1
|
Chu Z, Chen Y, Xie D, Song C, Yang L, Qin T, Zhai Z, Cao Z, Xu Y, Sun T. Ethanol extract of Moschus attenuates glutamate-induced cytotoxicity in HT22 cells by regulating the Nrf2 and MAPK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025:119879. [PMID: 40288659 DOI: 10.1016/j.jep.2025.119879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moschus is a traditional Chinese materia medica for treating central nervous system disorders. Oxidative stress is a key pathogenic mechanism of Alzheimer's disease (AD) and serves as a critical bridge linking various pathological processes of AD. Previous studies have shown that Moschus can exert neuroprotective effects by inhibiting glutamate-induced neuronal cell damage; however, its underlying mechanisms remain unclear. AIM OF THE STUDY This study aimed to evaluate the effects and potential mechanisms of the ethanol extract of Moschus (EEM) on glutamate-induced oxidative damage in HT22 cells. MATERIALS AND METHODS The components of EEM were identified using GC-MS. An oxidative toxicity cell model was established by exposing HT22 cells to glutamate. Cell viability was assessed through CCK8 and LDH assays, and the modes of cell death were evaluated using FITC-Annexin V staining and TUNEL assays. Intracellular and mitochondrial ROS levels were measured with DCFH-DA and MitoSOX Red probes. Intracellular Ca2+ levels were measured with the Fluo-4 AM fluorescent probe. Mitochondrial function was analyzed using the JC-1 fluorescent probe. Protein expression levels of Bid, Calpain-1, Bax, Bcl-2, AIF, P-ERK, ERK, P-JNK, JNK, P-P38, P38, Nrf2, HO-1, Keap1, and NQO-1 were analyzed through western blotting. The distribution of AIF and Nrf2 in the cytoplasm and nucleus was examined through immunofluorescence staining. RESULTS Using GC-MS, 18 major components were identified in EEM. EEM significantly inhibited apoptosis, reduced ROS generation, and alleviated Ca2+ overload. EEM restored mitochondrial dysfunction by regulating the expression of mitochondria-related apoptotic proteins, including the downregulation of Calpain-1 and Bax, upregulation of Bid and Bcl-2, and inhibition of AIF nuclear translocation. EEM inhibited MAPK phosphorylation while activating the Nrf2/Keap1 signaling pathway. CONCLUSIONS Our study shows that EEM protects HT22 cells from glutamate-induced damage by regulating the MAPK and Nrf2 pathways, effectively reducing oxidative stress and apoptosis. In summary, this study first demonstrates at the cellular level that EEM exerts neuroprotective effects by modulating the MAPK and Nrf2 pathways. These findings provide new insights into the mechanism of Moschus against AD and establish a foundation for its potential application in AD.
Collapse
Affiliation(s)
- Zhili Chu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yubing Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Caiyou Song
- Traditional Chinese Medicine Factory Co. Ltd, Taiji Group Chongqing, Chongqing, 402284, China
| | - Lin Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhenwei Zhai
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
2
|
Mitchnick KA, Nicholson K, Wideman C, Jardine K, Jamieson-Williams R, Creighton SD, Lacoursiere A, Milite C, Castellano S, Sbardella G, MacLusky NJ, Choleris E, Winters BD. The Lysine Acetyltransferase PCAF Functionally Interacts with Estrogen Receptor Alpha in the Hippocampus of Gonadally Intact Male-But Not Female-Rats to Enhance Short-Term Memory. J Neurosci 2024; 44:e1574232024. [PMID: 39138001 PMCID: PMC11376336 DOI: 10.1523/jneurosci.1574-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Acetylation of histone proteins by histone acetyltransferases (HATs), and the resultant change in gene expression, is a well-established mechanism necessary for long-term memory (LTM) consolidation, which is not required for short-term memory (STM). However, we previously demonstrated that the HAT p300/CBP-associated factor (PCAF) also influences hippocampus (HPC)-dependent STM in male rats. In addition to their epigenetic activity, HATs acetylate nonhistone proteins involved in nongenomic cellular processes, such as estrogen receptors (ERs). Given that ERs have rapid, nongenomic effects on HPC-dependent STM, we investigated the potential interaction between ERs and PCAF for STM mediated by the dorsal hippocampus (dHPC). Using a series of pharmacological agents administered directly into the dHPC, we reveal a functional interaction between PCAF and ERα in the facilitation of short-term object-in-place memory in male but not female rats. This interaction was specific to ERα, while ERβ agonism did not enhance STM. It was further specific to dHPC STM, as the effect was not present in the dHPC for LTM or in the perirhinal cortex. Further, while STM required local (i.e., dHPC) estrogen synthesis, the facilitatory interaction effect appeared independent of estrogens. Finally, western blot analyses demonstrated that PCAF activation in the dHPC rapidly (5 min) activated downstream estrogen-related cell signaling kinases (c-Jun N-terminal kinase and extracellular signal-related kinase). Collectively, these findings indicate that PCAF, which is typically implicated in LTM through epigenetic processes, also influences STM in the dHPC, possibly via nongenomic ER activity. Critically, this novel PCAF-ER interaction might exist as a male-specific mechanism supporting STM.
Collapse
Affiliation(s)
- Krista A Mitchnick
- Department of Psychology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Kate Nicholson
- Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Cassidy Wideman
- Department of Psychology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Kristen Jardine
- Department of Psychology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | - Samantha D Creighton
- Department of Psychology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Allison Lacoursiere
- Department of Psychology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ciro Milite
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano I-84084, Italy
| | - Sabrina Castellano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano I-84084, Italy
| | - Gianluca Sbardella
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano I-84084, Italy
| | - Neil J MacLusky
- Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Elena Choleris
- Department of Psychology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Boyer D Winters
- Department of Psychology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
3
|
Rymbai E, Sugumar D, Chakkittukandiyil A, Kothandan R, Selvaraj D. Molecular insights into the potential effects of selective estrogen receptor β agonists in Alzheimer's and Parkinson's diseases. Cell Biochem Funct 2024; 42:e4014. [PMID: 38616346 DOI: 10.1002/cbf.4014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative disorders. Pathologically, AD and PD are characterized by the accumulation of misfolded proteins. Hence, they are also called as proteinopathy diseases. Gender is considered as one of the risk factors in both diseases. Estrogens are widely accepted to be neuroprotective in several neurodegenerative disorders. Estrogens can be produced in the central nervous system, where they are called as neurosteroids. Estrogens mediate their neuroprotective action mainly through their actions on estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). However, ERα is mainly involved in the growth and development of the primary and secondary sexual organs in females. Hence, the activation of ERα is associated with undesired side effects such as gynecomastia and increase in the risk of breast cancer, thromboembolism, and feminization. Therefore, selective activation of ERβ is often considered to be safer. In this review, we explore the role of ERβ in regulating the expression and functions of AD- and PD-associated genes. Additionally, we discuss the association of these genes with the amyloid-beta peptide (Aβ) and α-synuclein mediated toxicity. Ultimately, we established a correlation between the importance of ERβ activation and the process underlying ERβ's neuroprotective mechanisms in AD and PD.
Collapse
Affiliation(s)
- Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Deepa Sugumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Ram Kothandan
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| |
Collapse
|
4
|
Rymbai E, Sugumar D, Chakkittukandiyil A, Kothandan R, Selvaraj J, Selvaraj D. The identification of cianidanol as a selective estrogen receptor beta agonist and evaluation of its neuroprotective effects on Parkinson's disease models. Life Sci 2023; 333:122144. [PMID: 37797687 DOI: 10.1016/j.lfs.2023.122144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
AIM The present study aims to identify selective estrogen receptor beta (ERβ) agonists and to evaluate the neuroprotective mechanism in Parkinson's disease (PD) models. MAIN METHODS In-silico studies were carried out using Maestro and GROMACS. Neuroprotective activity and apoptosis were evaluated using cytotoxicity assay and flow cytometry respectively. Gene expression studies were carried out by reverse transcription polymerase chain reaction. Motor and cognitive functions were assessed by actophotometer, rotarod, catalepsy, and elevated plus maze. The neuronal population in the substantia nigra and striatum of rats was assessed by hematoxylin and eosin staining. KEY FINDINGS Cianidanol was identified as a selective ERβ agonist through virtual screening. The cianidanol-ERβ complex is stable during the 200 ns simulation and was able to retain the interactions with key amino acid residues. Cianidanol (25 μM) prevents neuronal toxicity and apoptosis induced by rotenone in differentiated SH-SY5Y cells. Additionally, cianidanol (25 μM) increases the expression of ERβ, cathepsin D, and Nrf2 transcripts. The neuroprotective effects of cianidanol (25 μM) were reversed in the presence of a selective ERβ antagonist. In this study, we found that selective activation of ERβ could decrease the transcription of α-synuclein gene. Additionally, cianidanol (10, 20, 30 mg/kg, oral) improves the motor and cognitive deficit in rats induced by rotenone. SIGNIFICANCE Cianidanol shows neuroprotective action in PD models and has the potential to serve as a novel therapeutic agent for the treatment of PD.
Collapse
Affiliation(s)
- Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Deepa Sugumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ram Kothandan
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Jubie Selvaraj
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
| |
Collapse
|
5
|
Shahveisi K, Zarei SA, Naderi S, Khodamoradi M. Role of sex hormones in the effects of sleep deprivation on methamphetamine reward memory. Neurosci Lett 2023; 814:137440. [PMID: 37586558 DOI: 10.1016/j.neulet.2023.137440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Sleep deficiency is known as an important risk factor for relapse to drug abuse, especially for the powerful psychostimulant methamphetamine (METH). On the other hand, both drug addiction and sleep neurobiology are affected by sex hormones. We, therefore, aimed to examine the probable effects of sleep deprivation (SD) on methamphetamine (METH) reward memory in male and female rats. Moreover, we asked if sex hormones influence the effects of SD on METH reward memory. Adult male and female Wistar rats were divided into two main groups, sham and gonadectomized groups. Three weeks later, they were conditioned to receive METH (2 mg/kg, i.p.) in the conditioned place preference. METH reward memory was then reinstated following a 10-day extinction period. SD was induced for 72 h, either before or after extinction, in different groups. In gonadectomized animals, they daily received either subcutaneous administration of estrogen (5 μg/0.1 ml oil) or progesterone (2 mg/0.1 ml oil) or dihydrotestosterone (25 mg/0.1 ml oil) for thirteen days, from post-conditioning day to reinstatement session. We found that SD facilitated relapse to METH reward memory, depending on the time interval between SD and METH reinstatement. Furthermore, we found that estrogen and SD showed synergistic effects to facilitate METH reward memory, whereas testosterone and progesterone revealed inhibitory effects in the controls, but not in the SD, animals. Our findings would seem to suggest that sex hormones should be considered as determinant factors to manage METH abuse and relapse to METH seeking/taking behavior, especially for those with sleep deficiency.
Collapse
Affiliation(s)
- Kaveh Shahveisi
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahab A Zarei
- Center for Excellence in Brain Science and Intelligence Technology (Institute of Neuroscience), Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China
| | - Safoura Naderi
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Khodamoradi
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Robinson MJ, Newbury S, Singh K, Leonenko Z, Beazely MA. The Interplay Between Cholesterol and Amyloid-β on HT22 Cell Viability, Morphology, and Receptor Tyrosine Kinase Signaling. J Alzheimers Dis 2023; 96:1663-1683. [PMID: 38073391 DOI: 10.3233/jad-230753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
BACKGROUND There is a lack of understanding in the molecular and cellular mechanisms of Alzheimer's disease that has hindered progress on therapeutic development. The focus has been on targeting toxic amyloid-β (Aβ) pathology, but these therapeutics have generally failed in clinical trials. Aβ is an aggregation-prone protein that has been shown to disrupt cell membrane structure in molecular biophysics studies and interfere with membrane receptor signaling in cell and animal studies. Whether the lipid membrane or specific receptors are the primary target of attack has not been determined. OBJECTIVE This work elucidates some of the interplay between membrane cholesterol and Aβ42 on HT22 neuronal cell viability, morphology, and platelet-derived growth factor (PDGF) signaling pathways. METHODS The effects of cholesterol depletion by methyl-β-cyclodextrin followed by treatment with Aβ and/or PDGF-AA were assessed by MTT cell viability assays, western blot, optical and AFM microscopy. RESULTS Cell viability studies show that cholesterol depletion was mildly protective against Aβ toxicity. Together cholesterol reduction and Aβ42 treatment compounded the disruption of the PDGFα receptor activation. Phase contrast optical microscopy and live cell atomic force microscopy imaging revealed that cytotoxic levels of Aβ42 caused morphological changes including cell membrane damage, cytoskeletal disruption, and impaired cell adhesion; cell damage was ameliorated by cellular cholesterol depletion. CONCLUSIONS Cholesterol depletion impacted the effects of Aβ42 on HT22 cell viability, morphology, and receptor tyrosine kinase signaling.
Collapse
Affiliation(s)
- Morgan J Robinson
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Sean Newbury
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Kartar Singh
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Zoya Leonenko
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Michael A Beazely
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
7
|
Mendell AL, Creighton SD, Wilson HA, Jardine KH, Isaacs L, Winters BD, MacLusky NJ. Inhibition of 5α Reductase Impairs Cognitive Performance, Alters Dendritic Morphology and Increases Tau Phosphorylation in the Hippocampus of Male 3xTg-AD Mice. Neuroscience 2020; 429:185-202. [PMID: 31954826 DOI: 10.1016/j.neuroscience.2020.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/09/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
Recent work has suggested that 5α-reduced metabolites of testosterone may contribute to the neuroprotection conferred by their parent androgen, as well as to sex differences in the incidence and progression of Alzheimer's disease (AD). This study investigated the effects of inhibiting 5α-reductase on object recognition memory (ORM), hippocampal dendritic morphology and proteins involved in AD pathology, in male 3xTg-AD mice. Male 6-month old wild-type or 3xTg-AD mice received daily injections of finasteride (50 mg/kg i.p.) or vehicle (18% β-cyclodextrin, 1% v/b.w.) for 20 days. Female wild-type and 3xTg-AD mice received only the vehicle. Finasteride treatment differentially impaired ORM in males after short-term (3xTg-AD only) or long-term (3xTg-AD and wild-type) retention delays. Dendritic spine density and dendritic branching of pyramidal neurons in the CA3 hippocampal subfield were significantly lower in 3xTg-AD females than in males. Finasteride reduced CA3 dendritic branching and spine density in 3xTg-AD males, to within the range observed in vehicle-treated females. In the CA1 hippocampal subfield, dendritic branching and spine density were reduced in both male and female 3xTg-AD mice, compared to wild type controls. Hippocampal amyloid β levels were substantially higher in 3xTg-AD females compared to both vehicle and finasteride-treated 3xTg-AD males. Site-specific Tau phosphorylation was higher in 3xTg-AD mice compared to sex-matched wild-type controls, increasing slightly after finasteride treatment. These results suggest that 5α-reduced neurosteroids may play a role in testosterone-mediated neuroprotection and may contribute to sex differences in the development and severity of AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Boyer D Winters
- Psychology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | |
Collapse
|
8
|
Cai Z, Li H. An Updated Review: Androgens and Cognitive Impairment in Older Men. Front Endocrinol (Lausanne) 2020; 11:586909. [PMID: 33281745 PMCID: PMC7691320 DOI: 10.3389/fendo.2020.586909] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Androgens are some of the most important sex hormones in men, and they maintain important physiological activities in the human body. Cognitive impairment is one of the most common manifestations of aging in the elderly population and an important factor affecting the quality of life of elderly individuals. The levels of sex hormones in elderly people decrease with age, and low levels of androgens in older male individuals have been closely linked to the development of cognitive impairment. Basic studies have shown that androgens have neuroprotective effects and that androgen deficiency impairs cognitive function by increasing oxidative stress and decreasing synaptic plasticity, among other effects. Additionally, clinical studies have also shown that androgen deficiency is closely related to cognitive impairment. This article reviews the relationship between low androgen levels and cognitive impairment, their potential mechanisms, and the effects of testosterone supplementation in improving cognition.
Collapse
Affiliation(s)
- Zhonglin Cai
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongjun Li
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Mitchnick KA, Mendell AL, Wideman CE, Jardine KH, Creighton SD, Muller AM, Choleris E, MacLusky NJ, Winters BD. Dissociable involvement of estrogen receptors in perirhinal cortex-mediated object-place memory in male rats. Psychoneuroendocrinology 2019; 107:98-108. [PMID: 31125759 DOI: 10.1016/j.psyneuen.2019.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/21/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
Abstract
Estrogens and the estrogen receptors (ER) - ERα, ERβ, and the G-protein coupled estrogen receptor (GPER) - are implicated in various forms of hippocampus (HPC)-dependent memory. However, the involvement of ER-related mechanisms in perirhinal cortex (PRh), which is necessary for object memory, remains much less clear. Moreover, there is a paucity of data assessing ER contributions to cognition in males,despite documented sex differences at the cellular level.We hypothesized that estrogens in PRh are important for object memory in males, assessingthe role of 17-βestradiol (E2), ERα, ERβ, GPER, and their downstream signaling pathways, in PRh-mediated object-in-place (OiP) memory in gonadally-intact male rats. Intra-PRh administration of E2 enhanced both long-term memory (LTM; 24 h) and short-term memory (STM; 20 min). Conversely, aromatase inhibition with letrozole impaired LTM and STM. The semi-selective ER inhibitor ICI 182780 impaired LTM, but not STM. This effect may be due to inhibition of ERβ, as the ERβagonist DPN, but not ERαagonist PPT, enhanced LTM. GPER was also found to be necessary in PRh, as the antagonist G15 impaired both LTM and STM. Western blot analyses demonstrated that phosphorylation levels of the extracellular signal-related kinase (ERK2 isoform), awell-establisheddownstream signaling pathway activated by estrogens through ERα/ERβ, was elevated in PRh 5 min following OiP learning.We also reportincreased levels of c-Jun N-terminal kinase (JNK; p46 and p54 isoforms) phosphorylation in PRh 5 min following learning,consistent with recent research linking GPER activation and JNK signaling in the HPC. This effect was abolished by intra-PRh administration of G15, but not letrozole, suggesting that JNK signaling is triggered via GPER activation during OiP learning, and is possibly E2-independent, similar to findings in the HPC. These results, therefore, reveal interesting dissociations between the roles of various ERs, possibly involving both estrogen-dependent and independent mechanisms, in PRh-mediated object-place learning in male rats.
Collapse
Affiliation(s)
- Krista A Mitchnick
- Department of Psychology, University of Guelph, Canada; Collaborative Neuroscience Program, University of Guelph, Canada.
| | - Ari L Mendell
- Collaborative Neuroscience Program, University of Guelph, Canada; Department of Biomedical Sciences, University of Guelph, Canada
| | - Cassidy E Wideman
- Department of Psychology, University of Guelph, Canada; Collaborative Neuroscience Program, University of Guelph, Canada
| | - Kristen H Jardine
- Department of Psychology, University of Guelph, Canada; Collaborative Neuroscience Program, University of Guelph, Canada
| | - Samantha D Creighton
- Department of Psychology, University of Guelph, Canada; Collaborative Neuroscience Program, University of Guelph, Canada
| | | | - Elena Choleris
- Department of Psychology, University of Guelph, Canada; Collaborative Neuroscience Program, University of Guelph, Canada
| | - Neil J MacLusky
- Collaborative Neuroscience Program, University of Guelph, Canada; Department of Biomedical Sciences, University of Guelph, Canada
| | - Boyer D Winters
- Department of Psychology, University of Guelph, Canada; Collaborative Neuroscience Program, University of Guelph, Canada.
| |
Collapse
|
10
|
Okolo C, Ali MA, Newman M, Chambers SA, Whitt J, Alsharif ZA, Day VW, Alam MA. Hexafluoroisopropanol-Mediated Domino Reaction for the Synthesis of Thiazolo-androstenones: Potent Anticancer Agents. ACS OMEGA 2018; 3:17991-18001. [PMID: 30613817 PMCID: PMC6312635 DOI: 10.1021/acsomega.8b02840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/12/2018] [Indexed: 05/02/2023]
Abstract
A cascade reaction of thioamides with 6β-bromoandrostenedione in hexafluoroisopropanol formed substituted thiazolo-androstenones. This is a simple and mild protocol to synthesize novel molecules by using readily available reagents and substrates. Feasibility of the reaction has been rationalized by density functional theory calculations. Moreover, these compounds are potent growth inhibitors of colon, central nervous system, melanoma, ovarian, and renal cancer cell lines with 50% growth inhibition values as low as 1.04 μM.
Collapse
Affiliation(s)
- ChrisTina Okolo
- Department
of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States
| | - Mohamad Akbar Ali
- Department
of Chemistry, Sejong University, Seoul 143-747, Republic of Korea
| | - Matthew Newman
- Department
of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States
| | - Steven A. Chambers
- Department
of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States
| | - Jedidiah Whitt
- Department
of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States
| | - Zakeyah A. Alsharif
- Department
of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States
| | - Victor W. Day
- Department
of Chemistry, Integrated Science Building, University of Kansas, Lawrence, Kansas 66046, United States
| | - Mohammad A. Alam
- Department
of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States
- E-mail:
| |
Collapse
|
11
|
Mendell AL, MacLusky NJ. The testosterone metabolite 3α-androstanediol inhibits oxidative stress-induced ERK phosphorylation and neurotoxicity in SH-SY5Y cells through an MKP3/DUSP6-dependent mechanism. Neurosci Lett 2018; 696:60-66. [PMID: 30552945 DOI: 10.1016/j.neulet.2018.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 01/08/2023]
Abstract
Testosterone exerts neuroprotective effects on the brain, but the mechanisms by which these effects are exerted appear to be different in males and females. While in females they involve local conversion to estradiol, in males they may be androgen receptor-dependent, or mediated through metabolism to neurosteroids such as 5α-androstane-3α,17β-diol (3α-diol), which acts through different mechanisms than testosterone itself. Recently, we demonstrated that 3α-diol can protect neurons and neuronal-like cells against oxidative stress-induced neurotoxicity associated with prolonged phosphorylation of the extracellular signal-regulated kinase (ERK). The mechanism(s) responsible for these effects remain unknown. In the present study, we sought to determine whether the ERK-specific phosphatase, mitogen-activated protein kinase phosphatase 3/dual specificity phosphatase 6 (MKP3/DUSP6), is involved in the cytoprotective effects of 3α-diol in SH-SY5Y human female neuroblastoma cells. 3α-diol inhibited ERK phosphorylation and ameliorated cell death induced by the oxidative stressor hydrogen peroxide (H2O2). These protective effects were significantly reduced by pre-treatment with the MKP3/DUSP6 inhibitor BCI. In addition, H2O2 decreased expression of MKP3/DUSP6, and this was prevented by co-treatment with 3α-diol. These findings suggest that the protective effects of 3α-diol are mediated through regulation of ERK phosphorylation in neurotoxic conditions and indicate that these effects may be exerted through modulation of MKP3/DUSP6. Targeting the regulation of MKP3/DUSP6 may be beneficial in reducing toxicity under conditions of oxidative stress.
Collapse
Affiliation(s)
- Ari Loren Mendell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Neil James MacLusky
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
12
|
Lei Y, Renyuan Z. Effects of Androgens on the Amyloid-β Protein in Alzheimer's Disease. Endocrinology 2018; 159:3885-3894. [PMID: 30215697 DOI: 10.1210/en.2018-00660] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/06/2018] [Indexed: 12/24/2022]
Abstract
Age-related androgen depletion has been implicated in compromised neuroprotection and is involved in the pathogenesis of neurodegenerative disease, including Alzheimer's disease (AD), the leading cause of dementia. Emerging data revealed that reduction of both serum and brain androgen levels in males is associated with increased amyloid-β (Aβ) accumulation, a putative cause of AD. It has been demonstrated that androgens can function as the endogenous negative regulators of Aβ. However, the mechanisms by which androgens regulate Aβ production, degradation, and clearance, as well as the Aβ-induced pathological process in AD, are still elusive. This review emphasizes the contributions of androgen to Aβ metabolism and toxicity in AD and thus may provide novel strategies for prevention and therapeutics.
Collapse
Affiliation(s)
- Yang Lei
- Department of Urology, Jing'an District Central Hospital, Fudan University, Shanghai, China
| | - Zhou Renyuan
- Department of Urology, Jing'an District Central Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Mendell AL, MacLusky NJ. Neurosteroid Metabolites of Gonadal Steroid Hormones in Neuroprotection: Implications for Sex Differences in Neurodegenerative Disease. Front Mol Neurosci 2018; 11:359. [PMID: 30344476 PMCID: PMC6182082 DOI: 10.3389/fnmol.2018.00359] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022] Open
Abstract
Gonadal steroid hormones are neurotrophic and neuroprotective. These effects are modulated by local metabolism of the hormones within the brain. Such control is necessary to maintain normal function, as several signaling pathways that are activated by gonadal steroid hormones in the brain can also become dysregulated in disease. Metabolites of the gonadal steroid hormones—particularly 3α-hydroxy, 5α-reduced neurosteroids—are synthesized in the brain and can act through different mechanisms from their parent steroids. These metabolites may provide a mechanism for modulating the responses to their precursor hormones, thereby providing a regulatory influence on cellular responses. In addition, there is evidence that the 3α-hydroxy, 5α-reduced neurosteroids are neuroprotective in their own right, and therefore may contribute to the overall protection conferred by their precursors. In this review article, the rapidly growing body of evidence supporting a neuroprotective role for this class of neurosteroids will be considered, including a discussion of potential mechanisms that may be involved. In addition, we explore the hypothesis that differences between males and females in local neurosteroid production may contribute to sex differences in the development of neurodegenerative disease.
Collapse
Affiliation(s)
- Ari Loren Mendell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Neil James MacLusky
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
14
|
Mendell AL, Chung BY, Creighton CE, Kalisch BE, Bailey CD, MacLusky NJ. Neurosteroid metabolites of testosterone and progesterone differentially inhibit ERK phosphorylation induced by amyloid β in SH-SY5Y cells and primary cortical neurons. Brain Res 2018; 1686:83-93. [DOI: 10.1016/j.brainres.2018.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/12/2017] [Accepted: 02/16/2018] [Indexed: 12/31/2022]
|
15
|
Tran NQV, Nguyen AN, Takabe K, Yamagata Z, Miyake K. Pre-treatment with amitriptyline causes epigenetic up-regulation of neuroprotection-associated genes and has anti-apoptotic effects in mouse neuronal cells. Neurotoxicol Teratol 2017; 62:1-12. [PMID: 28511916 DOI: 10.1016/j.ntt.2017.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 12/12/2022]
Abstract
Antidepressants, such as imipramine and fluoxetine, are known to alter gene expression patterns by inducing changes in the epigenetic status of neuronal cells. There is also some evidence for the anti-apoptotic effect of various groups of antidepressants; however, this effect is complicated and cell-type dependent. Antidepressants of the tricyclic group, in particular amitriptyline, have been suggested to be beneficial in the treatment of neurodegenerative disorders. We examined whether amitriptyline exerts an anti-apoptotic effect via epigenetic mechanisms. Using DNA microarray, we analyzed global gene expression in mouse primary cultured neocortical neurons after treatment with amitriptyline and imipramine. The neuroprotection-associated genes, activating transcription factor 3 (Atf3) and heme oxygenase 1 (Hmox1), were up-regulated at both mRNA and protein levels by treatment with amitriptyline. Quantitative chromatin immunoprecipitation assay revealed that amitriptyline increased enrichments of trimethylation of histone H3 lysine 4 in the promoter regions of Atf3 and Hmox1 and acetylation of histone H3 lysine 9 in the promoter regions of Atf3, which indicate an active epigenetic status. Amitriptyline pre-treatment attenuated 1-methyl-4-phenylpyridinium ion (MPP+)- or amyloid β peptide 1-42 (Aβ1-42)-induced neuronal cell death and inhibited the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2). We found that Atf3 and Hmox1 were also up-regulated after Aβ1-42 treatment, and were further increased when pre-treated with amitriptyline. Interestingly, the highest up-regulation of Atf3 and Hmox1, at least at mRNA level, was observed after co-treatment with Aβ1-42 and amitriptyline, together with the loss of the neuroprotective effect. These findings suggest preconditioning and neuroprotective effects of amitriptyline; however, further investigations are needed for clarifying the contribution of epigenetic up-regulation of Atf3 and Hmox1 genes.
Collapse
Affiliation(s)
- Nguyen Quoc Vuong Tran
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - An Nghia Nguyen
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Kyoko Takabe
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Zentaro Yamagata
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Kunio Miyake
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan.
| |
Collapse
|