the University of North Carolina at Chapel Hill and his colleagues demonstrate that injecting the peptide into ovariectomized female rats prompts significant increases in bone mass, whereas control animals lost bone.
Collapse
|
10
|
Clemmons DR. Role of IGF-binding proteins in regulating IGF responses to changes in metabolism. J Mol Endocrinol 2018; 61:T139-T169. [PMID: 29563157 DOI: 10.1530/jme-18-0016] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022]
Abstract
The IGF-binding protein family contains six members that share significant structural homology. Their principal function is to regulate the actions of IGF1 and IGF2. These proteins are present in plasma and extracellular fluids and regulate access of both IGF1 and II to the type I IGF receptor. Additionally, they have functions that are independent of their ability to bind IGFs. Each protein is regulated independently of IGF1 and IGF2, and this provides an important mechanism by which other hormones and physiologic variables can regulate IGF actions indirectly. Several members of the family are sensitive to changes in intermediary metabolism. Specifically the presence of obesity/insulin resistance can significantly alter the expression of these proteins. Similarly changes in nutrition or catabolism can alter their synthesis and degradation. Multiple hormones such as glucocorticoids, androgens, estrogen and insulin regulate IGFBP synthesis and bioavailability. In addition to their ability to regulate IGF access to receptors these proteins can bind to distinct cell surface proteins or proteins in extracellular matrix and several cellular functions are influenced by these interactions. IGFBPs can be transported intracellularly and interact with nuclear proteins to alter cellular physiology. In pathophysiologic states, there is significant dysregulation between the changes in IGFBP synthesis and bioavailability and changes in IGF1 and IGF2. These discordant changes can lead to marked alterations in IGF action. Although binding protein physiology and pathophysiology are complex, experimental results have provided an important avenue for understanding how IGF actions are regulated in a variety of physiologic and pathophysiologic conditions.
Collapse
Affiliation(s)
- David R Clemmons
- Department of MedicineUNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
11
|
Garfinkel BP, Arad S, Neuner SM, Netser S, Wagner S, Kaczorowski CC, Rosen CJ, Gal M, Soreq H, Orly J. HP1BP3 expression determines maternal behavior and offspring survival. GENES BRAIN AND BEHAVIOR 2017; 15:678-88. [PMID: 27470444 DOI: 10.1111/gbb.12312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/03/2016] [Accepted: 07/26/2016] [Indexed: 12/17/2022]
Abstract
Maternal care is an indispensable behavioral component necessary for survival and reproductive success in mammals, and postpartum maternal behavior is mediated by an incompletely understood complex interplay of signals including effects of epigenetic regulation. We approached this issue using our recently established mice with targeted deletion of heterochromatin protein 1 binding protein 3 (HP1BP3), which we found to be a novel epigenetic repressor with critical roles in postnatal growth. Here, we report a dramatic reduction in the survival of pups born to Hp1bp3(-/-) deficient mouse dams, which could be rescued by co-fostering with wild-type dams. Hp1bp3(-/-) females failed to retrieve both their own pups and foster pups in a pup retrieval test, and showed reduced anxiety-like behavior in the open-field and elevated-plus-maze tests. In contrast, Hp1bp3(-/-) females showed no deficits in behaviors often associated with impaired maternal care, including social behavior, depression, motor coordination and olfactory capability; and maintained unchanged anxiety-associated hallmarks such as cholinergic status and brain miRNA profiles. Collectively, our results suggest a novel role for HP1BP3 in regulating maternal and anxiety-related behavior in mice and call for exploring ways to manipulate this epigenetic process.
Collapse
Affiliation(s)
- B P Garfinkel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel. .,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - S Arad
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Biomedical Sciences, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - S M Neuner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - S Netser
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - S Wagner
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - C C Kaczorowski
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - C J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - M Gal
- Biomedical Sciences, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,The IVF Unit - Obstetrics and Gynecology Department, Shaare Zedek Medical Center, Jerusalem, Israel
| | - H Soreq
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - J Orly
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
12
|
Xu D, Yang Q, Cui M, Zhang Q. The novel transcriptional factor HP1BP3 negatively regulates Hsp70 transcription in Crassostrea hongkongensis. Sci Rep 2017; 7:1401. [PMID: 28469151 PMCID: PMC5431216 DOI: 10.1038/s41598-017-01573-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/29/2017] [Indexed: 11/29/2022] Open
Abstract
ChHP1BP3, a chromatin complex-related protein known with dynamic features, was identified as a ChHsp70 promoter-associated factor in Crassostrea hongkongensis by DNA-affinity purification and mass spectrometry analysis. Direct interaction between purified ChHP1BP3 and the ChHsp70 promoter region was demonstrated using EMSA. ChHp1bp3 depletion led to clear enhancements in ChHsp70 mRNA expression in C. hongkongensis hemocytes. However, ChHp1bp3 overexpression in heterologous HEK293T cells correlated with fluctuations in ChHsp70 transcription. Quantitative RT-PCR analysis showed that both ChHsp70 and ChHp1bp3 transcription were responsive to external physical/chemical stresses by heat, CdCl2 and NP. This indicated a plausible correlation between ChHsp70 and ChHp1bp3 in the stress-induced genetic regulatory pathway. While, the distinctive ChHp1bp3 expression patterns upon physical and chemical stresses suggest that the mechanisms that mediate ChHp1bp3 induction might be stress-specific. This study discovered a novel role for HP1BP3 as a negative regulator in controlling Hsp70 transcription in C. hongkongensis, and contributed to better understanding the complex regulatory mechanisms governing Hsp70 transcription.
Collapse
Affiliation(s)
- Delin Xu
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, P.R. China
| | - Qin Yang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, P.R. China
| | - Miao Cui
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, P.R. China.
| | - Qizhong Zhang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, P.R. China.
| |
Collapse
|
13
|
Liu H, Liang C, Kollipara RK, Matsui M, Ke X, Jeong BC, Wang Z, Yoo KS, Yadav GP, Kinch LN, Grishin NV, Nam Y, Corey DR, Kittler R, Liu Q. HP1BP3, a Chromatin Retention Factor for Co-transcriptional MicroRNA Processing. Mol Cell 2016; 63:420-32. [PMID: 27425409 DOI: 10.1016/j.molcel.2016.06.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/26/2016] [Accepted: 06/09/2016] [Indexed: 02/08/2023]
Abstract
Recent studies suggest that the microprocessor (Drosha-DGCR8) complex can be recruited to chromatin to catalyze co-transcriptional processing of primary microRNAs (pri-miRNAs) in mammalian cells. However, the molecular mechanism of co-transcriptional miRNA processing is poorly understood. Here we find that HP1BP3, a histone H1-like chromatin protein, specifically associates with the microprocessor and promotes global miRNA biogenesis in human cells. Chromatin immunoprecipitation (ChIP) studies reveal genome-wide co-localization of HP1BP3 and Drosha and HP1BP3-dependent Drosha binding to actively transcribed miRNA loci. Moreover, HP1BP3 specifically binds endogenous pri-miRNAs and facilitates the Drosha/pri-miRNA association in vivo. Knockdown of HP1BP3 compromises pri-miRNA processing by causing premature release of pri-miRNAs from the chromatin. Taken together, these studies suggest that HP1BP3 promotes co-transcriptional miRNA processing via chromatin retention of nascent pri-miRNA transcripts. This work significantly expands the functional repertoire of the H1 family of proteins and suggests the existence of chromatin retention factors for widespread co-transcriptional miRNA processing.
Collapse
Affiliation(s)
- Haoming Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunyang Liang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rahul K Kollipara
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Masayuki Matsui
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiong Ke
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Byung-Cheon Jeong
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiqiang Wang
- International Institute for Integrated Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Kyoung Shin Yoo
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gaya P Yadav
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lisa N Kinch
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nicholas V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yunsun Nam
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David R Corey
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralf Kittler
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qinghua Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; International Institute for Integrated Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
14
|
Neuner SM, Garfinkel BP, Wilmott LA, Ignatowska-Jankowska BM, Citri A, Orly J, Lu L, Overall RW, Mulligan MK, Kempermann G, Williams RW, O'Connell KMS, Kaczorowski CC. Systems genetics identifies Hp1bp3 as a novel modulator of cognitive aging. Neurobiol Aging 2016; 46:58-67. [PMID: 27460150 DOI: 10.1016/j.neurobiolaging.2016.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/07/2016] [Accepted: 06/11/2016] [Indexed: 12/13/2022]
Abstract
An individual's genetic makeup plays an important role in determining susceptibility to cognitive aging. Identifying the specific genes that contribute to cognitive aging may aid in early diagnosis of at-risk patients, as well as identify novel therapeutics targets to treat or prevent development of symptoms. Challenges to identifying these specific genes in human studies include complex genetics, difficulty in controlling environmental factors, and limited access to human brain tissue. Here, we identify Hp1bp3 as a novel modulator of cognitive aging using a genetically diverse population of mice and confirm that HP1BP3 protein levels are significantly reduced in the hippocampi of cognitively impaired elderly humans relative to cognitively intact controls. Deletion of functional Hp1bp3 in mice recapitulates memory deficits characteristic of aged impaired mice and humans, further supporting the idea that Hp1bp3 and associated molecular networks are modulators of cognitive aging. Overall, our results suggest Hp1bp3 may serve as a potential target against cognitive aging and demonstrate the utility of genetically diverse animal models for the study of complex human disease.
Collapse
Affiliation(s)
- Sarah M Neuner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Benjamin P Garfinkel
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Lynda A Wilmott
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Bogna M Ignatowska-Jankowska
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ami Citri
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Joseph Orly
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rupert W Overall
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden 01307, Germany
| | - Megan K Mulligan
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gerd Kempermann
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden 01307, Germany; German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden 01307, Germany
| | - Robert W Williams
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kristen M S O'Connell
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Catherine C Kaczorowski
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|